首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Short-term earthquake prediction requires sensitive instruments for measuring the small anomalous changes in stress and strain that precede earthquakes. Instruments installed at or near the surface have proven too noisy for measuring anomalies of the size expected to occur, and it is now recognized that even to have the possibility of a reliable earthquake-prediction system will require instruments installed in drill holes at depths sufficient to reduce the background noise to a level below that of the expected premonitory signals. We are conducting experiments to determine the maximum signal-to-noise improvement that can be obtained in drill holes. In a 592 m well in the Mojave Desert near Hi Vista, California, we measured water-level changes with amplitudes greater than 10 cm, induced by earth tides. By removing the effects of barometric pressure and the stress related to earth tides, we have achieved a sensitivity to volumetric strain rates of 10–9 to 10–10 per day. Further improvement may be possible, and it appears that a successful earthquake-prediction capability may be achieved with an array of instruments installed in drill holes at depths of about 1 km, assuming that the premonitory strain signals are, in fact, present.  相似文献   

2.
The results of the rock magnetic and paleomagnetic studies for the Quaternary loess-sol deposits of Ukraine are reported. The magnetic properties of the rocks composing the sections in the Pre-Black-Sea Depression (Roksolany) and Volyn Upland (Boyanychi and Korshev) are compared. Based on the highly precise measurements by modern instruments, the primary magnetization component is isolated in the rocks and its polarity is reliably determined in both the loess and soil horizons. The position of the Matuyama–Brunhes boundary in the Roksolany section is determined at a depth of 46.6 m at the contact of the Lubenskii and Martonoshskii soil horizons. This is consistent with the present-day notions of the group of Ukrainian scientists about the Quaternary stratigraphy of the south of Ukraine and inconsistent with the previous results that placed this boundary at a depth of 34 m in loesses above the PK7 level.  相似文献   

3.
Boa Vista, the easternmost island in the Cape Verde archipelago, consists of volcanic products, minor intrusions and a thin partial sedimentary cover. The first 15 age results from 40Ar/39Ar incremental heating analysis of groundmass separates from volcanic and plutonic rocks from Boa Vista are presented. The combination of age results and field observations demonstrates that the volcanic activity that formed the island occurred in three main stages: (1) > 16 Ma, (2) 15–12.5 Ma and (3) 9.5–4.5 Ma. The first stage, restricted to the north eastern part of the island, is dominated by ankaramitic lavas. The second stage, consisting of evolved lavas of phonolitic–trachytic compositions and nepheline syenites, makes up large central parts of the island. The large volume of evolved rocks and the extended eruption period of several Ma make stage 2 in Boa Vista unique to Cape Verde. Mainly basanites and nephelinites were erupted during the third stage, initially dominated by eruption of subaerial mafic lavas around 9 Ma. Pillow lavas are erupted around 7 Ma whereupon dominantly subaerial mafic lavas were erupted. Stage 3 saw volcanism in many centres distributed mainly along the present coastline and with activity partly overlapping in time. The volcanic evolution of Boa Vista constrains the initiation of volcanic activity in the Cape Verde archipelago to the eastern islands. Major and trace element geochemistry of 160 volcanic and plutonic rocks representing the entire exposed chronological sequence on Boa Vista is presented, revealing an extremely well developed Daly Gap. Only a little was modified from the mafic magmas that rose in small batches from the mantle. Compositional variation distinguishes each volcanic complex and was to a large extent present in the mantle melts. The highly evolved stage 2 phonolites and trachytes are related through the fractional crystallization of three compositionally distinct magmas. Two of these may have been derived by crystal fractionation of primitive Boa Vista melts, whereas the third was not.  相似文献   

4.
IntroductionTheArchaeozoicfelsicrocksarethemaincomponentsoftheuppercrustincratonareas,whichmayalsoexistinthelowercrust(ZHANG,SUN,1999).Thereforethestudyontheircompressionalwavevelocitiesofthiskindofrocksisofimportance.Oneofthecharactersofthistypeofrocksisexistingofquartz.Athightemperatureandpressurethe(phaseofquartztransitsinto(phasecompaniedwithvelocitychange.Consequentlythefeatureoftemperature-velocitycurveoffelsicrocksatacertainpressureisexclusiveforothertypeofrocks.FirstFielitz(1971),…  相似文献   

5.
This proposed model is based on geological, geophysical and geochemical data. Previous models suggested for the lower continental crust consisted of basalt, gabbro, or charnockitic rocks; however, experimental and field petrological data indicate that the bulk of crustal rocks are metamorphic. A lower crust of heterogeneous metamorphic rocks also agrees with seismic reflection results which show numerous reflections from “layering”. Geothermal conditions favor a “dry” charnockitic or gabbroic lower crust rather than an amphibolitic lower crust because heat production data imply that wet amphibolitic rocks would have a higher heat production than their dry metamorphic equivalents. Relatively high velocities from field and laboratory measurements in such low-density rocks as granite, syenite, anorthosite and granulitic rocks in general imply that the composition of the lower crust is more felsic than gabbro. Variation in seismic velocity and depths from crustal refraction studies and numerous seismic reflections all indicate a highly heterogeneous lower crust. The lower crust, which has traditionally been described as gabbroic or mafic, may consist of such diverse rocks as granite gneiss, syenite gneiss, anorthosite, pyroxene granulite, and amphibolite, interlayered on a small scale, deformed, and intruded by granite and gabbro. Interlayering of these rocks explains the presence and character of seismic reflections. Abrupt changes in dip, tight folding, disruption of layers, intrusion, and changes in layer thickness explain the characteristic discontinuity of deep reflections. Igneous intrusions may be floored by metamorphic rocks. The lower crust consists of a complex series of igneous and metamorphic rock of approximate intermediate composition.  相似文献   

6.
The subduction of “hot” Shikoku Basin and the mantle upwelling related to the Japan Sea opening have induced extensive magmatism during the middle Miocene on both the back-arc and island-arc sides of southwest Japan. The Goto Islands are located on the back-arc side of northwestern Kyushu, and middle Miocene granitic rocks and associated volcanic, hypabyssal, and gabbroic rocks are exposed. The igneous rocks at Tannayama on Nakadori-jima in the Goto Islands consist of gabbronorite, granite, granite porphyry, diorite porphyry, andesite, and rhyolite. We performed detailed geological mapping at a 1:10 000 scale, as well as petrographical and geochemical analyses. We also determined the zircon U–Pb age dating of the igneous rocks from Tannayama together with a granitic rock in Yagatamesaki. The zircon U–Pb ages of the Tannayama igneous rocks show the crystallization ages of 14.7 Ma ± 0.3 Ma (gabbronorite), 15.9 Ma ± 0.5 Ma (granite), 15.4 Ma ± 0.9 Ma (granite porphyry), and 15.1 Ma ± 2.1 Ma (rhyolite). Zircons from the Yagatamesaki granitic rock yield 14.5 Ma ± 0.7 Ma. Considering field relationships, new zircon data indicate that the Tannayama granite formed at ~16–15 Ma, and the gabbronorite, granite porphyry, diorite porphyry, andesite, and subsequently rhyolite formed at 15–14 Ma, which overlaps a plutonic activity of the Yagatamesaki. The geochemical characteristics of the Tannayama igneous rocks are similar to those of the tholeiitic basalts and dacites of Hirado, and the granitic rocks of Tsushima in northwestern Kyushu. This suggests that the Tannayama igneous rocks can be correlated petrogenetically with the igneous rocks in those areas, with all of them generated by the upwelling of hot mantle diapirs during crustal thinning in an extensional environment during the middle Miocene.  相似文献   

7.
Geophysical well logging has been applied for fracture characterization in crystalline terrains by physical properties measurements and borehole wall imaging. Some of these methods can be applied to monitor pumping tests to identify fractures contributing to groundwater flow and, with this, determine hydraulic conductivity and transmissivity along the well. We present a procedure to identify fractures contributing to groundwater flow using spontaneous potential measurements generated by electrokinetic processes when the borehole water head is lowered and then monitored while recovering. The electrokinetic model for flow through a tabular gap is used to interpret the measured data and determine the water head difference that drives the flow through the fracture. We present preliminary results at a test site in crystalline rocks on the campus of the University of São Paulo.  相似文献   

8.
Rock pillars of granite form a special type of characteristic topography in granite, but their origin is not well understood, partly because their 3D morphology has never been well characterized. Rock pillars were investigated at Mt. Mizugaki, which is underlain by Neogene granite that intruded into the Cretaceous accretionary complex in central Japan. Three rock pillars and their surrounding areas were investigated in detail using unmanned aerial vehicle (UAV) images and structure from motion (SfM). The rock pillars were up to 70 m high and were shaped by columnar joints, which has hardly been reported before in granitic rocks. Columnar joints in granite are much larger than columnar joints in volcanic rocks. The columnar joints curved vertically, and some of them showed dipyramid shapes. The large size and curved morphology of the columnar joints may be the result of the slow cooling of the granite, compared to that of volcanic rocks. Thus, the columnar joints at Mt. Mizugaki made large, high rock pillars, which are not common in volcanic rocks.  相似文献   

9.
There is an aggregate outcrop of 12,000 square miles of Permian-Triassic acid igneous rocks inland from Cairns and Townsville, North Queensland. The rocks consist of ignimbrite and rhyolite, which are structurally and magmatically related to three high-level intrusions the Herbert River, Esmeralda, and Elizabeth Creek Granites. Most of the igneous rocks intrude the Precambrian Georgetown Inlier, but some of them intrude along a fractured zone on the junction of the Inlier and the shelf zone of the adjacent Palaeozoic Tasman Geosyncline. The Upper Palaeozoic — Triassic igneous period consists of two main epochs, both consisting of granite, ignimbrite, and rhyolite. In both epochs granite intrudes the comagmatic and coeval ignimbrite and rhyolite. Rapid horizontal movement of granitic magma through the epizone and major fracturing of the crust are postulated to explain the widespread intrusion of the granite. The granitic magma was probably initially generated 5 miles below the surface of the crust by partial melting of the sediments at the base of the Tasman Geosyncline. Epeirogenic movement in the Precambrian Inlier area formed sheet-like fractures, which provided channels for rapid horizontal movement of the granitic magma. This magma was emplaced along the fractured marginal zone of the Inlier to form a thick sill-like body of granite — the Herbert River Granite — in the first epoch. Magma for the second epoch was derived from melting of the lower part of the granite of the first epoch. Renewed fracturing of the Inlier area formed cauldron subsidence areas and rift, which were quicly filled with rhyolite and ignimbrite. In these collapsed areas the granitic magma crystallized as the Elizabeth Creek and Esmeralda Granites under an insulating cover of about 1,000 feet of rhyolite and ignimbrite.  相似文献   

10.
Field measurements of seismic P-wave velocities have been carried out by surface to surface refraction measurements for five different rock types. Subweathering velocities are surprisingly high and range from 5.0 km/sec in quartz monzonite to 6.2 km/sec in amphibolite in agreement with the proposal of Nur and Simmons for water-saturated low-porosity rocks. Maximum velocities found are 6.1 km/sec for quartz monzonite, 5.8 km/sec for granite gneiss, 6.4 km/sec for syenite, 6.4 km/sec for anorthosite, and 7.0 km/sec for amphibolite, and maximum depth for these velocities is 1.3 km. We conclude as follows: (1) field measurements correspond well with laboratory measurements but true velocity may be slightly higher than laboratory measurements, (2) shallow velocities are much higher than older laboratory measurements but agree well with recent laboratory measurements on water-saturated samples, (3) velocities much less than 6 km/sec seem unlikely in the crust unless in an area of extreme tectonic activity, (4) velocities of 6.5–6.7 km/sec commonly reported for the lower continental crust probably correspond to rocks less mafic than basalt or gabbro.  相似文献   

11.
The Zargoli granite, which extends in a northeast–southwest direction, intrudes into the Eocene–Oligocene regional metamorphic flysch‐type sediments in the northwest of Zahedan. This pluton, based on modal and geochemical classification, is composed of biotite granite and biotite granodiorite, was contaminated by country rocks during its emplacement, and is slightly changed to more aluminous. The SiO2 content of these rocks range from 62.4 to 66 wt% with an alumina saturation index of Shand [molar Al2O3/(CaO + Na2O + K2O)] ~ 1.1. Most of its chemical variations could be explained by fractionation or heterogeneous distribution of biotite. The features of the rocks resemble those which are typical to post‐collisional granitoids. Chondrite‐normalized rare‐earth element patterns of these rocks are fractionated at (La/Lu)N = 2.25–11.82 with a pronounced negative Eu anomaly (Eu/Eu* = 3.25–5.26). Zircon saturation thermometry provides a good estimation of magma temperatures (767.4–789.3°C) for zircon crystallization. These characteristics together with the moderate Mg# [100Mg/(Mg + Fe)] values (44–55), Fe + Mg + Ti (millications) = 130–175, and Al–(Na + K + 2Ca) (millications) = 5–50 may suggest that these rocks have been derived from the dehydration partial melting of quartz–feldspathic meta‐igneous lower crust.  相似文献   

12.
Statically isolated conditions in the stratum-borehole hydrogeological system under consideration at periods of ≥ 3 h are established on the basis of the investigation of barometric and tidal responses of the water level in a borehole located in the territory of the Mikhnevo Geophysical Observatory, Institute of Geosphere Dynamics, Russian Academy of Sciences. The barometric effectiveness, tidal sensitivity of the water level, elastic parameters, and porosity of water-bearing rocks are estimated. A model of the inertial character of the water exchange in the stratum-borehole system is constructed depending on the period of variations with allowance for the borehole design, as well as the water transmissibility and elastic capacity of the aquifer. The results of modeling are in compliance with the dependence of the amplitude transfer function from variations in the atmospheric pressure to variations in the water level. The results of processing the data of high-precision measurements made it possible to refine the transmissibility of the aquifer obtained from the data of experimental filtration works.  相似文献   

13.
Igneous rocks are fractured during cooling from magma to form cooling joints, which are typically columnar joints in volcanic rocks, while orthogonal joints are considered typical for plutonic rocks. We performed a 3D study of joint systems in a granitic batholith of the Okueyama granite in western Japan, which has its roof and its internal structures from the roof to 1000 m downward exposed. We used an unmanned aerial vehicle (UAV) to observe the joints in outcrops from various angles. Based on our study, we propose a schematic model for joint systems in a granitic pluton. A granitic pluton has zones of rock columns below the roof and next to the wall. The rock column zone below the roof is as thick as 300 m, and its higher portions form steep cliffs, probably because of increased resistance to weathering. The axes of the rock columns are nearly vertical below the roof and gently plunge next to the walls, with high intersection angles with the wall. The distribution of columnar joints near only the roof and walls suggests that the granite cooled more rapidly near the roof and walls than in the core of the pluton. When the granite was jointed by parallel joints during cooling, the rock slabs between the parallel joints near the roof and the walls are subdivided into columns with polygonal cross-sections. This suggests that the granite was fractured by parallel joints at a temperature immediately below the solidus, after which the rock slabs were subdivided into rock columns during further cooling.  相似文献   

14.
The data of borehole geoacoustic and electromagnetic measurements in Kamchatka are compared with the results of laboratory and field experiments on electromagnetic excitation of rocks. A noticeable similarity in the responses of the natural geological medium and rock specimens is observed. The field experiments with controlled electromagnetic sources show that the geophones placed in boreholes are capable of reliably detecting the responses of rocks in situ to electric impacts as low as 0.5 mV/m. The obtained results provide the experimental evidence in favor of the previously proposed hypothesis of modulation of geoacoustic emission in rocks in situ by the ULF atmospheric electromagnetic field.  相似文献   

15.
In order to reconstruct the architectural evolution of a fault zone with heterogeneous structures, we studied the Atera Fault in Central Japan, and described the detailed mesoscopic and microscopic features of the zone. The fault zone studied consists of a 1.2‐m wide fault core of fault breccia mixed with fragments derived from welded tuff, granite, and mafic volcanic rocks. The 1.2‐m wide fault core is bordered by a western damage zone characterized by a welded tuff fault breccia and an eastern damage zone characterized by a granite cataclasite. A secondary fault core, a 30‐cm wide granite‐derived fault gouge, cross‐cuts the granite cataclasite. Although welded tuff fault breccia and granite cataclasite are also pervasively fractured and fragmented, the fault cores are significantly affected by fragment size reduction due to intense abrasive wear and comminution. The 1.2‐m wide fault core includes fragments and a sharp dark layer composed of mafic volcanic rocks, which can be correlated with neighboring 1.6 Ma volcanic rocks. This observation places a younger constraint on the age of the fault core formation. Carbonate coating on basalt fragments in the 1.2‐m wide fault core has also been fractured indicating the repetition of intense fragmentation. Bifurcated, black and gray veins near the 1.2‐m wide fault core are likely injection veins, formed by the rapid injection of fine material within fault zones during seismic events. The granite‐derived fault gouge, characterized by hard granite fragments without intense brecciation and microfracturing, in a kaolinite‐rich clay matrix, is interpreted as the most recent slip zone within the exposed fault zone. A preview of published geological and hydrological studies of several fault zones shows that clay‐rich fault cores can exhibit much lower permeability than the adjacent damage zones represented in this present case by the welded tuff fault breccia and granite cataclasite.  相似文献   

16.
Previous studies have reported that high concentrations of H2 gas are released from active fault zones. Experimental studies suggest that the H2 gas is derived from the reaction of water with free radicals formed when silicate minerals are fractured at hypocenter depths during fault activities. However, the pathways for migration of deep-seated fluids to surface are still unknown. In this study we performed quick, multipoint H2 gas measurements across a fault zone using a portable gas monitor and a hand drill. The fault zone studied includes a smectite-rich fault core dividing two clearly distinguishable damage zones: granite cataclasite and welded tuff fault breccia. The measurements show that H2 gas emissions collected in 2–3 h sampling periods from start of measurement range from 320.3 to 446.2 ppm/min in the granite cataclasite and 60.5 to 137.8 ppm/min in the welded tuff fault breccias. Negligible quantities of H2 gas could be collected from the fault core. Particle size distribution analyses of fault rocks indicate that the granite cataclasite tends to be rich in particles that are finer, i.e., less cohesive and easy to disaggregate, which leads to the inference that the granite cataclasite has high permeability. Based on the H2 gas measurements and the particle size distribution analyses, the H2 gas is considered to have migrated in permeable damage zones mostly by advection with groundwater. Multipoint H2 gas measurement will be effective in qualitative delineation of variations in permeability of regional structures.  相似文献   

17.
Estimating thermal conductivity from core and well log data   总被引:1,自引:1,他引:0  
The aim of the presented work was to introduce a method of estimating thermal conductivity using well log data. Many petrophysical properties of rocks can be determined both by laboratory measurements and well-logs. It is thus possible to apply geophysical data to empirical models based on relationships between laboratory measured parameters and derive continuous thermal conductivity values in well profiles. Laboratory measurements were conducted on 62 core samples of Meso-Paleozoic rocks from the Carpathian Foredeep. Mathematical models were derived using multiple regression and neural network methods. Geophysical data from a set of seven well logs: density, sonic, neutron, gamma ray, spectral gamma ray, caliper and resistivity were applied to the obtained models. Continuous thermal conductivity values were derived in three well profiles. Analysis of the obtained results shows good consistence between laboratory data and values predicted from well log data.  相似文献   

18.
应用超声波反射-透射法,在最高压力为1.0 GPa(室温),最高温度为700℃(1.0 GPa)的条件下对新疆东准噶尔地区的卡拉麦里花岗岩带和野马泉岩体的典型花岗岩类岩石(碱长花岗岩、碱性花岗岩、花岗闪长岩、二长花岗岩和石英闪长岩)的纵波速度(VP)和横波速度(VS)进行了测量.结果显示,在常温、压力0.4~1.0 GPa条件下,东准噶尔地区花岗岩类岩石的VP和VS均随压力呈线性增加,说明在这个压力段岩石中的微裂隙已基本闭合.室温、1.0 GPa时花岗岩类岩石的VP是5.79~6.84 km·s-1,VS是3.26~3.85 km·s-1.依据压力与VP及压力与VS的线性关系,拟合得到常温常压下花岗岩类岩石的纵波和横波压力系数分别是0.1568~0.4078 km/(s·GPa)和0.0722~0.3271 km/(s·GPa),VP0和VS0分别是5.62~6.47 km·s-1和3.15~3.75 km·s-1.恒压1.0 GPa、室温到700℃条件下,花岗岩类岩石的VP和VS均随温度的升高呈线性降低,温度系数分别为(-3.41~-4.96)×10-4 km/(s·℃)和(-0.88~-3.22)×10-4 km/(s·℃).利用实验获得的花岗岩类岩石的VP0、VS0及温度系数和压力系数,结合东准噶尔地区的地热资料,建立了VP和VS随深度变化的剖面.将获得的VP和VS-深度剖面与该区地球物理探测结果对比,发现东准噶尔地区的碱长花岗岩、碱性花岗岩、二长花岗岩和部分花岗闪长岩的VP和VS与该区上地壳速度吻合很好,同时这几种岩石的平均泊松比也与上地壳泊松比一致,因此我们认为这几种类型的岩石是该区上地壳的重要组成部分.另外,石英闪长岩的VP和VS均符合中地壳的速度,可能为中地壳中的一种岩石.  相似文献   

19.
The new process of automatic determination of seismic velocities by well to well measurements (Bois et al., 1971, Geophysical Prospecting 19, 42-73) gives the possibility to increase the knowledge of oil reservoirs, by detecting large inhomogeneities between wells. It can also give useful informations on the mechanical properties of rocks in mining exploitation and civil engineering, by gallery to gallery measurements. An application of the method is given to the search for the proper location of an underground hydroelectric power plant, where the problem was to investigate the rock properties in a horizontal plane between two exploration galleries.  相似文献   

20.
内蒙古锡林浩特I型花岗岩的时代及构造意义   总被引:1,自引:0,他引:1  
在内蒙古锡林浩特水库地区出露的花岗岩确定为I型花岗岩,具有较高的Cr、Co、Ni丰度。Ca、Al含量和N2O/K2O比值较高,Fe、Mg含量较低。微量元素蛛网图中显示出明显的Nb、Ta、P、Ti负异常。在SiO2-K2O及AFM图中,花岗质岩石投在钙碱性系列区;在构造环境判别图中,花岗质岩石样品都投在火山弧+同碰撞花岗岩区。锆石测年结果显示平均年龄为317.0±4.0Ma,属晚石炭世。这套晚石炭世岛弧花岗岩的存在,表明加里东期古亚洲洋并未完全关闭,晚石炭世时仍然存在洋壳的俯冲消减事件。从区域上看,是北侧的贺根山洋盆向南俯冲的结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号