首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Clinopyroxene inclusions in diamond contain elevated potassium contents and can potentially be dated by 40Ar/39Ar techniques. Previous 40Ar/39Ar studies of clinopyroxene inclusions contained in cleaved diamonds have suggested that argon, produced from the decay of potassium prior to eruption of the host kimberlite magma, diffuses to the diamond/clinopyroxene interface under mantle conditions. After intrusion and cooling below the closure temperature for argon diffusion, radiogenic argon is retained by the clinopyroxene inclusions. This behaviour complicates efforts to date diamond crystallisation events; however, extraction of inclusions from their host diamond should induce loss of all interface argon, thus raising the possibility of determining kimberlite emplacement ages. This possibility has important implications for constraining the source localities of detrital diamond deposits worldwide, with concomitant benefits to diamond exploration. To investigate this premise, 40Ar/39Ar laser probe results are presented for single clinopyroxene inclusions extracted from a total of fifteen gem-quality diamonds from the Mbuji-Mayi kimberlite in the Democratic Republic of Congo, and the Jwaneng and Orapa kimberlites in Botswana.Initial fusion analyses of clinopyroxene inclusions from Mbuji-Mayi diamonds yielded ages older than the time of host kimberlite intrusion, indicating partial retention of extraneous argon by the clinopyroxene inclusions themselves. Step-heating analyses of clinopyroxene inclusions from Orapa and Jwaneng diamonds produced older apparent ages from lower temperature steps and the ‘rim’ fragment of one Orapa inclusion. High temperature (fusion) analyses yielded younger apparent ages, commonly approaching the times of host kimberlite eruption. Total-gas integrated 40Ar/39Ar ages are mostly intermediate between the times of inferred diamond crystallisation and kimberlite eruption. Ca/K ratios for each sample are uniform across step-heating increments, indicating that age variations are not due to compositional, mineralogical or alteration effects. The favoured explanation for these results is partial retention of extraneous argon in primary and/or secondary fluid inclusions. This component is then preferentially outgassed in lower temperature heating steps, yielding older apparent ages.The partial retention of extraneous argon by clinopyroxene inclusions clearly restricts efforts to determine source ages for detrital diamond deposits. Results from individual samples must necessarily be interpreted as maximum source emplacement ages. Nonetheless, step-heating analyses of several clinopyroxene inclusions from a detrital diamond deposit may provide reasonable constraints on the ages of source kimberlites/lamproites; however minor age populations as well as those closely spaced in time, may be difficult to resolve.It is argued that the majority of older 40Ar/39Ar ages can be explained in terms of the partial retention of inherited argon, produced between the times of diamond crystallisation and kimberlite eruption. Although the presence of excess argon in some clinopyroxene inclusions cannot be excluded, available evidence (e.g. no excess argon in Premier eclogitic inclusions or potassium-poor inclusions) suggests that this is not a factor for most samples. Three possible mechanistic models are forwarded to account for the uptake of inherited (± excess) argon in fluid inclusions. The first envisages negligible interface porosity and diffusion of extraneous argon exclusively to primary fluid inclusions, which subsequently partially decrepitated during eruption, causing accumulation of argon at the diamond/clinopyroxene interface. The second model permits diffusive loss of extraneous argon to both the interface region and primary fluid inclusions. The third involves diffusion of extraneous argon to the interface region, with later entrapment of some interface argon in secondary fluid inclusions, produced by fracture/annealing processes active during eruption. The first model can account for all 40Ar/39Ar results, whereas the latter two mechanisms require the presence of an excess argon component to explain older integrated ages (up to 2.9 Ga) from two Jwaneng samples. Excess argon contamination would compromise efforts to determine diamond genesis ages using the 40Ar/39Ar dating technique. However, if the first model is valid, then the older 40Ar/39Ar integrated ages support previous Re-Os age results for the crystallisation of Jwaneng diamonds.  相似文献   

2.
对已经发表的数十篇关于澳大利亚金刚石的英文文献进行了梳理,从其金刚石的品质、颜色类型、形态及表面特征、生长结构及微量元素、包裹体、C同位素等方面探索了澳大利亚不同区域金刚石可能存在的产地来源特征.研究显示,澳大利亚金刚石可分为岩石圈地幔成因、超深地幔成因和俯冲环境来源等成因类型;大部分澳大利亚金刚石都因经历过强烈的晶格变形或熔蚀作用而晶体圆化,但不同产地来源的金刚石在颜色组合、橄榄岩型和榴辉岩型金刚石比例、C同位素组成特征等方面存在一定差异.上述结果表明,总体上,澳大利亚不同区域金刚石具有一定的产地来源个性,但无法简单确认澳大利亚金刚石“整体”的产地来源特征;只有结合成因来源进行分析,才能够较深入地理解不同区域金刚石的特征组合及其意义,从而为理解其产地来源的特殊性提供帮助.  相似文献   

3.
After the discovery of metamorphic coesite in crustal rocks from the Western Alps (Italy) and the Western gneiss region (Norway) in the mid 1980s of the last century, metamorphic diamond was observed only a few years later “in situ” in the Kokchetav Massif (Kazakhstan). Findings of such coesite- and diamond-bearing ultrahigh pressure metamorphic (UHP) rocks with protoliths formed or embedded in crustal levels and subsequently experienced PT-conditions within or even higher than the coesite stability field have dramatically changed our geodynamic view of orogenetic processes. These occurrences provide evidence that crustal rocks were subducted into mantle depths and exhumed to the surface. Recent studies even suggest continental subduction to depths exceeding 300 km. These rocks have been extensively studied and many new and important observations have been made. Thus far, more than 350 papers have been published on various aspects of Kokchetav UHP rocks.The Kokchetav Massif of northern Kazakhstan is part of one of the largest suture zones in Central Asia and contains slices of HP and UHP metamorphic rocks. Classical UHP rocks mainly occur in the Kumdy Kol, Barchi Kol and Kulet areas, and include a large variety of lithologies such as calcsilicate rocks, eclogite, gneisses, schists, marbles of various compositions, garnet–pyroxene–quartz rocks, and garnet peridotite. Most of them contain microdiamonds; some of which reach a grain size of 200 μm. Most diamond grains show cuboid shapes but in rare cases, diamonds within clinozoisite gneiss from Barchi Kol occur as octahhedral form. Microdiamonds contain highly potassic fluid inclusions, as well as solid inclusions like carbonates, silicates and metal sulfides, which favour the idea of diamond formation from a C–O–H bearing fluid. Nitrogen isotope data and negative δ13C values of Kokchetav diamonds indicate a metasedimentary origin.PT-estimates of Kokchetav UHP rocks yield peak metamorphic conditions of at least 43 kbar at temperatures of about 950–1000 °C. Some zircon separates show inherited Proterozoic cores and 537–530 Ma UHP metamorphic mantle zones. Several Ar–Ar-ages on micas scatter around 529–528 and 521–517 Ma and reflect different stages of the exhumation history. Migmatization occurred during exhumation at about 526–520 Ma.Isotopic studies on calcsilicate rocks confirm a metasedimentary origin: δ18O values of garnet and clinopyroxene of a layered calcsilicate rock rule out the possibility having a primitive mantle protolith. Similar studies on eclogites indicate their basaltic protolith having experienced water–rock interaction prior to UHP metamorphism.A number of unique mineralogical findings have been made on Kokchetav UHP rocks. K-feldspar exsolutions in clinopyroxene demonstrate that potassium can be incorporated into the cpx-structure under upper mantle pressures. Other significant observations are coesite exsolutions in titanite, quartz-rods in cpx, the discovery of K-tourmaline as well as new minerals like kokchetavite, a hexagonal polymorph of K-feldspar and kumdykolite, an orthorhombic polymorph of albite.The Kokchetav UHP rocks represent a unique and challenging stomping ground for geoscientists of various disciplines. From crystallography, petrology and geochemistry to geophysics and geodynamics/geotectonics – it concerns all who are interested in the diverse metamorphic processes under upper mantle conditions.  相似文献   

4.
In an attempt to better define the depths of formation of eclogitic-paragenesis diamonds from the Argyle lamproite pipe, we have employed a Laser Raman microprobe to determine the Raman peak shift of a garnet inclusion (extracted from diamond) with pressure in a diamond-anvil pressure cell. On the basis of these data, we further found that the in situ garnet inclusions record near-atmospheric pressures within the limits of experimental uncertainty. Data on the compressibility and thermal expansivity of both diamond and garnet were used to define a P-T curve for the entrapment of garnet in diamond. A window within the range 47 kbar at 1100° C (150 km) to 93 kbar at 1500° C (280 km) for the formation of syngenetic garnet inclusions in diamond is defined by the intersection of the continental geotherm with the diamond-graphite boundary and the entrapment curve determined in the present study. This P-T window is consistent with the constraints imposed by other petrological studies of co-existing inclusions. Most of eclogitic-paragenesis diamonds from Argyle are estimated to have formed at a depth less than 250 km, if temperature estimates from petrological study are used.  相似文献   

5.
The Mössbauer milliprobe allows the determination of Fe3+/ΣFe in samples as small as 50?μm. For the first time this technique is applied to a suite of diamonds of eclogitic paragenesis, where three garnet and five clinopyroxene inclusions in diamonds from George Creek, Colorado have been analysed. For garnet Fe3+/ΣFe ranges from 0–7%, while values for clinopyroxene range from 8–14%. These results are consistent with the low oxygen fugacity conditions implied by the presence of the inclusions in diamond.  相似文献   

6.
We report the first finding of diamond and moissanite in metasedimentary crustal rocks of Pohorje Mountains (Slovenia) in the Austroalpine ultrahigh‐pressure (UHP) metamorphic terrane of the Eastern Alps. Microscopic observations and Raman spectroscopy show that diamond occurs in situ as inclusions in garnet, being heterogeneously distributed. Under the optical microscope, diamond‐bearing inclusions are of cuboidal to rounded shape and of pinkish, yellow to brownish colour. The Raman spectra of the investigated diamond show a sharp, first order peak of sp3‐bonded carbon, in most cases centred between 1332 and 1330 cm?1, with a full width at half maximum between 3 and 5 cm?1. Several spectra show Raman bands typical for disordered graphitic (sp2‐bonded) carbon. Detailed observations show that diamond occurs either as a monomineralic, single‐crystal inclusion or it is associated with SiC (moissanite), CO2 and CH4 in polyphase inclusions. This rare record of diamond occurring with moissanite as fluid‐inclusion daughter minerals implies the crystallization of diamond and moissanite from a supercritical fluid at reducing conditions. Thermodynamic modelling suggests that diamond‐bearing gneisses attained P–T conditions of ≥3.5 GPa and 800–850 °C, similar to eclogites and garnet peridotites. We argue that diamond formed when carbonaceous sediment underwent UHP metamorphism at mantle depth exceeding 100 km during continental subduction in the Late Cretaceous (c. 95–92 Ma). The finding of diamond confirms UHP metamorphism in the Pohorje Mountains, the most deeply subducted part of Austroalpine units.  相似文献   

7.
Qiu and Wijbrans [Qiu H.-N. and Wijbrans J. R. (2006) Paleozoic ages and excess 40Ar in garnets from the Bixiling eclogite in Dabieshan, China: new insights from 40Ar/39Ar dating by stepwise crushing. Geochim. Cosmochim. Acta70, 2354-2370] present three Ar-Ar age spectra for fluid inclusions in garnet from eclogite at Bixiling in the Dabie orogen, east-central China. These Paleozoic ages of 427 ± 20 to 444 ± 10 Ma are interpreted to represent the first formation of Dabie ultrahigh-pressure (UHP) eclogite and thus require subduction of Yangtze crust to have started much earlier than previously accepted. However, no petrographic evidence, such as mineral inclusions in the garnet relating to the particular metamorphic conditions, is presented to substantiate the proposed UHP metamorphic event. Because garnet growth is not uniquely responsible for UHP eclogite-facies metamorphism, a distinction between UHP and high-pressure (HP) metamorphic events must be made in the interpretation of geochronological results. Available data from mineral Sm-Nd and zircon U-Pb dating of eclogites from the same area have firmly established that the UHP eclogite-facies metamorphism took place at Triassic. Neither the age of UHP metamorphism nor the timing of continental collision is reliably constrained by their presented data; the fluid inclusions in garnet must contain inherited 40Ar from UHP eclogite precursor, without considerable resetting of the Ar-Ar isotopic system during Triassic UHP metamorphism. Therefore, their data are either meaningless, or at best viewed as the age of garnet growth by low-T/HP blueschist/eclogite-facies metamorphism of the UHP eclogite precursor during arc-continent collision in the early Paleozoic. Furthermore, it is critical for metamorphic geochronology to substantiate the timing of UHP metamorphic event by means of zircon U-Pb in situ dating on coesite-bearing domains of metamorphically grown zircon.  相似文献   

8.
Representative diamond-bearing gneisses and dolomitic marble, eclogite and Ti-clinohumite-bearing garnet peridotite from Unit I at Kumdy Kol and whiteschist from Unit II at Kulet, eastern Kokchetav Massif, northern Kazakhstan, were studied. Diamond-bearing gneisses contain variable assemblages, including Grt+Bt+Qtz±Pl±Kfs±Zo±Chl±Tur±Cal and minor Ap, Rt and Zrn; abundant inclusions of diamond, graphite+chlorite (or calcite), phengite, clinopyroxene, K-feldspar, biotite, rutile, titanite, calcite and zircon occur in garnet. Diamond-bearing dolomitic marbles consist of Dol+Di±Grt+Phl; inclusions of diamond, dolomite±graphite, biotite, and clinopyroxene were identified in garnet. Whiteschists carry the assemblage Ky+Tlc+Grt+Rt; garnet shows compositional zoning, and contains abundant inclusions of talc, kyanite and rutile with minor phlogopite, chlorite, margarite and zoisite. Inclusions and zoning patterns of garnet delineate the prograde P–T path. Inclusions of quartz pseudomorphs after coesite were identified in garnet from both eclogite and gneiss. Other ultrahigh-pressure (UHP) indicators include Na-bearing garnet (up to 0.14 wt% Na2O) with omphacitic Cpx in eclogite, occurrence of high-K diopside (up to 1.56 wt% K2O) and phlogopite in diamond-bearing dolomitic marble, and Cr-bearing kyanite in whiteschist. These UHP rocks exhibit at least three stages of metamorphic recrystallization. The Fe-Mg partitioning between clinopyroxene and garnet yields a peak temperature of 800–1000 °C at P >40 kbar for diamond-bearing rocks, and about 740–780 °C at >28–35 kbar for eclogite, whiteschist and Ti-bearing garnet peridotite. The formation of symplectitic plagioclase+amphibole after clinopyroxene, and replacement of garnet by biotite, amphibole, or plagioclase mark retrograde amphibolite facies recrystallization at 650–680 °C and pressure less than about 10 kbar. The exsolution of calcite from dolomite, and development of matrix chlorite and actinolite imply an even lower grade greenschist facies overprint at c. 420 °C and 2–3 kbar. A clockwise P–T path suggests that supracrustal sediments together with basaltic and ultramafic lenses apparently were subjected to UHP subduction-zone metamorphism within the diamond stability field. Tectonic mixing may have occurred prior to UHP metamorphism at mantle depths. During subsequent exhumation and juxtaposition of many other tectonic units, intense deformation chaotically mixed and mylonitized these lithotectonic assemblages.  相似文献   

9.
R. Burgess  G.B. Kiviets  J.W. Harris 《Lithos》2004,77(1-4):113-124
Ar–Ar age measurements are reported for selected eclogitic clinopyroxene and garnet inclusions in Orapa diamonds and clinopyroxene inclusions in Venetia diamonds. Laser drilling of encapsulated clinopyroxene inclusions within Venetia diamonds released a maximum of 3% of the total 40Ar, indicating little diffusive transfer and storage of radiogenic 40Ar at the diamond–inclusion boundary. Apparent ages obtained during stepped heating of three diamonds are consistent with diamond crystallisation occurring just prior to the kimberlite eruption 520 Ma ago. Stepped heating of three clinopyroxene-bearing Orapa diamonds gave ages of 906–1032 Ma, significantly above the eruption age, but consistent with previously determined isotopic ages. A few higher apparent ages hint at the presence an older generation of Orapa diamonds that formed >2500 Ma ago. Orapa garnets also contain measurable K contents, and record a range of ages between 1000 and 2500 Ma. The old apparent ages and lack of significant interface 40Ar released by the laser probe, suggests that pre-eruption radiogenic 40Ar and mantle-derived 40Ar components are trapped in microinclusions within the pyroxene and garnet inclusions.  相似文献   

10.
ABSTRACT

Polycrystalline microdiamonds are rare in ultrahigh-pressure (UHP) rocks worldwide. Among samples collected at Erzgebirge, Germany, we found abundant polycrystalline microdiamonds as inclusions in zircons from a quartzofeldspathic rock. To illuminate their origin and forming age, we investigated morphologies and Raman spectra of 52 microdiamond inclusions, and dated the zircon host. The zircons have low Th/U values (0.03–0.07) and a concordia U/Pb age of 335.8 ± 1.9 Ma. Polycrystalline diamond (10–40 µm) consists of many fine-grained crystals (1.5–3 µm) with different orientations; discrete single diamonds (2–20 µm) are rare. All measured Raman spectra show an intense diamond band at 1332–1328 cm?1 and have a negative correlation with full width at half maximum (FWHM) of 5.8–11.3 cm?1. These data combined with previously reported diamond band data (1331–1337 cm?1) are compatible with those of diamond inclusions in various host minerals from other UHP terranes, but are different from those of ureilite diamonds. The Erzgebirge microdiamonds in zircon do not display visible disordered sp3-carbon, but show downshifting of the Raman band from the ideal value (1332 cm?1), and have a broader diamond band (FWHM >3 cm?1) than those of well-ordered diamonds. These features may reflect imperfect ordering due to rapid nucleation/crystallization during UHP metamorphism and rapid exhumation of the UHP terrane. Graphite inclusions in zircon show a typical G-band at 1587 cm?1. Our study together with previously reported C-isotopic compositions (δ13C, ?17 to ?27‰) of diamond and occurrences of fluid/melt inclusions in diamond and garnet indicates that Erzgebirge microdiamonds are metamorphic, have an organic carbon source, and crystallized from aqueous fluids. Limited long-range ordering suggested by the Raman spectra is a function of the PT time of crystallization and subsequent thermal annealing on decompression. Combined with regional geology, our work further constrains the tectonic evolution of the Erzgebirge terrane.  相似文献   

11.
D. Phillips  J.W. Harris  K.S. Viljoen 《Lithos》2004,77(1-4):155-179
Silicate and oxide mineral inclusions in diamonds from the geologically and historically important De Beers Pool kimberlites in Kimberley, South Africa, are characterised by harzburgitic compositions (>90%), with lesser abundances from eclogitic and websteritic parageneses. The De Beers Pool diamonds contain unusually high numbers of inclusion intergrowths, with garnet+orthopyroxene±chromite±olivine and chromite+olivine assemblages dominant. More unusual intergrowths include garnet+olivine+magnesite and an eclogitic assemblage comprising garnet+clinopyroxene+rutile. The mineral chemistry of the De Beers Pool inclusions overlaps that of most worldwide localities. Peridotitic garnet inclusions exhibit variable CaO (<5.8 wt.%) and Cr2O3 contents (3.0–15.0 wt.%), although the majority are harzburgitic with very low calcium concentrations (<2 wt.% CaO). Eclogitic garnet inclusions are characterised by a wide range in CaO (3.3–21.1 wt.%) with low Cr2O3 (<1 wt.%). Websteritic garnets exhibit intermediate compositions. Most chromite inclusions contain 63–67 wt.% Cr2O3 and <0.5 wt.% TiO2. Olivine and orthopyroxene inclusions are magnesium-rich with Mg-numbers of 93–97. Olivine inclusions in chromite exhibit the highest Mg-numbers and also contain elevated Cr2O3 contents up to 1.0 wt.%. Peridotitic clinopyroxene inclusions are Cr-diopsides with up to 0.8 wt.% K2O. Eclogitic and websteritic clinopyroxene inclusions exhibit overlapping compositions with a wide range in Mg-numbers (66–86).

Calculated temperatures for non-touching inclusion pairs from individual diamonds range from 1082 to 1320 °C (average=1197 °C), whereas pressures vary from 4.6 to 7.7 GPa (average=6.3 GPa). Touching inclusion assemblages are characterised by equilibration temperatures of 995 to 1182 °C (average=1079 °C) and pressures of 4.2–6.8 GPa (average=5.4 GPa). Provided that the non-touching inclusions represent equilibrium assemblages, it is suggested that these inclusions record the conditions at the time of diamond crystallisation (1200 °C; 3.0 Ga). The lower average temperatures for touching inclusions are attributed to re-equilibration in a cooling mantle (1050 °C) prior to kimberlite eruption at 85 Ma. Pressure estimates for touching garnet–orthopyroxene inclusions are also skewed towards lower values than most non-touching inclusions. This apparent difference may be an artefact of the Al-exchange geobarometer and/or the result of sampling bias, due to limited numbers of non-touching garnet–orthopyroxene inclusions. Alternatively pressure differences could be caused by differential uplift in the mantle or possibly variations in thermal compressibility between diamond and silicate inclusions. However, thermodynamic modelling suggests that thermal compressibility differences would cause only minor changes in internal inclusion pressures (<0.2 GPa/100 °C).  相似文献   


12.
The diamond population from the Jagersfontein kimberlite is characterized by a high abundance of eclogitic, besides peridotitic and a small group of websteritic diamonds. The majority of inclusions indicate that the diamonds are formed in the subcratonic lithospheric mantle. Inclusions of the eclogitic paragenesis, which generally have a wide compositional range, include two groups of eclogitic garnets (high and low Ca) which are also distinct in their rare earth element composition. Within the eclogitic and websteritic suite, diamonds with inclusions of majoritic garnets were found, which provide evidence for their formation within the asthenosphere and transition zone. Unlike the lithospheric garnets all majoritic garnet inclusions show negative Eu-anomalies. A narrow range of isotopically light carbon compositions (δ13C −17 to −24 ‰) of the host diamonds suggests that diamond formation in the sublithospheric mantle is principally different to that in the lithosphere. Direct conversion from graphite in a subducting slab appears to be the main mechanism responsible for diamond formation in this part of the Earth’s mantle beneath the Kaapvaal Craton. The peridotitic inclusion suite at Jagersfontein is similar to other diamond deposits on the Kaapvaal Craton and characterized by harzburgitic to low-Ca harzburgitic compositions.  相似文献   

13.
Diamonds and their syngenetic mineral inclusions from placer deposits (Akwatia mine) along the Birim River, Ghana were studied, thus providing the first detailed data collection for the West African Craton. Inclusion contents indicate an almost exclusively peridotitic diamond suite, with the vast majority being part of the harzburgitic paragenesis. Chemically the Akwatian diamond inclusions differ from those in our 1100 sample world-wide data base mainly by shifts towards lower Mg/Fe ratios for harzburgitic olivines and orthopyroxenes, extremely high Ni contents in both harzburgitic and lherzolitic olivines, and a higher mean Cr content in chromites. The inconsistency between the low Mg/Fe ratios and the highly refractory compatible trace element signature seems best to be explained by re-fertilisation of a previously depleted source, similar to the metasomatic re-enrichment of deformed, Fe-Ti-rich and hot peridotites discussed by Harte (1983). Geothermometry shows Akwatian inclusions to be 140–190 °C hotter than the peridotitic average (1050 °C) given by Harris (1992). Since garnet-opx equilibria (1100 °C/50 kbar to 1370 °C/67 kbar) indicate a typical shield geotherm (40–42 mW/m2), these elevated temperatures imply an origin of the Akwatian diamonds unusually deep for a peridotitic suite. This is consistent with the presence of extraordinary amounts of silicate spinel component in chromite inclusions, indicative of crystallisation under higher pressures than recorded for most peridotitic suites. In addition, one garnet showed the highest knorringite component (66.4 mol%) so far observed in an inclusion in diamond. The same garnet also contained a minor enstatite solid-solution component, which indicates crystallisation at pressures just below 80 kbar. Akwatian diamond inclusions, therefore, represent the most complete cross-section through peridotitic subcontinental lithospheric upper mantle so far observed, down to a maximum depth between 200–240 km. Received: 1 November 1995 / Accepted 5 January 1997  相似文献   

14.
We have performed dissections of two diamondiferous eclogites (UX-1 and U33/1) from the Udachnaya kimberlite, Yakutia in order to understand the nature of diamond formation and the relationship between the diamonds, their mineral inclusions, and host eclogite minerals. Diamonds were carefully recovered from each xenolith, based upon high-resolution X-ray tomography images and three-dimensional models. The nature and physical properties of minerals, in direct contact with diamonds, were investigated at the time of diamond extraction. Polished sections of the eclogites were made, containing the mould areas of the diamonds, to further investigate the chemical compositions of the host minerals and the phases that were in contact with diamonds. Major- and minor-element compositions of silicate and sulfide mineral inclusions in diamonds show variations among each other, and from those in the host eclogites. Oxygen isotope compositions of one garnet and five clinopyroxene inclusions in diamonds from another Udachnaya eclogite (U51) span the entire range recorded for eclogite xenoliths from Udachnaya. In addition, the reported compositions of almost all clinopyroxene inclusions in U51 diamonds exhibit positive Eu anomaly. This feature, together with the oxygen isotopic characteristics, is consistent with the well-established hypothesis of subduction origin for Udachnaya eclogite xenoliths. It is intuitive to expect that all eclogite xenoliths in a particular kimberlite should have common heritage, at least with respect to their included diamonds. However, the variation in the composition of multiple inclusions within diamonds, and among diamonds, from the same eclogite indicates the involvement of complex processes in diamond genesis, at least in the eclogite xenoliths from Yakutia that we have studied.  相似文献   

15.
Abstract The prograde metamorphism of eclogites is typically obscured by chemical equilibration at peak conditions and by partial requilibration during retrograde metamorphism. Eclogites from the Eastern Blue Ridge of North Carolina retain evidence of their prograde path in the form of inclusions preserved in garnet. These eclogites, from the vicinity of Bakersville, North Carolina, USA are primarily comprised of garnet–clinopyroxene–rutile–hornblende–plagioclase–quartz. Quartz, clinopyroxene, hornblende, rutile, epidote, titanite and biotite are found as inclusions in garnet cores. Included hornblende and clinopyroxene are chemically distinct from their matrix counterparts. Thermobarometry of inclusion sets from different garnets record different conditions. Inclusions of clinozoisite, titanite, rutile and quartz (clinozoisite + titanite = grossular + rutile + quartz + H2O) yield pressures (6–10 kbar, 400–600 °C and 8–12 kbar 450–680 °C) at or below the minimum peak conditions from matrix phases (10–13 kbar at 600–800 °C). Inclusions of hornblende, biotite and quartz give higher pressures (13–16 kbar and 630–660 °C). Early matrix pyroxene is partially or fully broken down to a diopside–plagioclase symplectite, and both garnet and pyroxene are rimmed with plagioclase and hornblende. Hypersthene is found as a minor phase in some diopside + plagioclase symplectites, which suggests retrogression through the granulite facies. Two‐pyroxene thermometry of this assemblage gives a temperature of c. 750 °C. Pairing the most Mg‐rich garnet composition with the assemblage plagioclase–diopside–hypersthene–quartz gives pressures of 14–16 kbar at this temperature. The hornblende–plagioclase–garnet rim–quartz assemblage yields 9–12 kbar and 500–550 °C. The combined P–T data show a clockwise loop from the amphibolite to eclogite to granulite facies, all of which are overprinted by a texturally late amphibolite facies assemblage. This loop provides an unusually complete P–T history of an eclogite, recording events during and following subduction and continental collision in the early Palaeozoic.  相似文献   

16.
This investigation presents and interprets fluid inclusion data from different lithological units of the Cu skarn deposits at Mazraeh, north of Ahar, Azarbaijan, NW Iran. The results provide an assessment of the PT conditions and mineral–fluid evolution and suggest new exploration parameters. Five types of inclusions are recognized from quartz and garnet. The temperature of homogenization of Type I inclusions with daughter minerals halite and sylvite ranges from 312° to 470 °C with total salinity of 52 to 63 wt.% NaCl equiv.; Type II and III inclusions with halite have homogenization temperatures of 230° to 520 °C and salinity of 31 to 50 wt.% NaCl equiv. The salinity of Types IV and V biphase (liquid + vapor) inclusions, based on their final ice melting temperature, varies between 10.2 to 20.8 wt.% NaCl equiv. Th vs. salinity plots of inclusions show that the salinity of the fluids correlates positively with temperature. The inclusions formed at low pressure. Changes in the temperature and salinity of the fluids can be reconstructed from the inclusions. Highly saline, high-temperature fluids were most abundant during the main chalcopyrite ore-forming phase in the skarn and mineralized quartz veins. Low-salinity aqueous fluids were abundant in barren veins, in which there is no evidence for early hot high-salinity brine, and might have resulted from late-stage dilution and mixing of hydrothermal fluids with meteoric water. Based on petrographic features and fluid-inclusion data, early-stage magnetite deposition is related to boiling of fluid at temperatures of about 500 °C. At a later stage, boiling at temperatures of around 320° to 400 °C favored the deposition of sulfides and Fe mobility was decreased at these lower temperatures. The following inclusion characteristics may be used as exploration parameters in the Mazraeh area. (i) Presence of high-temperature, salt-bearing inclusions, with Th between 300 and 500 °C; (ii) High-salinity fluid inclusions; and (iii) Inclusions showing evidence of boiling of the fluid. In addition, the presence of magnetite is an important exploration parameter.  相似文献   

17.
Superdeep diamonds and their inclusions are important samples to probe the physical and chemical environment and constitution of Earth’s deep mantle. By combining the studies of high-precision in-situ analysis and HPHT synthetic diamond experiments, and by reviewing the new discovery of classical mineral inclusions and their combinations, the ranges of different inclusion combinations, as well as the relationship between trace elements and temperature-pressure conditions were reoriented. The so-called nominally anhydrous minerals combinations, metal phases and redox environments in superdeep mantle were also affirmed. Meanwhile,the recent findings of inclusions and isotopes in superdeep diamonds support the fact that the remaining subduction ocean crust may be a significant reservoir of the deep mantle’s water and the deep mantle carbon cycle is closely related to oceanic subduction. Furthermore, although Chinese scholars have discovered some kinds of superdeep inclusions in diamonds from North China Craton and Yangtze Craton, and made considerable progress in the study of the formation of UHP diamonds and the genesis of ophiolite diamonds, there are still many scientific questions about superdeep diamonds that require further research.  相似文献   

18.
Experimental clinopyroxenes synthesized at 850–1500 °C and 0–60 kbar in the CMS and CMAS-Cr systems and in more complex lherzolitic systems have been used to calibrate a Cr-in-Cpx barometer and an enstatite-in-Cpx thermometer for Cr-diopsides derived from garnet peridotites. The experiments cover a wide range of possible natural peridotitic compositions, from fertile pyrolite to refractory, high-Cr lherzolite. The barometer is based on the Cr exchange between clinopyroxene and garnet. Pressure is formulated as a function of temperature and clinopyroxene composition:
where a CaCrTs Cpx=Cr−0.81·Cr#·(Na+K) and Cr#= , with elements in atoms per 6 oxygens. This formulation reproduces the experimental pressures to ±2.3 kbar (1σ) and has a temperature dependence (1.2–2.4 kbar/50 °C, varying with composition) that is weaker than that of the widely used Al-in-Opx barometer (2–3 kbar/50 °C). The enstatite-in-Cpx thermometer includes corrections for the effect of minor components and is formulated as
where K)). The thermometer reproduces the experimental temperatures to ±30 °C (1σ). The uncertainties of the present formulations are comparable to, or better than, those of the most widely used thermobarometers for garnet peridotites. P-T estimates obtained for diamond-bearing and graphite-bearing lherzolite xenoliths and peridotitic clinopyroxene inclusions in kimberlitic and lamproitic diamonds confirm the reliability of the thermobarometer. Cr-diopside thermobarometry appears to be a potential tool for obtaining information on the thermal state of the upper mantle and the extent of mantle sampling by deep-seated magmas. We consider the Cr-in-Cpx barometer to be the best alternative to the Al-in-Opx barometer for the evaluation of pressure conditions of equilibration of natural garnet lherzolites. P-T conditions of equilibration can be directly retrieved from the composition of Cr-diopside alone, thus allowing application to partially altered xenoliths, inclusions in diamonds, and loose grains from sediments. We foresee application of the present thermobarometer to evaluation of the diamond potential of kimberlite and lamproite provinces and in diamond exploration where Cr-diopside from deep mantle sources is preserved in the surficial weathering environment. Received: 16 August 1999 / Accepted: 17 March 2000  相似文献   

19.
The Chinese Continental Scientific Drilling (CCSD) main drill hole (0–3000 m) in Donghai, southern Sulu orogen, consists of eclogite, paragneiss, orthogneiss, schist and garnet peridotite. Detailed investigations of Raman, cathodoluminescence, and microprobe analyses show that zircons from most eclogites, gneisses and schists have oscillatory zoned magmatic cores with low-pressure mineral inclusions of Qtz, Pl, Kf and Ap, and a metamorphic rim with relatively uniform luminescence and eclogite-facies mineral inclusions of Grt, Omp, Phn, Coe and Rt. The chemical compositions of the UHP metamorphic mineral inclusions in zircon are similar to those from the matrix of the host rocks. Similar UHP metamorphic PT conditions of about 770 °C and 32 kbar were estimated from coexisting minerals in zircon and in the matrix. These observations suggest that all investigated lithologies experienced a joint in situ UHP metamorphism during continental deep subduction. In rare cases, magmatic cores of zircon contain coesite and omphacite inclusions and show patchy and irregular luminescence, implying that the cores have been largely altered possibly by fluid–mineral interaction during UHP metamorphism.

Abundant H2O–CO2, H2O- or CO2-dominated fluid inclusions with low to medium salinities occur isolated or clustered in the magmatic cores of some zircons, coexisting with low-P mineral inclusions. These fluid inclusions should have been trapped during magmatic crystallization and thus as primary. Only few H2O- and/or CO2-dominated fluid inclusions were found to occur together with UHP mineral inclusions in zircons of metamorphic origin, indicating that UHP metamorphism occurred under relatively dry conditions. The diversity in fluid inclusion populations in UHP rocks from different depths suggests a closed fluid system, without large-scale fluid migration during subduction and exhumation.  相似文献   


20.
Coesite inclusions in garnet have been found in eclogite boudins enclosed in coesite‐bearing garnet micaschist in the Habutengsu Valley, Chinese western Tianshan, which are distinguished from their retrograde quartz by means of optical characteristics, CL imaging and Raman spectrum. The coesite‐bearing eclogite is mainly composed of porphyroblastic garnet, omphacite, paragonite, glaucophane and barroisite, minor amounts of rutile and dotted (or banded) graphite. In addition to coesite and quartz, the zoned porphyroblastic garnet contains inclusions of omphacite, Na‐Ca amphibole, calcite, albite, chlorite, rutile, ilmenite and graphite. Multi‐phase inclusions (e.g. Czo + Pg ± Qtz, Grt II + Qtz and Chl + Pg) can be interpreted as breakdown products of former lawsonite and possibly chloritoid. Coesite occurs scattered within a compositionally homogenous but narrow domain of garnet (outer core), indicative of equilibrium at the UHP stage. The estimate by garnet‐clinopyroxene thermometry yields peak temperatures of 420–520 °C at 2.7 GPa. Phase equilibrium calculations further constrain the P–T conditions for the UHP mineral assemblage Grt + Omp + Lws + Gln + Coe to 2.4–2.7 GPa and 470–510 °C. Modelled modal abundances of major minerals along a 5 °C km?1 geothermal gradient suggests two critical dehydration processes at ~430 and ~510 °C respectively. Computed garnet composition patterns are in good agreement with measured core‐rim profiles. The petrological study of coesite‐bearing eclogite in this paper provides insight into the metamorphic evolution in a cold subduction zone. Together with other reported localities of UHP rocks from the entire orogen of Chinese western Tianshan, it is concluded that the regional extent of UHP‐LT metamorphism in Chinese western Tianshan is extensive and considerably larger than previously thought, although intensive retrogression has erased UHP‐LT assemblages at most localities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号