首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We report the first finding of diamond in crustal rocks from the Tromsø Nappe of the North Norwegian Caledonides. Diamond occurs in situ as inclusions in garnet from gneiss at Tønsvika near Tromsø. The rock is composed essentially of garnet, biotite, white mica, quartz and plagioclase, minor constituents include kyanite, zoisite, rutile, tourmaline, amphibole, zircon, apatite and carbonates (magnesite, dolomite, calcite). The microdiamond, identified by micro‐Raman spectroscopy, is cuboidal to octahedral in shape and ranges from 5 to 50 μm in diameter. The diamond occurs as single grains and as composite diamond + carbonate inclusions. Diamond vibration bands show a downshift from 1 332 to 1 325 cm?1, the majority of Raman peaks are centred between 1 332 and 1 330 cm?1 and all peaks exhibit a full width at half maximum between 3 and 5 cm?1. Several spectra show Raman bands typical for disordered and ordered graphite (sp2‐bonded carbon) indicating partial transformation of diamond to graphite. The calculated peak P–T conditions for the diamond‐bearing sample are 3.5 ± 0.5 GPa and 770 ± 50 °C. Metamorphic diamond found in situ in crustal rocks of the Tromsø Nappe thus provides unequivocal evidence for ultrahigh pressure metamorphism in this allochthonous unit of the Scandinavian Caledonides. Deep continental subduction, most probably in the Late Ordovician and shortly before or during the initial collision between Baltica and Laurentia, was required to stabilize the diamond at UHP conditions.  相似文献   

2.
High-pressure metamorphism in the Pohorje Mountains of Slovenia (Austroalpine unit, Eastern Alps) affected N-MORB type metabasic and metapelitic lithologies. Thermodynamic calculations and equilibrium phase diagrams of kyanite–phengite-bearing eclogites reveal PT conditions of >2.1 GPa at T<750°C, but within the stability field of quartz. Metapelitic eclogite country rocks contain the assemblage garnet + phengite + kyanite + quartz, for which calculated peak pressure conditions are in good agreement with results obtained from eclogite samples. The eclogites contain a single population of spherical zircon with a low Th/U ratio. Combined constraints on the age of metamorphism come from U/Pb zircon as well as garnet–whole rock and mineral–mineral Sm-Nd analyses from eclogites. A coherent cluster of single zircon analyses yields a 206Pb/238U age of 90.7±1.0 Ma that is in good agreement with results from Sm-Nd garnet–whole rock regression of 90.7±3.9 and 90.1±2.0 Ma (εNd: +8) for two eclogite samples. The agreement between U-Pb and Sm-Nd age data strongly suggests an age of approximately 90 Ma for the pressure peak of the eclogites in the Pohorje Mountains. The presence of garnet, omphacite and quartz inclusions in unfractured zircon indicates high-pressure rather than ultrahigh pressure conditions. The analysed metapelite sample yields a Sm-Nd garnet–whole rock scatterchron age of 97±15 Ma. These data probably support a single P-T loop for mafic and pelitic lithologies of the Pohorje area and a late Cretaceous high-pressure event that affected the entire easternmost Austroalpine basement including the Koralpe and Saualpe eclogite type locality in the course of the complex collision of the Apulian microplate and Europe.  相似文献   

3.
ABSTRACT

Polycrystalline microdiamonds are rare in ultrahigh-pressure (UHP) rocks worldwide. Among samples collected at Erzgebirge, Germany, we found abundant polycrystalline microdiamonds as inclusions in zircons from a quartzofeldspathic rock. To illuminate their origin and forming age, we investigated morphologies and Raman spectra of 52 microdiamond inclusions, and dated the zircon host. The zircons have low Th/U values (0.03–0.07) and a concordia U/Pb age of 335.8 ± 1.9 Ma. Polycrystalline diamond (10–40 µm) consists of many fine-grained crystals (1.5–3 µm) with different orientations; discrete single diamonds (2–20 µm) are rare. All measured Raman spectra show an intense diamond band at 1332–1328 cm?1 and have a negative correlation with full width at half maximum (FWHM) of 5.8–11.3 cm?1. These data combined with previously reported diamond band data (1331–1337 cm?1) are compatible with those of diamond inclusions in various host minerals from other UHP terranes, but are different from those of ureilite diamonds. The Erzgebirge microdiamonds in zircon do not display visible disordered sp3-carbon, but show downshifting of the Raman band from the ideal value (1332 cm?1), and have a broader diamond band (FWHM >3 cm?1) than those of well-ordered diamonds. These features may reflect imperfect ordering due to rapid nucleation/crystallization during UHP metamorphism and rapid exhumation of the UHP terrane. Graphite inclusions in zircon show a typical G-band at 1587 cm?1. Our study together with previously reported C-isotopic compositions (δ13C, ?17 to ?27‰) of diamond and occurrences of fluid/melt inclusions in diamond and garnet indicates that Erzgebirge microdiamonds are metamorphic, have an organic carbon source, and crystallized from aqueous fluids. Limited long-range ordering suggested by the Raman spectra is a function of the PT time of crystallization and subsequent thermal annealing on decompression. Combined with regional geology, our work further constrains the tectonic evolution of the Erzgebirge terrane.  相似文献   

4.
New evidence for ultrahigh‐pressure metamorphism (UHPM) in the Eastern Alps is reported from garnet‐bearing ultramafic rocks from the Pohorje Mountains in Slovenia. The garnet peridotites are closely associated with UHP kyanite eclogites. These rocks belong to the Lower Central Austroalpine basement unit of the Eastern Alps, exposed in the proximity of the Periadriatic fault. Ultramafic rocks have experienced a complex metamorphic history. On the basis of petrochemical data, garnet peridotites could have been derived from depleted mantle rocks that were subsequently metasomatized by melts and/or fluids either in the plagioclase‐peridotite or the spinel‐peridotite field. At least four stages of recrystallization have been identified in the garnet peridotites based on an analysis of reaction textures and mineral compositions. Stage I was most probably a spinel peridotite stage, as inferred from the presence of chromian spinel and aluminous pyroxenes. Stage II is a UHPM stage defined by the assemblage garnet + olivine + low‐Al orthopyroxene + clinopyroxene + Cr‐spinel. Garnet formed as exsolutions from clinopyroxene, coronas around Cr‐spinel, and porphyroblasts. Stage III is a decompression stage, manifested by the formation of kelyphitic rims of high‐Al orthopyroxene, aluminous spinel, diopside and pargasitic hornblende replacing garnet. Stage IV is represented by the formation of tremolitic amphibole, chlorite, serpentine and talc. Geothermobarometric calculations using (i) garnet‐olivine and garnet‐orthopyroxene Fe‐Mg exchange thermometers and (ii) the Al‐in‐orthopyroxene barometer indicate that the peak of metamorphism (stage II) occurred at conditions of around 900 °C and 4 GPa. These results suggest that garnet peridotites in the Pohorje Mountains experienced UHPM during the Cretaceous orogeny. We propose that UHPM resulted from deep subduction of continental crust, which incorporated mantle peridotites from the upper plate, in an intracontinental subduction zone. Sinking of the overlying mantle and lower crustal wedge into the asthenosphere (slab extraction) caused the main stage of unroofing of the UHP rocks during the Upper Cretaceous. Final exhumation was achieved by Miocene extensional core complex formation.  相似文献   

5.
Evidence for ultrahigh‐pressure metamorphism (UHPM) in the Rhodope metamorphic complex comes from occurrence of diamond in pelitic gneisses, variably overprinted by granulite facies metamorphism, known from several areas of the Rhodopes. However, tectonic setting and timing of UHPM are not interpreted unanimously. Linking age to a metamorphic stage is a prerequisite for reconstruction of these processes. Here, we use monazite in diamond‐bearing gneiss from Chepelare (Bulgaria) to date the diamond‐forming UHPM event in the Central Rhodopes. The diamond‐bearing gneiss comes from a strongly deformed, lithologically heterogeneous zone (Chepelare Mélange) sandwiched between two migmatized orthogneiss units, known as Arda‐I and Arda‐II. Diamond, identified by Raman micro‐spectroscopy, shows the characteristic band mostly centred between 1332 and 1330 cm?1. The microdiamond occurs as single grains or polyphase diamond + carbonate inclusions, rarely with CO2. Thermodynamic modelling shows that garnet was stable at UHP conditions of 3.5–4.6 GPa and 700–800 °C, in the stability field of diamond, and was re‐equilibrated at granulite facies/partial melting conditions of 0.8–1.2 GPa and 750–800 °C. The texture of monazite shows older central parts and extensive younger domains which formed due to metasomatic replacement in solid residue and/or overgrowth in melt domains. The monazite core compositions, with distinctly lower Y, Th and U contents, suggest its formation in equilibrium with garnet. The U–Th–Pb dating of monazite using electron microprobe analysis yielded a c. 200 Ma age for the older cores with low Th, Y, U and high La/Nd ratio, and a c. 160 Ma age for the dominant younger monazite enriched in Th, Y, U and HREE. The older age of c. 200 Ma is interpreted as the timing of UHPM, whereas the younger age of c. 160 Ma as granulite facies/partial melting overprint. Our results suggest that UHPM occurred in Late Triassic to Early Jurassic time, in the framework of collision and subduction of continental crust after the closure of Paleotethys.  相似文献   

6.
Sm–Nd, Lu–Hf, Rb–Sr and SIMS U–Pb data are presented for meta‐gabbroic eclogites from the eclogite type‐locality ( Haüy, 1822 ) Kupplerbrunn–Prickler Halt and other areas of the Saualpe (SE Austria) and Pohorje Mountains (Slovenia). Mg‐rich eclogites derived from early gabbroic cumulates are kyanite‐ and zoisite rich, whereas eclogites with lower Mg contents contain clinozoisite ± kyanite. Calculated PT conditions at the final stages of high‐pressure metamorphism are 2.2 ± 0.2 GPa at 630–740 °C. Kyanite‐rich eclogites did not yield geologically meaningful Sm–Nd ages due to incomplete Nd isotope equilibration, whereas Sm–Nd multifraction garnet–omphacite regression for a low‐Mg eclogite from Kupplerbrunn yields an age of 91.1 ± 1.3 Ma. The Sm–Nd age of 94.1 ± 0.8 Ma obtained from the Fe‐rich core fraction of this garnet dates the initial stages of garnet growth. Zircon that also crystallized at eclogite facies conditions gives a weighted mean U–Pb SIMS age of 88.4 ± 8.1 Ma. Lu–Hf isotope analysis of a kyanite–eclogite from Kupplerbrunn yields 88.4 ± 4.7 Ma for the garnet–omphacite pair. Two low‐Mg eclogites from the Gertrusk locality of the Saualpe yield a multimineral Sm–Nd age of 90.6 ± 1.0 Ma. A low‐Mg eclogite from the Pohorje Mountains (70 km to the SE) gives a garnet–whole‐rock Lu–Hf age of 93.3 ± 2.8 Ma. These new age data and published Sm–Nd ages of metasedimentary host rocks constrain the final stages of the eo‐Alpine high‐pressure event in the Saualpe–Pohorje part of the south‐easternmost Austroalpine nappe system suggesting that garnet growth in the high‐pressure assemblages started at c. 95–94 Ma and ceased at c. 90–88 Ma, probably at the final pressure peak. Zircon and amphibole crystallization was still possible during incipient isothermal decompression. Rapid exhumation of the high‐pressure rocks was induced by collision of the northern Apulian plate with parts of the Austroalpine microplate, following Jurassic closure of the Permo‐Triassic Meliata back‐arc basin.  相似文献   

7.
Northward subduction of the leading edge of the Indian continental margin to depths greater than 100 km during the early Eocene resulted in high‐pressure (HP) quartz‐eclogite to ultrahigh‐pressure (UHP) coesite–eclogite metamorphism at Tso Morari, Ladakh Himalaya, India. Integrated pressure–temperature–time determinations within petrographically well‐constrained settings for zircon‐ and/or monazite‐bearing assemblages in mafic eclogite boudins and host aluminous gneisses at Tso Morari uniquely document segments of both the prograde burial and retrograde exhumation path for HP/UHP units in this portion of the western Himalaya. Poikiloblastic cores and inclusion‐poor rims of compositionally zoned garnet in mafic eclogite were utilized with entrapped inclusions and matrix minerals for thermobarometric calculations and isochemical phase diagram construction, the latter thermodynamic modelling performed with and without the consideration of cation fractionation into garnet during prograde metamorphism. Analysis of the garnet cores document (M1) conditions of 21.5 ± 1.5 kbar and 535 ± 15 °C during early garnet growth and re‐equilibration. Sensitive high resolution ion microprobe (SHRIMP) U–Pb analysis of zircon inclusions in garnet cores yields a maximum age determination of 58.0 ± 2.2 Ma for M1. Peak HP/UHP (M2) conditions are constrained at 25.5–27.5 kbar and 630–645 °C using the assemblage garnet rim–omphacite–rutile–phengite–lawsonite–talc–quartz (coesite), with mineral compositional data and regional considerations consistent with the upper PT bracket. A SHRIMP U–Pb age determination of 50.8 ± 1.4 Ma for HP/UHP metamorphism is given by M2 zircons analysed in the eclogitic matrix and that are encased in the garnet rim. Two garnet‐bearing assemblages from the Puga gneiss (host to the mafic eclogites) were utilized to constrain the subsequent decompression path. A non‐fractionated isochemical phase diagram for the assemblage phengite–garnet–biotite–plagioclase–quartz–melt documents a restricted (M3) P–T stability field centred on 12.5 ± 0.5 kbar and 690 ± 25 °C. A second non‐fractionated isochemical phase diagram calculated for the lower pressure assemblage garnet–cordierite–sillimanite–biotite–plagioclase–quartz–melt (M4) documents a narrow P–T stability field ranging between 7–8.4 kbar and 705–755 °C, which is consistent with independent multiequilibria PT determinations. Th–Pb SHRIMP dating of monazite cores surrounded by allanite rims is interpreted to constrain the timing of the M4 equilibration to 45.3 ± 1.1 Ma. Coherently linking metamorphic conditions with petrographically constrained ages at Tso Morari provides an integrated context within which previously published petrological or geochronological results can be evaluated. The new composite path is similar to those published for the Kaghan UHP locality in northern Pakistan, although the calculated 12‐mm a?1 rate of post‐pressure peak decompression at Tso Morari would appear less extreme.  相似文献   

8.
A combined study of major and trace elements, fluid inclusions and oxygen isotopes has been carried out on garnet pyroxenite from the Raobazhai complex in the North Dabie Terrane (NDT). Well‐preserved compositional zoning with Na decreasing and Ca and Mg increasing from the core to rim of pyroxene in the garnet pyroxenite indicates eclogite facies metamorphism at the peak metamorphic stage and subsequent granulite facies metamorphism during uplift. A PT path with substantial heating (from c. 750 to 900 °C) after the maximum pressure reveals a different uplift history compared with most other eclogites in the South Dabie Terrane (SDT). Fluid inclusion data can be correlated with the metamorphic grade: the fluid regime during the peak metamorphism (eclogite facies) was dominated by N2‐bearing NaCl‐rich solutions, whereas it changed into CO2‐dominated fluids during the granulite facies retrograde metamorphism. At a late retrograde metamorphic stage, probably after amphibolite facies metamorphism, some external low‐salinity fluids were involved. In situ UV‐laser oxygen isotope analysis was undertaken on a 7 mm garnet, and impure pyroxene, amphibole and plagioclase. The nearly homogeneous oxygen isotopic composition (δ18OVSMOW = c. 6.7‰) in the garnet porphyroblast indicates closed fluid system conditions during garnet growth. However, isotopic fractionations between retrograde phases (amphibole and plagioclase) and garnet show an oxygen isotopic disequilibrium, indicating retrograde fluid–rock interactions. Unusual MORB‐like rare earth element (REE) patterns for whole rock of the garnet pyroxenite contrast with most ultra‐high‐pressure (UHP) eclogites in the Dabie‐Sulu area. However, the age‐corrected initial εNd(t) is ? 2.9, which indicates that the protolith of the garnet pyroxenite was derived from an enriched mantle rather than from a MORB source. Combined with the present data of oxygen isotopic compositions and the characteristic N2 content in the fluid inclusions, we suggest that the protolith of the garnet pyroxenite from Raobazhai formed in an enriched mantle fragment, which has been exposed to the surface prior to the Triassic metamorphism.  相似文献   

9.
Coesite inclusions in garnet have been found in eclogite boudins enclosed in coesite‐bearing garnet micaschist in the Habutengsu Valley, Chinese western Tianshan, which are distinguished from their retrograde quartz by means of optical characteristics, CL imaging and Raman spectrum. The coesite‐bearing eclogite is mainly composed of porphyroblastic garnet, omphacite, paragonite, glaucophane and barroisite, minor amounts of rutile and dotted (or banded) graphite. In addition to coesite and quartz, the zoned porphyroblastic garnet contains inclusions of omphacite, Na‐Ca amphibole, calcite, albite, chlorite, rutile, ilmenite and graphite. Multi‐phase inclusions (e.g. Czo + Pg ± Qtz, Grt II + Qtz and Chl + Pg) can be interpreted as breakdown products of former lawsonite and possibly chloritoid. Coesite occurs scattered within a compositionally homogenous but narrow domain of garnet (outer core), indicative of equilibrium at the UHP stage. The estimate by garnet‐clinopyroxene thermometry yields peak temperatures of 420–520 °C at 2.7 GPa. Phase equilibrium calculations further constrain the P–T conditions for the UHP mineral assemblage Grt + Omp + Lws + Gln + Coe to 2.4–2.7 GPa and 470–510 °C. Modelled modal abundances of major minerals along a 5 °C km?1 geothermal gradient suggests two critical dehydration processes at ~430 and ~510 °C respectively. Computed garnet composition patterns are in good agreement with measured core‐rim profiles. The petrological study of coesite‐bearing eclogite in this paper provides insight into the metamorphic evolution in a cold subduction zone. Together with other reported localities of UHP rocks from the entire orogen of Chinese western Tianshan, it is concluded that the regional extent of UHP‐LT metamorphism in Chinese western Tianshan is extensive and considerably larger than previously thought, although intensive retrogression has erased UHP‐LT assemblages at most localities.  相似文献   

10.
Representative diamond-bearing gneisses and dolomitic marble, eclogite and Ti-clinohumite-bearing garnet peridotite from Unit I at Kumdy Kol and whiteschist from Unit II at Kulet, eastern Kokchetav Massif, northern Kazakhstan, were studied. Diamond-bearing gneisses contain variable assemblages, including Grt+Bt+Qtz±Pl±Kfs±Zo±Chl±Tur±Cal and minor Ap, Rt and Zrn; abundant inclusions of diamond, graphite+chlorite (or calcite), phengite, clinopyroxene, K-feldspar, biotite, rutile, titanite, calcite and zircon occur in garnet. Diamond-bearing dolomitic marbles consist of Dol+Di±Grt+Phl; inclusions of diamond, dolomite±graphite, biotite, and clinopyroxene were identified in garnet. Whiteschists carry the assemblage Ky+Tlc+Grt+Rt; garnet shows compositional zoning, and contains abundant inclusions of talc, kyanite and rutile with minor phlogopite, chlorite, margarite and zoisite. Inclusions and zoning patterns of garnet delineate the prograde P–T path. Inclusions of quartz pseudomorphs after coesite were identified in garnet from both eclogite and gneiss. Other ultrahigh-pressure (UHP) indicators include Na-bearing garnet (up to 0.14 wt% Na2O) with omphacitic Cpx in eclogite, occurrence of high-K diopside (up to 1.56 wt% K2O) and phlogopite in diamond-bearing dolomitic marble, and Cr-bearing kyanite in whiteschist. These UHP rocks exhibit at least three stages of metamorphic recrystallization. The Fe-Mg partitioning between clinopyroxene and garnet yields a peak temperature of 800–1000 °C at P >40 kbar for diamond-bearing rocks, and about 740–780 °C at >28–35 kbar for eclogite, whiteschist and Ti-bearing garnet peridotite. The formation of symplectitic plagioclase+amphibole after clinopyroxene, and replacement of garnet by biotite, amphibole, or plagioclase mark retrograde amphibolite facies recrystallization at 650–680 °C and pressure less than about 10 kbar. The exsolution of calcite from dolomite, and development of matrix chlorite and actinolite imply an even lower grade greenschist facies overprint at c. 420 °C and 2–3 kbar. A clockwise P–T path suggests that supracrustal sediments together with basaltic and ultramafic lenses apparently were subjected to UHP subduction-zone metamorphism within the diamond stability field. Tectonic mixing may have occurred prior to UHP metamorphism at mantle depths. During subsequent exhumation and juxtaposition of many other tectonic units, intense deformation chaotically mixed and mylonitized these lithotectonic assemblages.  相似文献   

11.
A new occurrence of kyanite eclogite in the Pirin Mountains of southwestern Bulgaria within the rocks belonging to the Obidim Unit of the Rhodope Metamorphic Complex is presented. This eclogite provides important information about the peak–pressure conditions despite strong thermal overprint at low pressure. Textural relationships, phase equilibrium modelling and conventional geothermobarometry were used to constrain the metamorphic evolution. Garnet porphyroblasts with inclusions of omphacite (up to 43 mol.% Jd), phengite (up to 3.5 Si p.f.u.), kyanite, polycrystalline quartz, pargasitic amphibole, zoisite and rutile in the Mg‐rich cores (XMg = 0.44–0.46) record a prograde increase in P–T conditions from ~2.5 GPa and 650 °C to ~3 GPa and 700–750 °C. Maximum pressure values fall within the stability field of coesite. During exhumation, the peak–pressure assemblage garnet + omphacite + phengite + kyanite was variably overprinted by a lower pressure one forming symplectitic textures, such as diopside + plagioclase after omphacite and biotite + plagioclase after phengite. The development of spinel (XMg = 0.4–0.45) + corundum + anorthite assemblage in the kyanite‐bearing domains at ~1.1 GPa and 800–850 °C suggests a thermal overprint in the high‐pressure granulite facies stability field. This thermal event was followed by cooling at ~0.8 GPa under amphibolite facies conditions; retrograde kelyphite texture involving plagioclase and amphibole was developed around garnet. Our results add to the already existing evidence for ultra high pressure (UHP) metamorphism in the Upper Allochthon of the Rhodope Metamorphic Complex as in the Kimi Unit and show that it is more widespread than previously known. Published age data and field structural relations suggest that the Obidim Unit represents Variscan continental crust involved into the Alpine nappe edifice of the Rhodopes and that eclogite facies metamorphism was Palaeozoic, in contrast to the Kimi Unit where age determinations suggest a Jurassic or Cretaceous age for UHP metamorphism. This implies that UHP metamorphism in the Upper Allochthon of the Rhodopes may have occurred twice, during Alpine and pre‐Alpine orogenic events, and that two independent HP/UHP provinces of different age overlap in this area.  相似文献   

12.
Qiu and Wijbrans [Qiu H.-N. and Wijbrans J. R. (2006) Paleozoic ages and excess 40Ar in garnets from the Bixiling eclogite in Dabieshan, China: new insights from 40Ar/39Ar dating by stepwise crushing. Geochim. Cosmochim. Acta70, 2354-2370] present three Ar-Ar age spectra for fluid inclusions in garnet from eclogite at Bixiling in the Dabie orogen, east-central China. These Paleozoic ages of 427 ± 20 to 444 ± 10 Ma are interpreted to represent the first formation of Dabie ultrahigh-pressure (UHP) eclogite and thus require subduction of Yangtze crust to have started much earlier than previously accepted. However, no petrographic evidence, such as mineral inclusions in the garnet relating to the particular metamorphic conditions, is presented to substantiate the proposed UHP metamorphic event. Because garnet growth is not uniquely responsible for UHP eclogite-facies metamorphism, a distinction between UHP and high-pressure (HP) metamorphic events must be made in the interpretation of geochronological results. Available data from mineral Sm-Nd and zircon U-Pb dating of eclogites from the same area have firmly established that the UHP eclogite-facies metamorphism took place at Triassic. Neither the age of UHP metamorphism nor the timing of continental collision is reliably constrained by their presented data; the fluid inclusions in garnet must contain inherited 40Ar from UHP eclogite precursor, without considerable resetting of the Ar-Ar isotopic system during Triassic UHP metamorphism. Therefore, their data are either meaningless, or at best viewed as the age of garnet growth by low-T/HP blueschist/eclogite-facies metamorphism of the UHP eclogite precursor during arc-continent collision in the early Paleozoic. Furthermore, it is critical for metamorphic geochronology to substantiate the timing of UHP metamorphic event by means of zircon U-Pb in situ dating on coesite-bearing domains of metamorphically grown zircon.  相似文献   

13.
Based on new evidence the Sulu orogen is divided from south‐east to north‐west into high‐pressure (HP) crustal slice I and ultrahigh‐pressure (UHP) crustal slices II and III. A combined set of mineral inclusions, cathodoluminescence images, U‐Pb SHRIMP dating and in situ trace element and Lu‐Hf isotope analyses was obtained on zircon from orthogneisses of the different slices. Zircon grains typically have three distinct domains that formed during crystallization of the magmatic protolith, HP or UHP metamorphism and late‐amphibolite facies retrogression, respectively: (i) oscillatory zoned cores, with low‐pressure (LP) mineral inclusions and Th/U > 0.38; (ii) high‐luminescent mantles (Th/U < 0.10), with HP mineral inclusions of Qtz + Grt + Arg + Phe + Ap for slice I zircon and Coe + Grt + Phe + Kfs + Ap for both slices II and III zircon; (iii) low‐luminescent rims, with LP mineral inclusions and Th/U < 0.08. Zircon U‐Pb SHRIMP analyses of inherited cores point to protolith ages of 785–770 Ma in all seven orthogneisses. The ages recorded for UHP metamorphism and subsequent retrogression in slice II zircon (c. 228 and c. 215 Ma, respectively) are significantly older than those of slice III zircon (c. 218 and c. 202 Ma, respectively), while slice I zircon recorded even older ages for HP metamorphism and subsequent retrogression (c. 245 and c. 231 Ma, respectively). Moreover, Ar‐Ar biotite ages from six paragneisses, interpreted as dating amphibolite facies retrogression, gradually decrease from HP slice I (c. 232 Ma) to UHP slice II (c. 215 Ma) and UHP slice III (c. 203 Ma). The combined data set suggests decreasing ages for HP or UHP metamorphism and late retrogression in the Sulu orogen from south‐east to north‐west. Thus, the HP‐UHP units are interpreted to represent three crustal slices, which underwent different subduction and exhumation histories. Slice I was detached from the continental lithosphere at ~55–65 km depth and subsequently exhumed while subduction of the underlying slice II continued to ~100–120 km depth (UHP) before detachment and exhumation. Slice III experienced a similar geodynamic evolution as slice II, however, both UHP metamorphism and subsequent exhumation took place c. 10 Myr later. Magmatic zircon cores from two types of orthogneiss in UHP slices II and III show similar mid‐Neoproterozoic crystallization ages, but have contrasting Hf isotope compositions (εHf(~785) = ?2.7 to +2.2 and ?17.3 to ?11.1, respectively), suggesting their formation from distinct crustal units (Mesoproterozoic and Paleoproterozoic to Archean, respectively) during the breakup of Rodinia. The UHP and the retrograde zircon domains are characterized by lower Th/U and 176Lu/177Hf but higher 176Hf/177Hf(t) than the Neoproterozoic igneous cores. The similarity between UHP and retrograde domains indicates that late retrogression did not significantly modify chemical and isotopic composition of the UHP metamorphic system.  相似文献   

14.
Two Rongcheng eclogite‐bearing peridotite bodies (Chijiadian and Macaokuang) occur as lenses within the country rock gneiss of the northern Sulu terrane. The Chijiadian ultramafic body consists of garnet lherzolite, whereas the Macaokuang body is mainly meta‐dunite. Both ultramafics are characterized by high MgO contents, low fertile element concentrations and total REE contents, which suggests that they were derived from depleted, residual mantle. High FeO contents, an LREE‐enriched pattern and trace‐element contents indicate that the bulk‐rock compositions of these ultramafic rocks were modified by metasomatism. Oxygen‐isotope compositions of analysed garnet, olivine, clinopyroxene and orthopyroxene from these two ultramafic bodies are between +5.2‰ and +6.2‰ (δ18O), in the range of typical mantle values (+5.1 to +6.6‰). The eclogite enclosed within the Chijiadian lherzolite shows an LREE‐enriched pattern and was formed by melts derived from variable degrees (0.005–0.05) of partial melting of peridotite. It has higher δ18O values (+7.6‰ for garnet and +7.7‰ for omphacite) than those of lherzolite. Small O‐isotope fractionations (ΔCpx‐Ol: 0.4‰, ΔCpx‐Grt: 0.1‰, ΔGrt‐Ol: 0.3–0.4‰) in both eclogite and ultramafic rocks suggest isotopic equilibrium at high temperature. The P–T estimates suggest that these rocks experienced subduction‐zone ultrahigh‐pressure (UHP) metamorphism at ~700–800 °C, 5 GPa, with a low geothermal gradient. Zircon from the Macaokuang eclogite contains inclusions of garnet and diopside. The 225 ± 2 Ma U/Pb age obtained from these zircon may date either the prograde conditions just before peak metamorphism or the UHP metamorphic event, and therefore constrains the timing of subduction‐related UHP metamorphism for the Rongcheng mafic–ultramafic bodies.  相似文献   

15.
Metamorphic diamond in crustal rocks provides important information on the deep subduction of continental crust. Here, we present a new occurrence of diamond within the Seve Nappe Complex (SNC) of the Scandinavian Caledonides, on Åreskutan in Jämtland County, Sweden. Microdiamond is found in situ as single and composite (diamond+carbonate) inclusions within garnet, in kyanite‐bearing paragneisses. The rocks preserve the primary peak pressure assemblage of Ca,Mg‐rich garnet+phengite+kyanite+rutile, with polycrystalline quartz surrounded by radial cracks indicating breakdown of coesite. Calculated P–T conditions for this stage are 830–840 °C and 4.1–4.2 GPa, in the diamond stability field. The ultrahigh‐pressure (UHP) assemblage has been variably overprinted under granulite facies conditions of 850–860 °C and 1.0–1.1 GPa, leading to formation of Ca,Mg‐poor garnet+biotite+plagioclase+K‐feldspar+sillimanite+ilmenite+quartz. This overprint was the result of nearly isothermal decompression, which is corroborated by Ti‐in‐quartz thermometry. Chemical Th–U–Pb dating of monazite yields ages between 445 and 435 Ma, which are interpreted to record post‐UHP exhumation of the diamond‐bearing rocks. The new discovery of microdiamond on Åreskutan, together with other evidence of ultrahigh‐pressure metamorphism (UHPM) within gneisses, eclogites and peridotites elsewhere in the SNC, provide compelling arguments for regional (at least 200 km along strike of the unit) UHPM of substantial parts of this far‐travelled allochthon. The occurrence of UHPM in both rheologically weak (gneisses) and strong lithologies (eclogites, peridotites) speaks against the presence of large tectonic overpressure during metamorphism.  相似文献   

16.
The novel method of inclusion barometry coupled with the calculation of the required affinity for garnet nucleation is applied to three samples from the previously well‐characterized Connecticut Valley Synclinorium in central Vermont. Raman shifts for quartz inclusions record a range of maximum peak shifts of the quartz 464 cm?1 peak from 2.4 to 3.0 cm?1. Temperature of garnet nucleation was constrained by calculating mineral assemblage diagrams in the MnNCKFMASHT system and plotting the intersection of quartz inclusion in garnet barometry (QuiG, quartz‐in‐garnet) with Zr‐in‐rutile thermometry. Utilizing the intersection of Zr‐in‐rutile thermometry with QuiG barometry, garnet nucleation is inferred to have occurred within a P–T range of ~8.6–9.5 kbar and ~560–575°C. These P–T conditions for garnet nucleation are significantly higher than calculated equilibrium garnet‐in isograds for the three samples. Affinities for garnet nucleation were calculated as the difference between the free energy of a fictive garnet composition based on the matrix assemblage and the free energy of the nucleated garnet. The calculated nucleation affinity varied from 300 to 600 kJ/mol O for St–Ky grade samples. These results suggest that the assumption that metamorphism proceeds as a sequence of near‐equilibrium conditions cannot, in general, be made for regional metamorphic terranes. This body of work agrees with numerous recent studies showing that garnet‐producing reactions must be overstepped in order to for garnet to nucleate.  相似文献   

17.
Monocrystalline quartz inclusions in garnet and omphacite from various eclogite samples from the Lanterman Range (Northern Victoria Land, Antarctica) have been investigated by cathodoluminescence (CL), Raman spectroscopy and imaging, and in situ X‐ray (XR) microdiffraction using the synchrotron. A few inclusions, with a clear‐to‐opalescent lustre, show ‘anomalous’ Raman spectra characterized by weak α‐quartz modes, the broadening of the main α‐quartz peak at 465 cm?1, and additional vibrations at 480–485, 520–523 and 608 cm?1. CL and Raman imaging indicate that this ‘anomalous’α‐quartz occurs as relicts within ordinary α‐quartz, and that it was preserved in the internal parts of small quartz inclusions. XR diffraction circular patterns display irregular and broad α‐quartz spots, some of which show an anomalous d‐spacing tightening of ~2%. They also show some very weak, hazy clouds that have d‐spacing compatible with coesite but not with α‐quartz. Raman spectrometry and XR microdiffraction characterize the anomalies with respect to α‐quartz as (i) a pressure‐induced disordering and incipient amorphization, mainly revealed by the 480–485 and 608‐cm?1 Raman bands, together with (ii) a lattice densification, evidenced by d‐spacing tightening; (iii) the cryptic development of coesite, 520–523 cm?1 being the main Raman peak of coesite and (iv) Brazil micro‐twinning. This ‘anomalous’α‐quartz represents the first example of pressure‐induced incipient amorphization of a metastable phase in a crustal rock. This issue is really surprising because pressure‐induced amorphization of metastable α‐quartz, observed in impactites and known to occur between 15 and 32 GPa during ultrahigh‐pressure (UHP) experiments at room temperature, is in principle irrelevant under normal geological P–T conditions. A shock (due to a seism?) or a local overpressure at the inclusion scale (due to expansion mismatch between quartz and its host mineral) seem the only geological mechanisms that can produce such incipient amorphization in crustal rocks. This discovery throws new light on the modality of the quartz‐coesite transition and on the pressure regimes (non‐lithostatic v. lithostatic) during high‐pressure/UHP metamorphism. In particular, incipient amorphization of quartz could favour the quartz‐coesite transition, or allow the growth of metastable coesite, as already experimentally observed.  相似文献   

18.
Coesite‐bearing eclogites from >100 km2 in the southern Dulan area, North Qaidam Mountains (NQM) of western China, contain zircon that records protolith crystallization and ultra high pressure (UHP) metamorphism. Sensitive High‐Resolution Ion Microprobe (Mass Spectrometer) and Laser Ablation Inductively Coupled Plasma Mass Spectrometry U–Pb analyses from cathodoluminescence (CL)‐dark zircon cores in a coesite‐bearing eclogite yield an upper intercept age of 838 ± 50 Ma, and oscillatory zoned cores in a kyanite‐bearing eclogite gave a weighted mean 206Pb/238U age of 832 ± 20 Ma. These zircon cores yield steep heavy rare earth element (HREE) slopes and negative Eu anomalies that suggest a magmatic origin. Thus, c. 835 Ma is interpreted as the eclogite protolith age. Unzoned CL‐grey or ‐bright zircon and zircon rims from four samples yield weighted mean ages of 430 ± 4, 438 ± 2, 446 ± 10 and 446 ± 3 Ma, flat HREE patterns without Eu anomalies, and contain inclusions of garnet, omphacite, rutile, phengite and rare coesite. These ages are interpreted to record 16 ± 5 Myr of UHP metamorphism. These new UHP ages overlap the age range of both eclogite and paragneiss from the northern Dulan area, suggesting that all UHP rock types in the Dulan area belong to the same tectonic unit. Our results are consistent with slow continental subduction, but do not match oceanic subduction and diapiric exhumation UHP model predictions. These new data suggest that, similar to eclogites in other HP/UHP units of the NQM and South Altyn Tagh, protoliths of the eclogites in the Dulan area formed in a continental setting during the Neoproterozoic, and then subducted to mantle depth together with continental materials during the Early Palaeozoic.  相似文献   

19.
Several types of multiphase solid (MS) inclusions are identified in garnet from ultrahigh‐pressure (UHP) eclogite in the Dabie orogen. The mineralogy of MS inclusions ranges from pure K‐feldspar to pure quartz, with predominance of intermediate types consisting of K‐feldspar + quartz ± silicate (plagioclase or epidote) ± barite. The typical MS inclusions are usually surrounded with radial cracks in the host garnet, similar to where garnet contains relict coesite. Barite aggregates display significant heterogeneity in major element composition, with total contents of only 57–73% and highly variable SiO2 contents of 0.32–25.85% that are positively correlated with BaO and SO3 contents. The occurrence of MS inclusions provides petrographic evidence for partial melting in the UHP metamorphic rock. The occurrence of barite aggregates with variably high SiO2 contents suggests the coexistence of aqueous fluid with hydrous melt under HP eclogite facies conditions. Thus, local dehydration melting is inferred to take place inside the UHP metamorphic slice during continental collision. This is ascribed to phengite breakdown during ‘hot’ exhumation of the deeply subducted continental crust. As a consequence, the aqueous fluid is internally buffered in chemical composition and its local sink is a basic trigger to the partial melting during the continental subduction‐zone metamorphism.  相似文献   

20.
Various combinations of diamond, moissanite, zircon, quartz, corundum, rutile, titanite, almandine garnet, kyanite, and andalusite have been recovered from the Dangqiong peridotites. More than 80 grains of diamond have been recovered, most of which are pale yellow to reddish-orange to colorless. The grains are all 100-200 μm in size and mostly anhedral, but with a range of morphologies including elongated, octahedral and subhedral varieties. Their identification was confirmed by a characteristic shift in the Raman spectra between 1325 cm~(-1) and 1333 cm~(-1), mostly at 1331.51 cm~(-1) or 1326.96 cm~(-1). Integration of the mineralogical, petrological and geochemical data for the Dongqiong peridotites suggests a multi-stage formation for this body and similar ophiolites in the Yarlung-Zangbo suture zone. Chromian spinel grains and perhaps small bodies of chromitite crystallized at various depths in the upper mantle, and encapsulated the UHP, highly reduced and crustal minerals. Some oceanic crustal slabs containing the chromian spinel and their inclusion were later trapped in suprasubduction zones(SSZ), where they were modified by island arc tholeiitic and boninitic magmas, thus changing the chromian spinel compositions and depositing chromitite ores in melt channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号