首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The Younger Dryas (YD) stadial signified an interruption of the warming during the transition from the last glacial to the present interglacial. The mechanism responsible for this cooling is still uncertain, so valuable information concerning climate variability can be obtained by numerical simulation of the YD climate. We performed four experiments on the Younger Dryas climate with the Hamburg atmospheric general circulation model. Here we use the results of these experiments, which differed in prescribed boundary conditions, to characterize the atmospheric winter circulation during the YD stadial in the North Atlantic/European sector. The 10 year means of the following variables are presented: sea level pressure, 500 hPa geopotential heights and 200 hPa winds. In addition, we used daily values to calculate an index to assess the occurrence of blocking and strong zonal flow and to compute storm tracks. Our results show that the YD cooling in Europe was present with a strong and stable westerly circulation without blocking. This is in conflict with an earlier study suggesting frequent easterly winds over NW-Europe. In our experiments the sea-ice cover in the North Atlantic Ocean was the crucial factor forcing this specific YD circulation. Moreover, the jet stream over the North Atlantic was strengthened considerably, causing an enhanced cyclonic activity over the Eurasian continent. The YD winter circulation was different from the circulation found in most simulation studies on the Last Glacial Maximum, since no glacial anticyclones were present and no split of the jet stream occurred. Received: 1 November 1995 / Accepted: 29 May 1996  相似文献   

2.
A global hybrid coupled model is developed, with the aim of studying the effects of ocean-atmosphere feedbacks on the stability of the Atlantic meridional overturning circulation. The model includes a global ocean general circulation model and a statistical atmosphere model. The statistical atmosphere model is based on linear regressions of data from a fully coupled climate model on sea surface temperature both locally and hemispherically averaged, being the footprint of Atlantic meridional overturning variability. It provides dynamic boundary conditions to the ocean model for heat, freshwater and wind-stress. A basic but consistent representation of ocean-atmosphere feedbacks is captured in the hybrid coupled model and it is more than 10 times faster than the fully coupled climate model. The hybrid coupled model reaches a steady state with a climate close to the one of the fully coupled climate model, and the two models also have a similar response (collapse) of the Atlantic meridional overturning circulation to a freshwater hosing applied in the northern North Atlantic.  相似文献   

3.
Freshening of high latitude surface waters can change the large-scale oceanic transport of heat and salt. Consequently, atmospheric and sea ice perturbations over the deep water production sites excite a large-scale response establishing an oceanic "teleconnection" with time scales of years to centuries. To study these feedbacks, a coupled atmosphere-ocean-sea ice model consisting of a two dimensional atmospheric energy and moisture balance model (EMBM) coupled to a thermodynamic sea ice model and an ocean general circulation model is utilised. The coupled model reproduces many aspects of the present oceanic circulation. We also investigate the climate impact of changes in fresh water balance during an ice age initiation. In this experiment part of the precipitation over continents is stored within continental ice sheets. During the buildup of ice sheets the oceanic stratification in the North Atlantic is weakened by a reduced continental run-off leading to an enhanced thermohaline circulation. Under these conditions salinity is redistributed such that deep water is more saline than under present conditions. Once the ice sheets built up, we simulate an ice age climate without net fresh water storage on the continents. In this case the coupled model reproduces the shallow and weak overturning cell, an ice edge advance insulating the upper ocean, and many other aspects of the glacial circulation.  相似文献   

4.
Impact of ocean model resolution on CCSM climate simulations   总被引:1,自引:1,他引:0  
The current literature provides compelling evidence suggesting that an eddy-resolving (as opposed to eddy-permitting or eddy-parameterized) ocean component model will significantly impact the simulation of the large-scale climate, although this has not been fully tested to date in multi-decadal global coupled climate simulations. The purpose of this paper is to examine how resolved ocean fronts and eddies impact the simulation of large-scale climate. The model used for this study is the NCAR Community Climate System Model version 3.5 (CCSM3.5)—the forerunner to CCSM4. Two experiments are reported here. The control experiment is a 155-year present-day climate simulation using a 0.5° atmosphere component (zonal resolution 0.625 meridional resolution 0.5°; land surface component at the same resolution) coupled to ocean and sea-ice components with zonal resolution of 1.2° and meridional resolution varying from 0.27° at the equator to 0.54° in the mid-latitudes. The second simulation uses the same atmospheric and land-surface models coupled to eddy-resolving 0.1° ocean and sea-ice component models. The simulations are compared in terms of how the representation of smaller scale features in the time mean ocean circulation and ocean eddies impact the mean and variable climate. In terms of the global mean surface temperature, the enhanced ocean resolution leads to a ubiquitous surface warming with a global mean surface temperature increase of about 0.2?°C relative to the control. The warming is largest in the Arctic and regions of strong ocean fronts and ocean eddy activity (i.e., Southern Ocean, western boundary currents). The Arctic warming is associated with significant losses of sea-ice in the high-resolution simulation. The sea surface temperature gradients in the North Atlantic, in particular, are better resolved in the high-resolution model leading to significantly sharper temperature gradients and associated large-scale shifts in the rainfall. In the extra-tropics, the interannual temperature variability is increased with the resolved eddies, and a notable increases in the amplitude of the El Ni?o and the Southern Oscillation is also detected. Changes in global temperature anomaly teleconnections and local air-sea feedbacks are also documented and show large changes in ocean–atmosphere coupling. In particular, local air-sea feedbacks are significantly modified by the increased ocean resolution. In the high-resolution simulation in the extra-tropics there is compelling evidence of stronger forcing of the atmosphere by SST variability arising from ocean dynamics. This coupling is very weak or absent in the low-resolution model.  相似文献   

5.
The origin and bifurcation structure of abrupt millennial-scale climate transitions under steady external solar forcing and in the absence of atmospheric synoptic variability is studied by means of a global coupled model of intermediate complexity. We show that the origin of Dansgaard-Oeschger type oscillations in the model is caused by the weaker northward oceanic heat transport in the Atlantic basin. This is in agreement with previous studies realized with much simpler models, based on highly idealized geometries and simplified physics. The existence of abrupt millennial-scale climate transitions during glacial times can therefore be interpreted as a consequence of the weakening of the negative temperature-advection feedback. This is confirmed through a series of numerical experiments designed to explore the sensitivity of the bifurcation structure of the Atlantic meridional overturning circulation to increased atmospheric CO2 levels under glacial boundary conditions. Contrasting with the cold, stadial, phases of millennial oscillations, we also show the emergence of strong interdecadal variability in the North Atlantic sector during warm interstadials. The instability driving these interdecadal-interstadial oscillations is shown to be identical to that found in ocean-only models forced by fixed surface buoyancy fluxes, that is, a large-scale baroclinic instability developing in the vicinity of the western boundary current in the North Atlantic. Comparisons with modern observations further suggest a physical mechanism similar to that driving the 30–40?years time scale associated with the Atlantic multidecadal oscillation.  相似文献   

6.
Here we present a set of regional climate scenarios of sea level rise for the northeast Atlantic Ocean. In this study, the latest observations and results obtained with state-of-the-art climate models are combined. In addition, regional effects due to ocean dynamics and changes in the Earth’s gravity field induced by melting of land-based ice masses have been taken into account. The climate scenarios are constructed for the target years 2050 and 2100, for both a moderate and a large rise in global mean atmospheric temperature (2 °C and 4 °C in 2100 respectively). The climate scenarios contain contributions from changes in ocean density (global thermal expansion and local steric changes related to changing ocean dynamics) and changes in ocean mass (melting of mountain glaciers and ice caps, changes in the Greenland and Antarctic ice sheets, and (minor) terrestrial water-storage contributions). All major components depend on the global temperature rise achieved in the target periods considered. The resulting set of climate scenarios represents our best estimate of twenty-first century sea level rise in the northeast Atlantic Ocean, given the current understanding of the various contributions. For 2100, they yield a local rise of 30 to 55 cm and 40 to 80 cm for the moderate and large rise in global mean atmospheric temperature, respectively.  相似文献   

7.
Organic carbon buried under the great ice sheets of the Northern Hemisphere is suggested to be the missing link in the atmospheric CO2 change over the glacial-interglacial cycles. At glaciation, the advancement of continental ice sheets buries vegetation and soil carbon accumulated during warmer pe-riods. At deglaciation, this burial carbon is released back into the atmosphere. In a simulation over two glacial-interglacial cycles using a synchronously coupled atmosphere-land-ocean carbon model forced by reconstructed climate change, it is found that there is a 547-Gt terrestrial carbon release from glacial maximum to interglacial, resulting in a 60-Gt (about 30-ppmv) increase in the atmospheric CO2, with the remainder absorbed by the ocean in a scenario in which ocean acts as a passive buffer. This is in contrast to previous estimates of a land uptake at deglaciation. This carbon source originates from glacial burial,continental shelf, and other land areas in response to changes in ice cover, sea level, and climate. The input of light isotope enriched terrestrial carbon causes atmospheric δ^13C to drop by about 0.3‰ at deglaciation,followed by a rapid rise towards a high interglacial value in response to oceanic warming and regrowth on land. Together with other ocean based mechanisms such as change in ocean temperature, the glacial burial hypothesis may offer a full explanation of the observed 80-100-ppmv atmospheric CO2 change.  相似文献   

8.
The sensitivity of global climate to colder North Atlantic sea surface temperatures is in vestigated with the use of the GISS general circulation model. North Atlantic ocean temperatures 18,000 B.P., resembling those prevalent during the Younger Dryas, were incorporated into the model of the present climate and also into an experiment using orbital parameters and land ice characteristic of 11,000 B.P. The results show that with both 11,000 B.P. and present conditions the colder ocean temperatures produce cooling over western and central Europe, in good agreement with Younger Dryas paleoclimatic evidence. Cooling also occurs over extreme eastern North America, although the precise magnitude and location depends upon the specification of ocean temperature change in the western Atlantic. Despite the presence of increased land ice and colder ocean temperatures, the Younger Dryas summer air temperatures at Northern Hemisphere midlatitudes in the model are warmer than those of today due to changes in the orbital parameters, chiefly precession, and atmospheric subsidence at the perimeter of the ice sheets.  相似文献   

9.
The climate of the last glacial maximum (LGM) is simulated with a coupled climate model. The simulated climate undergoes a rapid adjustment during the first several decades after imposition of LGM boundary conditions, as described in Part 1, and then evolves toward equilibrium over 900 model years. The climate simulated by the coupled model at this period is compared with observationally-based LGM reconstructions and with LGM results obtained with an atmosphere-mixed layer (slab) ocean version of the model in order to investigate the role of ocean dynamics in the LGM climate. Global mean surface air temperature and sea surface temperature (SST) decrease by about 10 °C and 5.6 °C in the coupled model which includes ocean dynamics, compared to decreases of 6.3 and 3.8 °C in slab ocean case. The coupled model simulates a cooling of about 6.5 °C over the tropics, which is larger than that of the CLIMAP reconstruction (1.7 °C) and larger than that of the slab ocean simulation (3.3 °C), but which is in reasonable agreement with some recent proxy estimates. The ocean dynamics of the coupled model captures features found in the CLIMAP reconstructions such as a relative maximum of ocean cooling over the tropical Pacific associated with a mean La Niña-like response and lead to a more realistic SST pattern than in the slab model case. The reduction in global mean precipitation simulated in the coupled model is larger (15%) than that simulated with the slab ocean model (~10%) in conjunction with the enhanced cooling. Some regions, such as the USA and the Mediterranean region, experience increased precipitation in accord with proxy paleoclimate evidence. The overall much drier climate over the ocean leads to higher sea surface salinity (SSS) in most ocean basins except for the North Atlantic where SSS is considerably lower due to an increase in the supply of fresh water from the Mississippi and Amazon rivers and presumably a decrease in salt transport by the weakened North Atlantic overturning circulation. The North Atlantic overturning stream function weakens to less than half of the control run value. The overturning is limited to a shallower depth (less than 1000 m) and its outflow is confined to the Northern Hemisphere. In the Southern Ocean, convection is much stronger than in the control run leading to a stronger overturning stream function associated with enhanced Antarctic Bottom Water formation. As a result, Southern Ocean water masses fill the entire deep ocean. The Antarctic Circumpolar Current (ACC) transport through the Drake Passage increases by about 25%. The ACC transport, despite weaker zonal winds, is enhanced due to changes in bottom pressure torque. The weakening of the overturning circulation in the North Atlantic and the accompanying 30% decrease in the poleward ocean heat transport contrasts with the strengthening of the overturning circulation in the Southern Ocean and a 40% increase in heat transport. As a result, sea ice coverage and thickness are affected in opposite senses in the two hemispheres. The LGM climate simulated by the coupled model is in reasonable agreement with paleoclimate proxy evidence. The dynamical response of the ocean in the coupled model plays an important role in determining the simulated, and undoubtedly, the actual, LGM climate.  相似文献   

10.
Projecting twenty-first century regional sea-level changes   总被引:2,自引:0,他引:2  
We present regional sea-level projections and associated uncertainty estimates for the end of the 21 st century. We show regional projections of sea-level change resulting from changing ocean circulation, increased heat uptake and atmospheric pressure in CMIP5 climate models. These are combined with model- and observation-based regional contributions of land ice, groundwater depletion and glacial isostatic adjustment, including gravitational effects due to mass redistribution. A moderate and a warmer climate change scenario are considered, yielding a global mean sea-level rise of 0.54 ±0.19 m and 0.71 ±0.28 m respectively (mean ±1σ). Regionally however, changes reach up to 30 % higher in coastal regions along the North Atlantic Ocean and along the Antarctic Circumpolar Current, and up to 20 % higher in the subtropical and equatorial regions, confirming patterns found in previous studies. Only 50 % of the global mean value is projected for the subpolar North Atlantic Ocean, the Arctic Ocean and off the western Antarctic coast. Uncertainty estimates for each component demonstrate that the land ice contribution dominates the total uncertainty.  相似文献   

11.
Northern Hemisphere summer cooling through the Holocene is largely driven by the steady decrease in summer insolation tied to the precession of the equinoxes. However, centennial-scale climate departures, such as the Little Ice Age, must be caused by other forcings, most likely explosive volcanism and changes in solar irradiance. Stratospheric volcanic aerosols have the stronger forcing, but their short residence time likely precludes a lasting climate impact from a single eruption. Decadally paced explosive volcanism may produce a greater climate impact because the long response time of ocean surface waters allows for a cumulative decrease in sea-surface temperatures that exceeds that of any single eruption. Here we use a global climate model to evaluate the potential long-term climate impacts from four decadally paced large tropical eruptions. Direct forcing results in a rapid expansion of Arctic Ocean sea ice that persists throughout the eruption period. The expanded sea ice increases the flux of sea ice exported to the northern North Atlantic long enough that it reduces the convective warming of surface waters in the subpolar North Atlantic. In two of our four simulations the cooler surface waters being advected into the Arctic Ocean reduced the rate of basal sea-ice melt in the Atlantic sector of the Arctic Ocean, allowing sea ice to remain in an expanded state for?>?100 model years after volcanic aerosols were removed from the stratosphere. In these simulations the coupled sea ice-ocean mechanism maintains the strong positive feedbacks of an expanded Arctic Ocean sea ice cover, allowing the initial cooling related to the direct effect of volcanic aerosols to be perpetuated, potentially resulting in a centennial-scale or longer change of state in Arctic climate. The fact that the sea ice-ocean mechanism was not established in two of our four simulations suggests that a long-term sea ice response to volcanic forcing is sensitive to the stability of the seawater column, wind, and ocean currents in the North Atlantic during the eruptions.  相似文献   

12.
Coupled atmosphere–ocean general circulation models (AOGCMs) commonly fail to simulate the eastern equatorial Atlantic boreal summer cold tongue and produce a westerly equatorial trade wind bias. This tropical Atlantic bias problem is investigated with a high-resolution (27-km atmosphere represented by the Weather Research and Forecasting Model, 9-km ocean represented by the Regional Ocean Modeling System) coupled regional climate model. Uncoupled atmospheric simulations test climate sensitivity to cumulus, land-surface, planetary boundary layer, microphysics, and radiation parameterizations and reveal that the radiation scheme has a pronounced impact in the tropical Atlantic. The CAM radiation simulates a dry precipitation (up to ?90%) and cold land-surface temperature (up to ?8?K) bias over the Amazon related to an over-representation of low-level clouds and almost basin-wide westerly trade wind bias. The Rapid Radiative Transfer Model and Goddard radiation simulates doubled Amazon and Congo Basin precipitation rates and a weak eastern Atlantic trade wind bias. Season-long high-resolution coupled regional model experiments indicate that the initiation of the warm eastern equatorial Atlantic sea surface temperature (SST) bias is more sensitive to the local rather than basin-wide trade wind bias and to a wet Congo Basin instead of dry Amazon—which differs from AOGCM simulations. Comparisons between coupled and uncoupled simulations suggest a regional Bjerknes feedback confined to the eastern equatorial Atlantic amplifies the initial SST, wind, and deepened thermocline bias, while barrier layer feedbacks are relatively unimportant. The SST bias in some CRCM simulations resembles the typical AOGCM bias indicating that increasing resolution is unlikely a simple solution to this problem.  相似文献   

13.
The global ocean Chlorofluorocarbon (CFC-11) was simulated in an offline model driven by re-analysis ocean currents in order to identify the mechanisms of interannual to interdecadal variability of air?Csea CFC fluxes. The model was forced with the observed anthropogenic perturbations of atmospheric CFC-11 from the post industrial period (1938) following the OCMIP-II flux protocols along with the observed winds from 1960 to 1999 in the formulation of surface gas exchanges. The model ocean CFC-11 inventories, at the end of 1990s, accounted approximately 1% of the total atmospheric CFC-11, which is consistent with the corresponding observations. The mid-to-high latitude oceans were venue for strong (weak) oceanic sinks (sources) of CFC-11 during the winter (summer) months. The Southern Ocean (south of 40°S) and the North Atlantic (north of 35°N) provided two largest sinks of CFC-11, through which 31.4 and 14.6% of the global ocean CFC-11 entered, respectively. The eastern tropical Pacific Ocean exhibited large interannual variability of CFC-11 flux with a strong (weak) sink during La Ni?a (El Ni?o) years and represented 36% of the global CFC-11 flux variability. The North Atlantic and Southern Ocean were found as regions of large sink efficiency: a capacity to sink more CFC than outsource, although it reduced by 80 and 70%, respectively, in the last 40?years compared to 1960. The sink to source ratio of global ocean CFC-11 fluxes were reduced from 90 to 50% in the last 40?years. This indicates a saturation of CFC in the above-thermocline subsurface that makes the upper ocean less efficient in absorbing CFC in recent decades. A positive trend in CFC sink is now limited to the Southern Ocean, central tropical Pacific and western boundary current regions which possess active upwelling of old water with long time since last atmospheric contact. However, a globally averaged trend was a reduced CFC-11 sink, by emitting 30% of the total ocean CFC-11 that was absorbed during last 40?years.  相似文献   

14.
Global warming simulations are performed with a coupled climate model of reduced complexity to investigate global warming–marine carbon cycle feedbacks. The model is forced by emissions of CO2 and other greenhouse agents from scenarios recently developed by the Intergovernmental Panel on Climate Change and by CO2 stabilization profiles. The uptake of atmospheric CO2 by the ocean is reduced between 7 to 10% by year 2100 compared to simulations without global warming. The reduction is of similar size in the Southern Ocean and in low‐latitude regions (32.5°S‐32.5°N) until 2100, whereas low‐latitude regions dominate on longer time scales. In the North Atlantic the CO2 uptake is enhanced, unless the Atlantic thermohaline circulation completely collapses. At high latitudes, biologically mediated changes enhance ocean CO2 uptake, whereas in low‐latitude regions the situation is reversed. Different implementations of the marine biosphere yield a range of 5 to 16% for the total reduction in oceanic CO2 uptake until year 2100. Modeled oceanic O2 inventories are significantly reduced in global warming simulations. This suggests that the terrestrial carbon sink deduced from atmospheric O2/N2 observations is potentially overestimated if the oceanic loss of O2 to the atmosphere is not considered.  相似文献   

15.
The ocean response to surface temperature transients is simulated with the use of the Hamburg large-scale geostrophic (LSG) ocean general circulation model (OGCM). The transition, from the present to a climate corresponding to a doubling of the atmospheric CO2 content, is compared with the reversed transition. For the Atlantic, the time scale for the deep ocean to adjust to the temperature changes was similar for both transitions. In the Pacific, the time scale is shorter for the present to warm transition than for the reverse case, a result of increased production of Antarctic bottom water (AABW) during the warm climate. While the transition from cold to warm climate shows no secular variability, the reversed transition generates considerable variability on time scales of 300–400 years. For the warm climate, oscillations with periods of 45 years are found in the Southern Ocean. Results of principal oscillation pattern (POP) analysis indicate that these oscillations are due to interaction between convection in the Southern Ocean and advected salinity anomalies in the Antarctic Circumpolar Current (ACC) and the Southern Pacific Ocean. Received: 19 September 1995 / Accepted: 15 March 1996  相似文献   

16.
The sensitivity of the last glacial-inception (around 115 kyr BP, 115,000 years before present) to different feedback mechanisms has been analysed by using the Earth system model of intermediate complexity CLIMBER-2. CLIMBER-2 includes dynamic modules of the atmosphere, ocean, terrestrial biosphere and inland ice, the last of which was added recently by utilising the three-dimensonal polythermal ice-sheet model SICOPOLIS. We performed a set of transient experiments starting at the middle of the Eemiam interglacial and ran the model for 26,000 years with time-dependent orbital forcing and observed changes in atmospheric CO2 concentration (CO2 forcing). The role of vegetation and ocean feedback, CO2 forcing, mineral dust, thermohaline circulation and orbital insolation were closely investigated. In our model, glacial inception, as a bifurcation in the climate system, appears in nearly all sensitivity runs including a run with constant atmospheric CO2 concentration of 280 ppmv, a typical interglacial value, and simulations with prescribed present-day sea-surface temperatures or vegetation cover—although the rate of the growth of ice-sheets growth is smaller than in the case of the fully interactive model. Only if we run the fully interactive model with constant present-day insolation and apply present-day CO2 forcing does no glacial inception appear at all. This implies that, within our model, the orbital forcing alone is sufficient to trigger the interglacial–glacial transition, while vegetation, ocean and atmospheric CO2 concentration only provide additional, although important, positive feedbacks. In addition, we found that possible reorganisations of the thermohaline circulation influence the distribution of inland ice.  相似文献   

17.
State-of-the-art coupled general circulation models(CGCMs)are used to predict ocean heat uptake(OHU)and sealevel change under global warming.However,the projections of different models vary,resulting in high uncertainty.Much of the inter-model spread is driven by responses to surface heat perturbations.This study mainly focuses on the response of the ocean to a surface heat flux perturbation F,as prescribed by the Flux-Anomaly-Forced Model Intercomparison Project(FAFMIP).The results of ocean model were compared with those of a CGCM with the same ocean component.On the global scale,the changes in global mean temperature,ocean heat content(OHC),and steric sea level(SSL)simulated in the OGCM are generally consistent with CGCM simulations.Differences in changes in ocean temperature,OHC,and SSL between the two models primarily occur in the Arctic and Atlantic Oceans(AA)and the Southern Ocean(SO)basins.In addition to the differences in surface heat flux anomalies between the two models,differences in heat exchange between basins also play an important role in the inconsistencies in ocean climate changes in the AA and SO basins.These discrepancies are largely due to both the larger initial value and the greater weakening change of the Atlantic meridional overturning circulation(AMOC)in CGCM.The greater weakening of the AMOC in the CGCM is associated with the atmosphere–ocean feedback and the lack of a restoring salinity boundary condition.Furthermore,differences in surface salinity boundary conditions between the two models contribute to discrepancies in SSL changes.  相似文献   

18.
The 16.8 year sea ice record (November 1978 to August 1995) derived from satellite passive microwave data shows evidence of contrasting climate patterns in the Southern Ocean as indicated by persistent opposing trends in regional sea ice coverage. Southern Ocean regions adjoining the south Atlantic, south Indian and southwest Pacific Oceans show increasing trends in sea ice coverage, particularly during non-winter months, while regions adjoining the southwest Pacific Ocean show decreasing trends in sea ice coverage, particularly during summer months. The data are compiled from three successive passive microwave sensors from which two separate time-series are analyzed. The first includes the data originally released by the National Snow and Ice Data Center (NSIDC) which have not been significantly adjusted to account for differences in the successive sensors, while the second includes data recently released by NSIDC which have been rigorously adjusted (Cavalieri et al., 1997) to account for differences between sensors. Although the significance of many of the increasing trends detected in the original time-series decrease in the reanalyzed time-series, the overall pattern of contrasting trends remains evident. These trends have important implications for the southern hemisphere heat budget and surface albedo as well as for marine ecosystems associated with various sea ice habitats. Other evidence of contrasting climate patterns with respect to southern hemisphere atmospheric circulation is explored. Due to the relatively short sea ice record, it still remains to be seen whether these trends are natural decadel variation or indicative of global climate change. However, the persistent opposition in Southern Ocean regional ice coverage is noteworthy and may well be studied using global circulation models in order to better define potential positive and negative feedbacks for global change scenarios.  相似文献   

19.
The notion is pervasive in the climate science community and in the public at large that the climate impacts of fossil fuel CO2 release will only persist for a few centuries. This conclusion has no basis in theory or models of the atmosphere/ocean carbon cycle, which we review here. The largest fraction of the CO2 recovery will take place on time scales of centuries, as CO2 invades the ocean, but a significant fraction of the fossil fuel CO2, ranging in published models in the literature from 20–60%, remains airborne for a thousand years or longer. Ultimate recovery takes place on time scales of hundreds of thousands of years, a geologic longevity typically associated in public perceptions with nuclear waste. The glacial/interglacial climate cycles demonstrate that ice sheets and sea level respond dramatically to millennial-timescale changes in climate forcing. There are also potential positive feedbacks in the carbon cycle, including methane hydrates in the ocean, and peat frozen in permafrost, that are most sensitive to the long tail of the fossil fuel CO2 in the atmosphere.  相似文献   

20.
The response in northern hemisphere atmospheric circulation and the resulting changes in moisture sources for Greenland precipitation to glacial boundary conditions are studied in NCAR’s CCM3 atmospheric general circulation model fitted with a moisture tracking functionality. We employ both the CLIMAP SST reconstruction and a modification thereto with reconstructions of glacial ice sheets and land masks. The individual components of the boundary conditions are added first one at a time and, finally, together. These steps show the atmospheric circulation to respond approximately linearly to the boundary condition changes, and the full glacial change may thus be decomposed into contributions from SST and topography changes, respectively. We find that using the CLIMAP SST reconstruction leads to a shift from Atlantic toward Pacific source regions not found with the modified reconstruction having cooler tropics and less sea ice. The occurrence of such a shift depends chiefly on the SST reconstruction and not on the existence of the large northern hemisphere glacial ice sheets. The influence of these circulation changes on important factors for ice core interpretation such as precipitation seasonality, condensation temperatures and source temperatures are assessed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号