首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 234 毫秒
1.
The Yellow Sea Cold Water Mass(YSCWM) is one of the important water mass in the Yellow Sea(YS).It is distributed in the lower layer in the Yellow Sea central trough with the temperature less than 10 C and the salinity lower than 33.0.To understand the variability of the YSCWM,the hydrographic data obtained in April and August during 2009–2011 are analyzed in the southeastern Yellow Sea.In August 2011,relatively warm and saline water compared with that in 2009 and 2010 was detected in the lower layer in the Yellow Sea central area.Although the typhoon passed before the cruise,the salinity in the Yellow Sea central trough is much higher than the previous season.It means that the saline event cannot be explained by the typhoon but only by the intrusion of saline water during the previous winter.In April 2011,actually,warm and saline water(T >10 C,S >34) was observed in the deepest water depth of the southeastern area of the Yellow Sea.The wind data show that the northerly wind in 2011 winter is stronger than in 2009 and 2010 winter season.The strong northerly wind can trigger the intrusion of warm and saline Yellow Sea Warm Current.Therefore,it is proposed that the strong northerly wind in winter season leads to the intrusion of the Yellow Sea Warm Current into the Yellow Sea central trough and influenced a variability of the YSCWM in summer.  相似文献   

2.
A study of coccolith assemblages from a box core from the central South Yellow Sea(SYS) was performed revealing fluctuations on their relative abundance(%) that can be related to climatic and hydrographic changes over the last 230 years(1780–2011). Total coccolith abundances ranged from 7.0 to 55.1×10~6 coccoliths·g~(-1)sediment. Although the abundance of different species varied widely throughout the core, seven taxa dominated the assemblage. Among these species, Gephyrocapsa oceanica was the most dominant species, and it showed an average percentage of 50.1%. The pattern of G. oceanica(eutrophic species) was opposite to that of the combined percentage of Braarudosphaera bigelowii and Umbilicosphaera sibogae(both oligotrophic species), indicating that in the Yellow Sea(YS), the distribution pattern of G. oceanica might be characteristic of nutrient availability.Similar patterns between G. oceanica and the Siberian High were observed on an inter-decadal time scale,indicating that the East Asian Winter Monsoon(EAWM) may be an important driver of ecological changes in the YS. When the EAWM prevails, both the Yellow Sea Coastal Current(YSCC) and Yellow Sea Warm Current(YSWC)strengthen, and the increasing nutrient availability and warmer water brought by the strengthened YSWC favor eutrophic and warm-water coccolithophore species, such as G. oceanica. This likely mechanism demonstrates that coccolith assemblages can be used as benign and reliable proxy for climate change and surface oceanography.  相似文献   

3.
南海冬季海浪的时空变率特征   总被引:4,自引:1,他引:3  
The spatial and temporal variation characteristics of the waves in the South China Sea(SCS) in the boreal winter during the period of 1979/1980–2011/2012 have been investigated based on the European Centre for Medium-range Weather Forecasts interim(ERA-Interim) reanalysis dataset. The results show that the leading mode of significant wave height anomalies(SWHA) in the SCS exhibits significant interannual variation and a decadal shift around the mid-1990 s, and features a basin-wide pattern in the entire SCS with a center located in the west of the Luzon Strait. The decadal change from a weak regime to a strong regime is mainly associated with the enhancement of winter monsoon modulated by the Pacific decadal oscillation(PDO). The interannual variation of the SWHA has a significant negative correlation with the El Ni?o Southern Oscillation(ENSO) in the same season and the preceding autumn. For a better understanding of the physical mechanism between the SCS ocean waves and ENSO, further investigation is made by analyzing atmospheric circulation. The impact of the ENSO on the SWHA over the SCS is bridged by the East Asian winter monsoon and Pacific-East Asian teleconnection in the lower troposphere. During the El Ni?o(La Ni?a), the anomalous Philippine Sea anticyclone(cyclone) dominates over the Western North Pacific, helps to weaken(enhance) East Asian winter monsoon and then emerges the negative(positive) SWHA in the SCS.  相似文献   

4.
The effect of river runoff over the northern Indian Ocean(NIO) especially over the Bay of Bengal(Bo B) has been studied using global Nucleus for European Modelling of the Ocean(NEMO). Two sensitivity experiments, with and without river runoff are conducted and the influence of river runoff on the Indian Ocean hydrography,stratification and circulation features are studied. It is found that due to river runoff surface salinity over the northern Bo B decreases by more than 5 and the East India Coastal Current strengthens by 2 cm/s during post monsoon season. The fresh river water reaches up to 15°N in the Bo B and is the main cause for low salinity there.Sea surface temperature in the northwestern Bo B increases by more than 0.2℃ due to the river runoff in summer monsoon while surface cooling upto 0.2℃ is seen in north-west part of Bo B in winter season. The seasonal mixed layer depth in the region is found to be dependent on river runoff. The effect of vertical shear and Brunt Vaisala frequency on stratification is also examined. The ocean water becomes highly stratified up to 3 035 m due to the river runoff. It is found that the energy required for mixing is high in the northern and coastal Bo B.  相似文献   

5.
In this paper the impacts of the anomalous SST in the warm pool area of the Western Equatorial Pacific on the winter time circulation and the East Asian monsoon are studied by using the NCAR CCM. It is found that the abnormal heating in the warm pool area will change the strength and the position of the Walker Cell in the Equatorial Pacific and the anti-Walker Cell in the equatorial Indian Ocean. Both the Walker and anti-Walker Cells are strengthened. The local Hadley Cells over two hemispheres near the warm pool are also strengthened. The subtropical highs in two hemispheres become stronger and move poleward slightly. The westerly jets in the extratropical regions have similar changes as the subtropical highs. The winter monsoon in South-East Asia is weakened by the abnormal heating in the warm pool. The experiment also show that there are wave trains emanating from surrounding areas of the warm pool to the high latitudes, causing various changes in circulations and local weather.  相似文献   

6.
The annual, interannual and inter-decadal variability of convection intensity of South China Sea (SCS) summer monsoon and air-sea temperature difference in the tropical ocean is analyzed, and their relationship is discussed using two data sets of 48-a SODA (simple ocean data assimilation) and NCEP/NCAR. Analyses show that in wintertime Indian Ocean (WIO), springtime central tropical Pacific (SCTP) and summertime South China Sea-West Pacific (SSCSWP), air-sea temperature difference is significantly associated with the convection intensity of South China Sea summer monsoon. Correlation of the inter-decadal time scale (above 10 a) is higher and more stable. There is inter-decadal variability of correlation in scales less than 10 a and it is related with the air-sea temperature difference itself for corresponding waters. The inter-decadal variability of the convection intensity during the South China Sea summer monsoon is closely related to the inter-decadal variability of the general circulation of the atmosphere. Since the late period of the 1970s, in the lower troposphere, the cross-equatorial flow from the Southern Hemisphere has intensified. At the upper troposphere layer, the South Asian high and cross-equatorial flow from the Northern Hemisphere has intensified at the same time. Then the monsoon cell has also strengthened and resulted in the reinforcing of the convection of South China Sea summer monsoon.  相似文献   

7.
In this study, we develop a variable-grid global ocean general circulation model(OGCM) with a fine grid(1/6)°covering the area from 20°S–50°N and from 99°–150°E, and use the model to investigate the isopycnal surface circulation in the South China Sea(SCS). The simulated results show four layer structures in vertical: the surface and subsurface circulation of the SCS are characterized by the monsoon driven circulation, with basin-scaled cyclonic gyre in winter and anti-cyclonic gyre in summer. The intermediate layer circulation is opposite to the upper layer, showing anti-cyclonic gyre in winter but cyclonic gyre in summer. The circulation in the deep layer is much weaker in spring and summer, with the maximum velocity speed below 0.6 cm/s. In fall and winter, the SCS deep layer circulation shows strong east boundary current along the west coast of Philippine with the velocity speed at 1.5 m/s, which flows southward in fall and northward in winter. The results have also revealed a fourlayer vertical structure of water exchange through the Luzon Strait. The dynamics of the intermediate and deep circulation are attributed to the monsoon driving and the Luzon Strait transport forcing.  相似文献   

8.
Three warm currents, the Kuroshio, its shelf intrusion branch in the northeast of Taiwan and the Taiwan Warm Current (hereafter TWC), dominate the circulation pattern in the East China Sea (hereafter ECS). Their origination, routes and variation in winter and summer are studied. Their relationship with four major high and low temperature centers is analyzed. Differing from the previous opinion, we suggest that the four major centers are generated to a great extent by the interaction of the currents in the ECS. In summer, a cold water belt in the northeast of Taiwan is preserved from winter between the Kuroshio and the TWC. The shelf intrusion branch of the Kuroshio separates the water belt, and two low temperature centers generate in the northeast of Taiwan. In the southern ECS, the TWC transports more heat flux northward to form a warm pool. But it is separated in the lower layer by the cold water driven by the intrusion branch of the Kuroshio. So the TWC and the intrusion branch of the Kuroshio play a dominating role to generate the high temperature center. The interaction among the eastward TWC, the northward Tsushima Warm Current (hereafter TSWC) and the southward Su Bei Coastal Flow (hereafter SBCF) generates the low temperature center in the northern ECS. In winter, the strengthening of the shelf intrusion branch of the Kuroshio obscures the two low temperature centers in the northeast of Taiwan. For the weakening of the TWC, the high temperature center in the southern ECS vanishes, and the low temperature center in the northern ECS shifts to south.  相似文献   

9.
Using conductivity-Temperature-depth data of a recent cruise during July 22-28, 2008 and historical data, it is found that temperature inversions occur from time to time in the Huanghai Sea(Yellow Sea) cold water mass (HSCWM) in summer. The temperature inversions are produced by the movement of the fresh and cold HSCWM masses above the warm and saline Huanghai Sea Warm Current water at the central bottom of the Huanghai Sea Trough. The non-homogeneous profiles of the temperature and the salinity suggest that vertical mixing in the HSCWM, which is of great importance to the circulation in the Huanghai Sea in summer, is weak. Trajectories of satellite-tracked surface drifters suggest that waters in the northern reach of the Huanghai Sea move southward along the 40-50 m isobaths and descend into the southern Huanghai Sea to form the western core of the HSCWM.  相似文献   

10.
Based on the wind and hydrographic data obtained by R/V Xiangyanghong 14 duringJune of 1999, the currents in the Huanghai Sea and East China Sea are computed by the three dimen-sional non-linear diagnostic, semidiagnostic models and prognostic in the σ coordinate. The computed re-sults show that the density and velocity fields and so on have been adjusted when time is about 3 days,namely the solution of semidiagnostic calculation is obtained. In the northwest part of the computed re-gion, the Huanghai coastal current flows southeastward, and then it flows out the computed region southof Cheju Island. In the west side of the southern part of the computed region, there is other current,which is mainly inshore branch of Taiwan Warm Current, and it flows cyclonically and turns to thenortheast. In the region north of the above two currents, there is a cyclonic eddy southwest of Cheju Is-land, and it has characteristics of high density and low temperature. There is an offshore branch of Tai-wan Warm Current in the west side of the Kuroshio, and it makes a cyclonic meander, then flows north-eastward. The Kuroshio in the East China Sea is stronger, and flows northeastward. Its maximum hori-zontal velocity is 108.5 cm/s at the sea surface, which is located at the northern boundary, and it is106.1 cm/s at 30 m level, 102.2 cm/s at 75 m level and 85.1 cm/s at 200 m level, respectively, whichare all located at the southern boundary. Comparing the results of diagnostic calculation with those ofsemidiagnostic and prognostic calculations indicates that the horizontal velocity field agrees qualitatively,and there is a little difference between them in quantity. The comparison between the computed veloci-ties and the obeered velocities at the mooring station show that they agree each other.  相似文献   

11.
This paper discusses the long-term variation in the salinity of the Southern Yellow Sea Cold Water Mass (SYSCWM) and examines factors influencing the SYSCWM based on hydrographic datasets of the China National Standard section and the Korea Oceanographic Data Center. The mean salinity at the center of the SYSCWM showed a decreasing long-term trend. In empirical orthogonal function (EOF) analysis, the second EOF mode showed a similar long-term trend. The mean salinity of the center of the SYSCWM was related to the intrusion of saline water from the Yellow Sea Warm Current (YSWC), the salinity of the source area of the YSWC, the evaporation minus precipitation (E–P) flux, and discharge from the Changjiang River. The decreasing salinity trend to the southwest of Cheju Island produced a freshening trend in the YSWC, resulting in a reduction in the salinity of the SYSCWM. The freshening trends of the water from the northwest Pacific and the South China Sea were seen as the reason for the decreasing salinity trend from the intrusion of water into the Yellow Sea (YS). The freshwater flux influenced the surface salinity and was brought to deep layers by strong mixing in winter. The mean E–P flux signal and Changjiang River discharge signal lagged the first principal component of the SYSCWM by approximately 5 months.  相似文献   

12.
东海冷涡对东亚季风年代际变化   总被引:1,自引:0,他引:1  
张俊鹏  蔡榕硕 《海洋与湖沼》2013,44(6):1427-1435
利用CORA、COADS和SODA 等高分辨率的海洋和大气再分析资料及区域海洋模式(ROMS), 研究了东海冷涡对1976/1977 年前后东亚季风年代际跃变(减弱)的响应。结果表明: (1)1976/1977年前后东亚季风跃变后, 夏季东海冷涡明显增强, 主要表现为冷涡的温度显著降低, 而冬季东海冷涡有所变弱但其温度上升不明显; (2)东亚冬季风跃变后, 济州岛西南侧的黄海暖流减弱, 冷涡区出现一个反气旋式环流异常, 这有利于冬季东海冷涡的减弱; (3)东亚夏季风跃变后, 台湾暖流外海侧分支及济州岛西南侧的黄海暖流分支增强, 使得冷涡区的气旋性环流变强, 这有利于夏季东海冷涡的加强。数值试验的结果表明, 东亚冬、夏季风的跃变在东中国海引起了不同的中尺度海洋环流异常, 从而导致东海冷涡对东亚冬、夏季风的跃变产生不同的响应。  相似文献   

13.
冬季南黄海浮游动物群落结构及其对黄海暖流的指示   总被引:2,自引:1,他引:1  
王亮  李超伦  于非 《海洋与湖沼》2013,44(4):853-859
2009年12月和2010年1月对南黄海进行浮游动物采集, 以了解冬季浮游动物群落结构及其对黄海暖流的指示作用。结果表明, 南黄海冬季仍然以温带和暖温带种为主, 中华哲水蚤Calanus sinicus、强壮滨箭虫Aidanosagitta crassa、细足法Themisto gracilipes等温带和暖温带种类在浮游动物数量组成中具有较大优势。与此同时, 一些暖水种在调查海域局部出现。2009年12月暖水种仅分布在南黄海东南部黄海暖流源地附近。位于黄海中部的调查区东侧温盐层化现象明显, 近底层低温、高盐、高营养盐的水文特征体现了黄海冷水团的残留; 2010年1月在35°—36°N区域暖水种种类明显增加, 截平头水蚤Paracandacia truncata、长尾基齿哲水蚤Clausocalanus furcatus出现的位置与暖流路径相吻合, 海洋真刺水蚤Euchaeta rimana数量相比12月有明显向北推进的趋势。主成分分析显示暖水种的分布与温度有良好的相关性。Shannon-Weaver指数、丰富度指数、均匀度指数等没有呈现明显的分布规律, 对黄海暖流的指示作用不如种类明显。  相似文献   

14.
Picoeukaryotes are important members of the surface ocean microbial community with high diversity and significant temporal and spatial variations in community composition. Little is known about the picoeukaryotic biodiversity and community in the Yellow Sea, where hydrologic conditions are very different with the influence of the Yellow Sea Warm Current (YSWC). Using Illumina high throughput sequencing targeting 18S rDNA, we investigated the composition of picoeukaryotes at a permanent monitoring site in the central Yellow Sea from 2011 to 2013. Alveolata, Stramenopiles, and Archaeplastida were the main super groups found. Prasinophytes were dominant in N-YSWC (not influenced by the YSWC) samples whilst YSWC (influenced by the YSWC) samples were dominated by different groups, such as MALV-II (novel marine Alveolata), MAST-3, MAST-4 (novel marine Stramenopiles), and Dictyochophyceae. N-YSWC samples were grouped together in nMDS (non-metric multidimensional scaling) using the Bray–Curtis method. Distances between each two YSWC samples were greater. Based on indicator operational taxonomic unit (OTU) analysis (IOA), indicator species of the YSWC were represented by Pseudochattonella farcimen, Florenciella parvula within the class Dictyochophyceae, and Phaeocystis cordata within the class Prymnesiophyceae. The findings in our study suggest that picoeukaryotic communities in the central Yellow Sea differ temporally in response to changes in the YSWC.  相似文献   

15.
冬季青岛-石岛近海中尺度涡旋数值模拟   总被引:1,自引:0,他引:1  
利用二维全流水动力方程组,在考虑了海面风应力,潮余流和一开边界入流等条件下,首次模拟出了石了石岛附近的中尺度反旋式涡旋海水运动,并对南黄海西部冬季环流的特征作了初步探讨。数值模拟结果和实测吻合良好,数值模拟表明:冬季南黄海西部环流形式主要决定因子是海面风应力、潮余流及从开边界的流入该海域的黄海暖流及黄海沿岸流。黄海暖流在偏北风作用下沿西北方向可直达山东半岛近岸,后分为两支:一支向南汇入黄海沿岸流流  相似文献   

16.
采用ECOMSED三维水动力模式,诊断计算了冬季渤海、黄海和东海的近海环流状况,重点分析了黄海暖流的演变过程及其垂直结构,并探讨了黄海暖流的形成机理。结果表明,黄海暖流于12月初步形成,次年2月发展最强盛,3月开始衰退。黄海暖流在表层和次表层(0-30m)并不是一支持续稳定的流,其持续稳定性仅在近底层得到很好的体现。对黄海暖流形成机理的分析表明,压强梯度力、垂向摩擦力和柯氏力占主要地位。在表层及次表层,主要表现为风的正压作用,而在近底层,则由海平面起伏造成的正压梯度力和密度场引起的斜压梯度力形成的总压强梯度力与柯氏力基本平衡,因而黄海暖流可基本认为是准地转流。  相似文献   

17.
Sea surface temperature (SST) in the Yellow Sea Warm Current (YSWC) pathway is sensitive to the East Asian Winter Monsoon (EAWM) and YSWC. However, the role of ...  相似文献   

18.
黄海暖流的路径及机制研究   总被引:9,自引:1,他引:8  
赵胜  于非  刁新源  司广成 《海洋科学》2011,35(11):73-80
利用NASA/AVHRR 反演的每日海表面温度资料, 法国航天局AVISO 发布的海表面高度资料,中国气象科学数据共享服务网成山头台站的日均风场资料, 首先对黄海海表面温度分布进行了分析,揭示了表征黄海暖流的暖水舌存在两个分支。然后对1981 年10 月~2010 年5 月这两个分支发生情况进行了统计, 得出两个分支并...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号