首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In densely built areas, the development of underground transportation systems often involves twin tunnels, which are sometimes unavoidably constructed adjacent to existing piled foundations. Because soil stiffness degrades with induced stress release and shear strain during tunnelling, it is vital to investigate the pile responses to subsequent tunnels after the first tunnel in a twin-tunnel transportation system. To gain new insights into single pile responses to side-by-side twin tunnelling in saturated stiff clay, a three-dimensional coupled-consolidation numerical parametric study is carried out. An advanced hypoplasticity (clay) constitutive model with small-strain stiffness is adopted. The effects of each tunnel depth relative to pile are investigated by simulating the twin tunnels either near the mid-depth of the pile shaft or adjacent to or below the pile toe. The model parameters are calibrated against centrifuge test results in stiff clay reported in literature. It is found the second tunnelling in each case resulted in larger settlement than that due to the first tunnelling with a maximum percentage difference of 175% in the case of twin tunnelling near the mid-depth of the shaft. This is because of the degradation of clay stiffness around the pile during the first tunnelling. Conversely, the first tunnelling-induced bending moment was reduced substantially during the second tunnelling. The most critical location of twin tunnels relative to the pile was found to be the tunnels below the pile toe. This is because the entire pile was located within the major influence zone of the twin tunnelling. Two distinct load transfer mechanisms can be identified in the pile, namely downward load transfer in case of tunnels near mid-depth of the pile shaft and next to the pile toe and upward load transfer in case of twin-tunnelling below the pile toe. These two transfer mechanisms can be useful for practitioner to assess the pile performance due to twin tunnelling.  相似文献   

2.
The paper reviews the application of numerical methods in tunnelling, the achievements and the shortcomings, hence also the future tasks for closing the gap between real ground behaviour in critical tunnelling situations and the present approaches by numerical models. After discussing the role of the structural model within the entire design procedure for a tunnel project, problems are mentioned where numerical methods are essential. This is explained for soft ground tunnelling as well as for tunnels in rock. A special section is devoted to the kind of numerical models needed for the interpretation of field measurements. There is still much to do, especially in covering failure modes of tunnels by numerical analysis. The paper is a shorter version (e.g. without photographs of the actual tunnelling work) of a lecture presented at the Innsbruck Conference on Numerical Methods in 1988.  相似文献   

3.
Mechanized tunnelling is a well-established tunnel construction method which allows constructing tunnels in various conditions including mixed ground conditions as well as tunnels in vulnerable urban areas. The selection of the excavator suitable for the geological structure is important in terms of realizing an efficient tunnel excavation. Tunnel excavation studies of Istanbul Kabatas–Mecidiyeköy Metro tunnels are implemented as a double tube. Geology in this section is composed of sandstone, siltstone, mudstone interbedded or as separate units along with dyke intrusions. Calcareous clay, clayey limestone, clayey sand are also rarely observed. Between the Kabatas–Mecidiyekoy tunnels includes two types of mechanical excavation methods namely tunnel boring machine (TBM) and new Austrian tunnelling method (NATM). Main purpose of this study is mixed ground and their impacts on mechanized tunnelling. At the end, some issues have been presented which seems to be important for the success of TBM and NATM in the mixed grounds. As the tunnel excavation studies continued, the problem of collapse on the ground surface of Barbaros Boulevard in Besiktas station increased the importance of tunnel excavation under mixed ground conditions.  相似文献   

4.
Summary As a part of a research program on the rock engineering aspects of hard rock subsea tunnelling, analyses of potential cave-in from fault zones have been carried out at the Norwegian Institute of Technology. This is a topic of great importance for the planning of future subsea tunnels, and particularly for the selection of the minimum rock cover of such projects. The paper is divided into three main parts: a) review of cases of instability in Norwegian subsea tunnels, b) evaluation of theoretical maximum sliding, and c) discussion of cases of cave-in in tunnels under land. In theory, a cave-in during subsea tunnelling may propagate far higher than the normal minimum rock cover. Taking into consideration the comprehensive geo-investigations that are always carried out for subsea tunnel projects today, it would, however, be unrealistic to base the dimensioning of rock cover for future projects on worst-case scenarios. Consequently, the main result of this study is to emphasize the importance of comprehensive geo-investigations, detailed tunnel mapping, a high degree of readiness during tunnelling and a thorough quality control.  相似文献   

5.
Twin tunnels are frequently used to address the increasing transportation demands in large cities. To ensure the safety of twin tunnels in close proximity, it is often necessary to take protective measures that have not been well studied. Field monitoring was conducted for a project of twin earth pressure balance shield (EPBS) tunnels in typical soft ground. The preceding tunnel was reinforced by various measures, including trailer bracing, compensation grouting, artificial freezing and scaffold bracing. The entire deformation of the reinforced tunnel was recorded during the succeeding tunnelling process. A three dimensional finite-element method (FEM) model was established to simulate the entire process of twin EPBS tunnelling, particularly the reinforcement measures. The computed deformations of the reinforced tunnel were consistent with the measured data. Furthermore, the stress history and pore pressure of the surrounding soil were analysed to investigate the deformation mechanism of the tunnel. Both the measured and computed results indicate that although the face pressure of the succeeding tunnel was smaller than the earth pressure at rest, the preceding tunnel could still experience an inward horizontal convergence and a deflection away from the succeeding tunnel. These distortion modes were caused by the squeezing effect of the horizontal soil arch in front of the succeeding tunnel face. Finally, convergence and deflection indices were proposed to quantify and assess the effectiveness of the reinforcement measures. The trailer bracing, as an “in-tunnel” reinforcement technique, was found to be the most effective method for controlling tunnel convergence. However, artificial freezing as an “out-tunnel” reinforcement technique led to the largest reductions in tunnel deflection. A combination of both “in-tunnel” and “out-tunnel” reinforcements was recommended.  相似文献   

6.
The squeezing potential of rocks around tunnels; Theory and prediction   总被引:7,自引:4,他引:7  
Summary The deformational behaviour of tunnels, which underwent large deformations, socalled squeezing, have been recently receiving great attention in the field of rock mechanics and tunnelling. Contrary to rockbursting phenomenon in which the deformation of the medium takes place instantaneously, the deformation of the surrounding rock in squeezing phenomenon takes place slowly and gradually when the resulting stress state following the excavation exceeds the strength of the surrounding medium. Although there are some proposals for the definition of squeezing rocks and prediction of their squeezing potential and deformations of tunnels in literature, it is difficult to say that they are concise and appropriate.In the first half of this paper, the squeezing phenomenon of rock about tunnels and its mechanism and associated factors are clarified by studying carefully observed failures in-situ and laboratory model tests. Then, an extensive survey of tunnels in squeezing rocks in Japan is presented and the results of this survey are summarised. In the second half of the paper, a new method is proposed to predict the squeezing potential and deformations of tunnels in squeezing rock. Then, the method is applied to actual tunnelling projects, where squeezing problems have been encountered, to check its validity and applicability. As a concrete example, an application of the method to predict the squeezing potential and deformations of the rock along a 300 m long section of an actual tunnel was made.  相似文献   

7.
Geology as a whole is the main influence on determining the feasibility of tunnelling for underground railways, and at what cost. Favourable conditions encouraged the early development of a network, significantly alter the methods used for construction, and are what form the tunnels, in terms of horizontal and vertical alignment. Local geology is shown, by means of two cross-sections following the tunnels, to be more important than the overall regional geology, where the underlying strata exhibit pronounced variations in permeability, and so mechanical properties. Geological complexities specific to the area of tunnelling generate problems during construction, but lead to technological innovation in the long term and a better understanding of local stratigraphy. As the result of this, and the increase in the quality of preliminary surveys, we are increasingly able to tunnel in areas previously considered treacherous.  相似文献   

8.
Summary Large deformations of surrounding media around tunnels are often encountered during excavations in rocks with squeezing characteristics. These deformations may sometimes continue for a long period of time. Predictions of deformations of tunnels in such grounds are urgently needed, not because of stability concerns, but also of their sevicability. In the present study, the squeezing phenomenon of rock around tunnels and its mechanism and associated factors are first clarified by carefully studying failures of tunnels, and a survey of tunnels in squeezing rocks in Japan is presented and its results are summarised. Then, a practical method is proposed to predic the squeezing potential and deformation of tunnels in squeezing rock and this method has beeen applied to actual tunnelling projects, where squeezing problems were encountered, to check its applicability and validity. Finally, an extension of this method to the time-dependent behaviour of squeezing rocks is given and an application of this method to an actual tunnel is presented.  相似文献   

9.
In spite of the increasing diffusion of tunnel boring machines, conventional tunnelling is still preferred for economic reasons in case of short tunnels, unconventional cross sections or irregular tunnel trajectories. In conventional tunnelling, the mechanical response of the tunnel front is a main concern and, when tunnels are excavated in cohesive soils, this is dominated by the time factor, related to geometry, to the mean excavation rate and to the hydro-mechanical properties of the materials involved. This is particularly evident during excavation standstill: front displacements progressively increase with time and, in many cases, the system response under long-term conditions becomes unstable. In conventional tunnelling, a common technique employed to improve the system response (under both short- and long-term conditions) is the installation of fibreglass tubes within the advance core. In this paper, the mechanical response of both unreinforced and reinforced deep tunnel fronts in cohesive soils is experimentally analysed. In particular, the results of a series of 1 g small-scale tests, taking into account both the influence of the excavation rate (the unloading time) on the system response and the evolution with time of the tunnel face displacements, induced by a rapid reduction in the horizontal stress applied on the tunnel face, are reported.  相似文献   

10.
The interaction between twin‐parallel tunnels affects the tunnelling‐induced ground deformation, which may endanger the nearby structures. In this paper, an analytical solution is presented for problems in determining displacements and stresses around deforming twin‐parallel tunnels in an elastic half plane, on the basis of complex variable theory. As an example, a uniform radial displacement was assumed as the boundary condition for each of the two tunnels. Special attention was paid to the effects of tunnel depth and spacing between the two tunnels on the surface movement to gain deep insight into the effect of the interaction between twin‐parallel tunnels using the proposed analytical approach. It is revealed that the influence of twin tunnel interaction on surface movements diminishes with both the increase of the tunnel depth and the spacing between the two tunnels. The presented analytical solution manifests that, similar to most of the existing numerical results, the principle of superposition can be applied to determine ground deformation of twin‐parallel tunnels with a certain large depth and spacing; otherwise, the interaction effect between the two tunnels should be taken into account for predicting reliable ground movement. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
深埋长隧道TBM施工关键问题探讨   总被引:2,自引:0,他引:2  
周建军  杨振兴 《岩土力学》2014,35(Z2):299-305
针对深埋长隧道开挖所面临的高水压、高地压、高地温、大变形、难支护等问题,分析总结传统钻爆法开挖与支护技术、全断面隧道掘进机(TBM)施工技术、TBM导洞扩挖技术应用中的优劣,TBM导洞扩挖法为深埋长隧道开挖提供了新的设计思路。由于深埋长隧道的建设环境与浅埋隧道建设环境存在显著差异,TBM施工将面临3个关键问题--岩爆问题、卡盾(大变形)问题和未准确探测前方地质而发生的施工事故(涌水、突泥等)。为揭示TBM施工过程中卡盾的存在性,分别针对某一特定地质条件下深埋软、硬岩TBM施工进行理论分析和数值模拟研究。结果表明,软岩地层TBM施工发生卡盾,而硬岩完整地层TBM施工未发生卡盾。  相似文献   

12.
安楚公路的2 ̄#、3 ̄大断面隧道均在断层破碎带中掘进,给施工带来了困难,为了确保工程的顺利进行,采用了微振弱爆破、正面短台阶、先拱后墙法的掘进技术;长管棚预注浆结合格栅拱钢支撑、喷-锚-网-喷的支护技术及围岩量测技术。  相似文献   

13.
The roadway tunnel is considered a good solution for the success of modern roadway networks. It can help to overcome possible traffic congestion and considerably reduce journey time. The continuous growth of traffic volumes leads to increase congestion and decrease safety. This leads to the need for extra tunnel space. The extra tunnel space can be achieved either by the widening of the existing tunnel or by adding a new one. The choice of the suitable method is dependent on many factors like tunnels alignment, site conditions, construction method, tunnel operation, risk assessment…etc. The current research investigates the second alternative through a specific case study as an example. The method comprises adding two new tunnels to an existing twin roadway tunnels. The investigated problem considers the new tunnels to be added vertically or horizontally. The influence of the new tunnel construction on the existing tunnels is investigated considering both the variation of relative position and spacing distance in a parametric study context. Several numerical models are employed to check the construction sequence and the tunnelling safety. These models are used to evaluate the induced stresses in surrounding ground for two different soil types, straining actions in tunnels’ liner and deformations of both ground and liner. The result demonstration shows how to find out the minimum practical and safe spacing distance between the driven new tunnels and the existing ones without the need for the relatively expensive soil strengthening techniques.  相似文献   

14.
One of the most challenging aspects of tunnelling is prognostication of water inflows. More reliable prediction of groundwater inflow may give considerable economical saving for future tunnel projects and may also prevent damage of environment and installations on the surface. This paper is discussing the significance of eight hypotheses regarding geological parameters for predicting water inflow in tunnels. The respective hypotheses have been tested as part of a recent research project in Norway. Six Norwegian tunnels with different geological conditions were selected for the research; the Romeriksporten, Frøya, T-baneringen, Lunner, Skaugum, and Storsand tunnels. Based on detailed study of these tunnels, the hypotheses are tested by comparing water inflow with geological parameters and factors such as Q value, faulting, rock stress orientation, rock cover, thickness of permeable soil or depth of lake/sea above the tunnel, rock type, and width of weakness zones. It is found that four out of the eight tested hypotheses are supported, two have low to medium support and two are not supported. One unexpected result is that for the tunnels covered by this study, the water inflow was found to increase with rock cover.  相似文献   

15.
Applications of numerical modelling in underground mining and construction   总被引:2,自引:0,他引:2  
Numerical modelling has been used to investigate a variety of problems in underground mining and tunnelling: subsidence induced by longwall coal mining; stresses generated when an open stope is filled cemented backfill and the stability of exposures created during subsequent mining of adjacent stopes; the interaction of two tunnels; and the effects of under-mining a pre-existing tunnel and shaft. In each case, results from nonlinear stress analyses can be used to guide the design of excavations and rock support mechanisms.  相似文献   

16.
17.
Stability of the excavation face in shallow tunnels excavated in poor rock is at present a relevant problem in tunnelling. Even though face reinforcement with fibreglass dowels has proved to be efficient, there is still no reliable routine design method available. A new calculation procedure is illustrated in this paper for the analysis of face reinforcement with fibreglass dowels in shallow tunnels. The procedure is based on the limit equilibrium method applied to the rock core ahead of the face, and it offers a detailed evaluation of the interaction between each reinforcement element and the surrounding rock. The main calculation result concerns the safety factor of the excavation face with dowel reinforcement. On the basis of this safety factor, it is possible to identify the appropriate dowel lengths and the number of dowels. The procedure has been applied to two real cases, and satisfactory results have been obtained.  相似文献   

18.
Foliated rocks such as micaceous schists are particularly prone to anisotropic creep. This fact may cause severe problems of squeezing when driving deep tunnels, especially when the tunnel axis is not perpendicular to the foliation planes. A rational approach to the prediction and assessment of squeezing as a process in time and, therefore, also pertinent experimental results are still missing. Starting from a simple approach to anisotropic creep/relaxation we show its implications for tunnelling by means of numerical simulations. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

19.
《Computers and Geotechnics》2006,33(4-5):234-247
For shield-driven tunnels, the influence of the soil and grout material properties and of the cover depth on the surface settlements, the loading and deformation of the tunnel lining and the steering of the TBM is investigated numerically. To this end, comparative numerical simulations of a mechanised tunnel advance in homogeneous, overconsolidated, soft, cohesive soil below the ground water table are performed and sensitivities are evaluated. The advancement of the step-by-step tunnel construction process is modelled using a three-dimensional finite element model, which takes into account all relevant components of shield tunnelling. The material behaviour of the saturated soil and the tail void grout is modelled by a two-field finite element formulation in conjunction with an elasto-plastic Cam-Clay model for the soil and a hydration-dependent constitutive model for the grout. The analyses provide valuable information with regard to the significance of the investigated parameters and demonstrate the complexity of the various interactions in shield tunnelling.  相似文献   

20.
Water inflows are a major challenge in tunnelling and particularly difficult to predict in geological settings consisting of heterogeneous sedimentary rock formations with complex tectonic structure. For a high-speed railway line between Bologna and Florence (Italy), a series of seven railway tunnels was drilled through turbiditic formations, ranging from pelitic rocks with thin arenitic layers over sequences including thick-bedded sandstone to calcareous rocks showing chemical dissolution phenomena (karstification). The tunnels were built as draining tunnels and caused significant impacts, such as drying of springs and base-flow losses at mountain streams. A comprehensive hydrological monitoring programme and four multi-tracer test were done, focusing on four sections of the tunnel system. The tracer tests delivered unprecedented data on groundwater flow and transport in turbiditic aquifers and made it possible to better characterize the differential impacts of tunnel drainage along a geological gradient. The impact radius is 200 m in the thin-bedded sequences but reaches 2.3–4.0 km in calcareous and thick-bedded arenitic turbidites. Linear flow velocities, as determined from the peaks of the tracer breakthrough curves, range from 3.6 m/day in the thin-bedded turbidites to 39 m/day in the calcareous rocks (average values from the four test sites). At several places, discrete fault zones were identified as main hydraulic pathways between impacted streams and draining tunnels. This case shows that ignoring the hydrogeological conditions in construction projects can cause terrible damage, and the study presents an approach to better predict hydraulic impacts of draining tunnels in complex sedimentary rock settings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号