首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous studies have reported that high concentrations of H2 gas are released from active fault zones. Experimental studies suggest that the H2 gas is derived from the reaction of water with free radicals formed when silicate minerals are fractured at hypocenter depths during fault activities. However, the pathways for migration of deep-seated fluids to surface are still unknown. In this study we performed quick, multipoint H2 gas measurements across a fault zone using a portable gas monitor and a hand drill. The fault zone studied includes a smectite-rich fault core dividing two clearly distinguishable damage zones: granite cataclasite and welded tuff fault breccia. The measurements show that H2 gas emissions collected in 2–3 h sampling periods from start of measurement range from 320.3 to 446.2 ppm/min in the granite cataclasite and 60.5 to 137.8 ppm/min in the welded tuff fault breccias. Negligible quantities of H2 gas could be collected from the fault core. Particle size distribution analyses of fault rocks indicate that the granite cataclasite tends to be rich in particles that are finer, i.e., less cohesive and easy to disaggregate, which leads to the inference that the granite cataclasite has high permeability. Based on the H2 gas measurements and the particle size distribution analyses, the H2 gas is considered to have migrated in permeable damage zones mostly by advection with groundwater. Multipoint H2 gas measurement will be effective in qualitative delineation of variations in permeability of regional structures.  相似文献   

2.
Abstract The internal structures of the Nojima Fault, south-west Japan, are examined from mesoscopic observations of continuous core samples from the Hirabayashi Geological Survey of Japan (GSJ) drilling. The drilling penetrated the central part of the Nojima Fault, which ruptured during the 1995 Kobe earthquake (Hyogo-ken Nanbu earthquake) ( M 7.2). It intersected a 0.3 m-thick layer of fault gouge, which is presumed to constitute the fault core (defined as a narrow zone of extremely concentrated deformation) of the Nojima Fault Zone. The rocks obtained from the Hirabayashi GSJ drilling were divided into five types based on the intensities of deformation and alteration: host rock, weakly deformed and altered granodiorite, fault breccia, cataclasite, and fault gouge. Weakly deformed and altered granodiorite is distributed widely in the fault zone. Fault breccia appears mostly just above the fault core. Cataclasite is distributed mainly in a narrow (≈1 m wide) zone in between the fault core and a smaller gouge zone encountered lower down from the drilling. Fault gouge in the fault core is divided into three types based on their color and textures. From their cross-cutting relationships and vein development, the lowest fault gouge in the fault core is judged to be newer than the other two. The fault zone characterized by the deformation and alteration is assumed to be deeper than 426.2 m and its net thickness is > 46.5 m. The fault rocks in the hanging wall (above the fault core) are deformed and altered more intensely than those in the footwall (below the fault core). Furthermore, the intensities of deformation and alteration increase progressively towards the fault core in the hanging wall, but not in the footwall. The difference in the fault rock distribution between the hanging wall and the footwall might be related to the offset of the Nojima Fault and/or the asymmetrical ground motion during earthquakes.  相似文献   

3.
Abstract Characteristics of deformation and alteration of the 1140 m deep fracture zone of the Nojima Fault are described based on mesoscopic (to the naked eye) and microscopic (by both optical and scanning electron microscopes) observations of the Hirabayashi National Research Institute for Earth Science and Disaster Prevention (NIED) drill core. Three types of fault rocks; that is, fault breccia, fault gouge and cataclasite, appear in the central part of the fault zone and two types of weakly deformed and/or altered rocks; that is, weakly deformed and altered granodiorite and altered granodiorite, are located in the outside of the central part of the fault zone (damaged zone). Cataclasite appears occasionally in the damaged zone. Six distinct, thin foliated fault gouge zones, which dip to the south-east, appear clearly in the very central part of the fracture zone. Slickenlines plunging to the north-east are observed on the surface of the newest gouge. Based on the observations of XZ thin sections, these slickenlines and the newest gouge have the same kinematics as the 1995 Hyogo-ken Nanbu earthquake (Kobe earthquake), which was dextral-reverse slip. Scanning electron microscopy observations of the freeze-dried fault gouge show that a large amount of void space is maintained locally, which might play an important role as a path for fluid migration and the existence of either heterogeneity of pore fluid pressure or strain localization.  相似文献   

4.
Abstract This paper describes the results of petrographical and meso- to microstructural observations of brittle fault rocks in cores obtained by drilling through the Nojima Fault at a drilling depth of 389.52 m. The zonation of deformation and alteration in the central zone of the fault is clearly seen in cores of granite from the hanging wall, in the following order: (i) host rock, which is characterized by some intragranular microcracks and in situ alteration of mafic minerals and feldspars; (ii) weakly deformed and altered rocks, which are characterized by transgranular cracks and the dissolution of mafic minerals, and by the precipitation of zeolites and iron hydroxide materials; (iii) random fabric fault breccia, which is characterized by fragmentation, by anastomosing networks of transgranular cracks, and by the precipitation of zeolites and iron hydroxide materials; and (iv) fault gouge, which is characterized by the precipitation of smectite and localized cataclastic flow. This zonation implies that the fault has been weakened gradually by fluid-related fracturing over time. In the footwall, a gouge layer measuring only 15 mm thick is present just below the surface of the Nojima Fault. These observations are the basis for a model of fluid behavior along the Nojima Fault. The model invokes the percolation of meteoric fluids through cracks in the hanging wall fault zone during interseismic periods, resulting in chemical reactions in the fault gouge layer to form smectite. The low permeability clay-rich gouge layer sealed the footwall. The fault gouge was brecciated during coseismic or postseismic periods, breaking the seal and allowing fluids to readily flow into the footwall, thus causing a slight alteration. Chemical reactions between fluids and the fault breccia and gouge generated new fault gouge, which resealed the footwall, resulting in a low fluid condition in the footwall during interseismic periods.  相似文献   

5.
岩石磁化率特征可以帮助判断岩石的形成环境,对地震过程中滑动摩擦伴随高温的物理-化学变化具有显著反应.本研究以钻穿龙门山中段构造带的汶川地震断裂科学钻探2号孔(WFSD-2)岩心为研究对象,使用Bartington MS2K磁化率仪对500~2283.56 m深度的岩心进行高分辨率无损磁化率测试,并结合岩性特征和显微结构探讨了龙门山构造带主要岩石单元的磁化率特征及其地震断裂活动的磁学响应.磁化率测试结果表明,由花岗岩和火山碎屑岩组成的彭灌杂岩体的磁化率值(数十到数千个10~(-6)SI)普遍高于上三叠统须家河组沉积岩的磁化率值(数个到数十个10~(-6)SI).从WFSD-2岩性分布来看,彭灌杂岩上下出露四段,其磁化率值特征反映它们属于不同的岩石单元,它们与下伏须家河组地层呈断层接触,构成叠瓦状构造,指示了龙门山构造带具有强烈的地壳缩短作用.断裂带中处于滑动带的断层泥和假玄武玻璃具有高磁化率特征,而断层角砾岩和碎裂岩不具有高磁化率值特征,表明断层岩磁化率增高的原因可能主要与地震断裂滑动摩擦过程中高温作用下发生的磁性矿物转换有关,断层岩中高磁化率异常可作为大地震活动的证据.WFSD-2岩心中的映秀—北川断裂带(600~960 m)可识别出约80条高磁化率异常的断层岩带,揭示映秀—北川断裂带是一条长期活动的断裂带,龙门山构造带形成演化过程中伴随着大地震活动.  相似文献   

6.
This paper reports internal structures of a bedding-parallel fault in Permian limestone at Xiaojiaqiao outcrop that was moved by about 0.5 m during the 2008 MW7.9 Wenchuan earthquake. The fault is located about 3 km to the south from the middle part of Yingxiu-Beichuan fault, a major fault in the Longmenshan fault system that was moved during the earthquake. The outcrop is also located at Anxian transfer zone between the northern and central segments of Yingxiu-Beichuan fault where fault system is complex. Thus the fault is an example of subsidiary faults activated by Wenchuan earthquake. The fault has a strike of 243° or N63°E and a dip of 38°NW and is nearly optimally oriented for thrust motion, in contrast to high-angle coseismic faults at most places. Surface outcrop and two shallow drilling studies reveal that the fault zone is several centimeters wide at most and that the coseismic slip zone during Wenchuan earthquake is about 1 mm thick. Fault zone contains foliated cataclasite, fault breccia, black gouge and yellowish gouge. Many clasts of foliated cataclasite and black gouge contained in fault breccia indicate multiple slip events along this fault. But fossils on both sides of fault do not indicate clear age difference and overall displacement along this fault should not be large. We also report results from high-velocity friction experiments conducted on yellowish gouge from the fault zone using a rotary shear low to high-velocity frictional testing apparatus. Dry experiments at normal stresses of 0.4 to 1.8 MPa and at slip rates of 0.08 to 1.35 m/s reveal dramatic slip weakening from the peak friction coefficient of around 0.6 to very low steady-state friction coefficient of 0.1-0.2. Slip weakening parameters of this carbonate fault zone are similar to those of clayey fault gouge from Yingxiu-Beichuan fault at Hongkou outcrop and from Pingxi fault zone. Our experimental result will provide a condition for triggering movement of subsidiary faults or off-fault damage during a large earthquake.  相似文献   

7.
The Superior volcanic field occupies approximately 8,000 square kilometers of central Arizona in the zone between the southern Basin and Range Province and the Colorado Plateaus Province. The primary structural elements of an eruptive center in the western part of this field are: 1) volcanic plateau, 2) ring fracture zone, and 3) resurgent caldera core. A northwest trending graben controls the location of three small subsided blocks, the Willow Springs cauldron (2 km diameter), the Black Mesa cauldron (4 km diameter), and the Florence Junction cauldron (8 km diameter), which were centers for rhyolite ash and lava eruption. These late features are superimposed on a much larger volcano-tectonic structure, the Superstition resurgent cauldron which subsided at an earlier stage following the extrusion of quartz latite welded tuff. The history of the volcanic center is as follows: An early ring of dacite domes of up to 900 meters in relief formed a semi-circular are 7 km in diameter on the western margin of the caldera. The last phases of dome building were contemporaneous with the extrusion of a vast quartz latite welded tuff (22.6 m.y.). The plateau formed by the welded tuff collapsed to a maximum depth of 800 meters along a northwest trending graben which is the locus of three small cauldrons. These late cauldrons were the source of rhyolitic magma which produced non-welded ash flows, lava (21 m.y.), and a thick sequence of epiclastic breccias. The rhyolitic volcanism was followed by intrusion of domes and extrusion of glassy lavas (20 m.y.) of quartz latite composition in a 270° are 16 km in diameter concentric to the arc of older dacite domes. Following deposition of the epiclastic breccia and intrusion of the ring fracture dikes was the extrusion of mafic lava (18 m.y.) into low places in the graben. The mafic lava composition ranges from basalt to basanite.  相似文献   

8.
郯庐断裂带最新活动的断层分布于潍坊至嘉山一带, 而安丘—莒县断裂是郯庐断裂带的重要活动断裂之一。 基于地质考察、 高密度电法探测和钻孔联合剖面, 对安丘—莒县断裂小店—大店段断层活动证据及断层泥分布特征进行研究。 地质考察发现紫红色砂砾岩逆冲到全新世耕植土上方, 两者之间发育断层泥带, 断层泥内含少量角砾岩, 为全新世活动逆断层。 高密度电法探测结果表明断层通过位置电阻率差异明显。 钻孔联合剖面揭露的地层: 全新世耕植土、 全风化砂质泥岩、 强风化砂质泥岩、 碎裂岩、 断层泥带及中风化砂质泥岩。 钻孔K1和K2揭露深灰色断层泥带, 倾向西, 倾角约为74°, 厚度约为13.9 m, 与南侧出露的断层泥带产状相协调。 工作区范围内, 发育多处褶皱、 破碎带和断层泥带, 断层表现为全新世逆断层性质。  相似文献   

9.
断裂带物质组成、结构及其物理性质是理解断裂变形机制和地震破裂过程的基础和关键,断裂带地震(黏滑)和非地震(蠕滑)滑移行为不仅对了解地震活动性和山脉隆升过程具有重要意义,而且直接为防震减灾提供科学依据.我们以穿过龙门山映秀—北川和灌县—安县断裂带的汶川地震断裂带科学钻探(WFSD)岩心和地表出露的断裂带为研究对象,通过对断裂岩组成、结构、显微构造和钻孔物性测井数据进行分析研究,确定了龙门山逆冲断裂带滑移行为和物性特征,初步探讨了大地震活动性和有关断裂带的隆升作用:(1)映秀—北川断裂带倾向NW,浅部倾角~65°,发育的断裂岩厚约180~280 m,由碎裂岩、假玄武玻璃(地震化石)、断层泥和断层角砾岩组成.断裂带具有高自然伽马、高磁化率值、低电阻率、低波速等物理性质以及对称型破碎结构.断层泥普遍具有摩擦热效应的高磁化率值和石墨化作用特征,是古地震滑动的岩石记录.表明映秀—北川断裂带为经常发生大地震的断裂带,晚新生代以来类似汶川地震的大地震复发周期小于6000—10000年,具有千年复发周期特征.(2)灌县—安县断裂带倾向NW,浅部倾角~38°,发育的断裂岩厚约40~50 m,仅由断层泥和断层角砾岩组成,具有典型的"压溶"结构,表现出蠕滑性质.除压溶作用外,定向富集的层状黏土矿物和微孔隙的发育使断层强度变弱.断裂带具上盘破碎的非对称型破碎结构,除具低磁化率值特征外,其他物性与映秀—北川断裂带一致.(3)根据断裂岩厚度与断层滑移量相关经验公式关系,以及断层产状,粗略估算映秀—北川断裂带自中生代以来累积垂直位移量大于9 km,灌县—安县断裂带累积垂直位移量小于3 km.映秀—北川断裂带长期大地震产生的累积垂直位移量是龙门山隆升的主要贡献.  相似文献   

10.
The loci and abundance of U and Th were examined in tuffaceous rocks encompassing hydrothermal systems at the Long Valley caldera, California and the Valles caldera, New Mexico. Aspects of these systems may be analogous to conditions expected in a potential site for a high-level waste repository in welded tuff. Examination of radioelements in core from scientific drill holes at these sites was accomplished by gamma-ray spectrometry and fission-track radiography. In the lateral-flowing hydrothermal system at the Long Valley caldera, where temperatures range from 140 to 200 °C, U is concentrated to 20 ppm in Fe-rich zones of varved tuff and to 50 ppm with Fe-rich mineral phases in tuff fragments of a calcite-cemented breccia. U-series disequilibrium in some of these samples suggests mobilization/deposition of parent U and/or its daughters. In the vapor zone of the Valles caldera's hydrothermal system (temperature ˜ 100 °C), the concordance of high U, low Th/U and decreasing whole-rock O-isotope ratios suggests that U was concentrated in response to hydrothermal circulation when the system was formerly liquid-dominated. In the underlying present-day liquid-dominated zone (temperature to 210 °C), U, up to several tens of parts per million, occurs with pyrite and Fe-oxide minerals, and in concentrations to several percents with a Ti-Nb-Y-rare earth mineral. In the Valles system's outflow zone, U is also concentrated in Fe-rich zones as well as in carbonaceous-rich zones in the Paleozoic sedimentary rocks that underlie the Quaternary tuff. Th, associated with accessory minerals, predominates in breccia zones and in a mineralized fault zone near the base of the Paleozoic sedimentary sequence. Relatively high concentrations of U occur in springs representative of water recharging the Valles caldera's hydrothermal system. In contrast, considerably lower U concentrations occur in hot waters (> 220 °C) and in the system's outflow plume, suggesting that U is concentrating in the hotter part of the system. The Long Valley and Valles observations indicate that U and Ra are locally mobile under hydrothermal conditions, and that reducing conditions associated with Fe-rich minerals and carbonaceous material are important factors in the adsorption of U, and thus can retard its transport in water at elevated temperature.  相似文献   

11.
This paper reports the internal structures of the Beichuan fault zone of Longmenshan fault system that caused the 2008 Wenchuan earthquake, at an outcrop in Hongkou, Sichuan province, China. Present work is a part of comprehensive project of Institute of Geology, China Earthquake Administration, trying to understand deformation processes in Longmenshan fault zones and eventually to reproduce Wenchuan earthquake by modeling based on measured mechanical and transport properties. Outcrop studies could be integrated with those performed on samples recovered from fault zone drilling, during the Wenchuan Earthquake Fault Scientific Drilling (WFSD) Project, to understand along-fault and depth variation of fault zone properties. The hanging wall side of the fault zone consists of weakly-foliated, clayey fault gouge of about 1 m in width and of several fault breccia zones of 30–40 m in total width. We could not find any pseudotachylite at this outcrop. Displacement during the Wenchuan earthquake is highly localized within the fault gouge layer along narrower slipping-zones of about 10 to 20 mm in width. This is an important constraint for analyzing thermal pressurization, an important dynamic weakening mechanism of faults. Overlapping patterns of striations on slickenside surface suggest that seismic slip at a given time occurred in even narrower zone of a few to several millimeters, so that localization of deformation must have occurred within a slipping zone during coseismic fault motion. Fault breccia zones are bounded by thin black gouge layers containing amorphous carbon. Fault gouge contains illite and chlorite minerals, but not smectite. Clayey fault gouge next to coseismic slipping zone also contains amorphous carbon and small amounts of graphite. The structural observations and mineralogical data obtained from outcrop exposures of the fault zone of the Wenchuan earthquake can be compared with those obtained from the WFSD-1 and WFSD-2 boreholes, which have been drilled very close to the Hongkou outcrop. The presence of carbon and graphite, observed next to the slipping-zone, may affect the mechanical properties of the fault and also provide useful information about coseismic chemical changes.  相似文献   

12.
Abstract Mineralogical and geochemical studies on the fault rocks from the Nojima–Hirabayashi borehole, south-west Japan, are performed to clarify the alteration and mass transfer in the Nojima Fault Zone at shallow depths. A complete sequence from the hornblende–biotite granodiorite protolith to the fault core can be observed without serious disorganization by surface weathering. The parts deeper than 426.2 m are in the fault zone where rocks have suffered fault-related deformation and alteration. Characteristic alteration minerals in the fault zone are smectite, zeolites (laumontite, stilbite), and carbonate minerals (calcite and siderite). It is inferred that laumontite veins formed at temperatures higher than approximately 100°C during the fault activity. A reverse component in the movement of the Nojima Fault influences the distribution of zeolites. Zeolite is the main sealing mineral in relatively deep parts, whereas carbonate is the main sealing mineral at shallower depths. Several shear zones are recognized in the fault zone. Intense alteration is localized in the gouge zones. Rock chemistry changes in a different manner between different shear zones in the fault zone. The main shear zone (MSZ), which corresponds to the core of the Nojima Fault, shows increased concentration of most elements except Si, Al, Na, and K. However, a lower shear zone (LSZ-2), which is characterized by intense alteration rather than cataclastic deformation, shows a decreased concentration of most elements including Ti and Zr. A simple volume change analysis based on Ti and Zr immobility, commonly used to examine the changes in fault rock chemistry, cannot account fully for the different behaviors of Ti and Zr among the two gouge zones.  相似文献   

13.
通过对北京密云北石城断裂带的野外和室内工作,该断裂带的断层岩可分为四种类型:碎裂岩类、糜棱岩类、假熔岩和断层泥。它们具有不同的矿物学、形变和组构特征,分别代表不同的成因机制。假熔岩和碎裂岩类断层岩的存在,可作为古地震事件的可能证据。前者是地震断层运动在断层面上摩擦增温,引起围岩中矿物的选择性熔化形成的。在该断裂带中可能发生不止一次的古地震事件。断层岩特征和产状表明,该断裂带经历了两种不同力学性质的运动,早期为韧性剪切;晚期为脆性破裂,并伴有地震发生  相似文献   

14.
We analyze the structure of the Archaean Pretorius fault in TauTona mine, South Africa, as well as the rupture-zone that recently reactivated it. The analysis is part of the Natural Earthquake Laboratory in South African Mines (NELSAM) project that utilizes the access to 3.6 km depth provided by the mining operations. The Pretorius fault is a ~10 km long, oblique-strike-slip fault with displacement of up to 200 m that crosscuts fine to very coarse grain quartzitic rocks in TauTona mine. We identify here three structural zones within the fault-zone: (1) an outer damage zone, ~100 m wide, of brittle deformation manifested by multiple, widely spaced fractures and faults with slip up to 3 m; (2) an inner damage zone, 25–30 m wide, with high density of anastomosing conjugate sets of fault segments and fractures, many of which carry cataclasite zones; and (3) a dominant segment, with a cataclasite zone up to 50 cm thick that accommodated most of the Archaean slip of the Pretorius fault, and is regarded as the ‘principal slip zone’ (PSZ). This fault-zone structure indicates that during its Archaean activity, the Pretorius fault entered the mature fault stage in which many slip events were localized along a single, PSZ. The mining operations continuously induce earthquakes, including the 2004, M2.2 event that rejuvenated the Pretorius fault in the NELSAM project area. Our analysis of the M2.2 rupture-zone shows that (1) slip occurred exclusively along four, pre-existing large, quasi-planer segments of the ancient fault-zone; (2) the slipping segments contain brittle cataclasite zones up to 0.5 m thick; (3) these segments are not parallel to each other; (4) gouge zones, 1-5 mm thick, composed of white ‘rock-flour’ formed almost exclusively along the cataclasite-host rock contacts of the slipping segments; (5) locally, new, fresh fractures branched from the slipping segments and propagated in mixed shear-tensile mode; (6) the maximum observed shear displacement is 25 mm in oblique-normal slip. The mechanical analysis of this rupture-zone is presented in Part II (Heesakkers et al., Earthquake Rupture at Focal Depth, Part II: Mechanics of the 2004 M2.2 Earthquake Along the Pretorius Fault, TauTona mine, South Africa 2011, this volume).  相似文献   

15.
This paper reports internal structures of a wide fault zone at Shenxigou, Dujiangyan, Sichuan province, China, and high-velocity frictional properties of the fault gouge collected near the coseismic slip zone during the 2008 Wenchuan earthquake. Vertical offset and horizontal displacement at the trench site were 2.8 m (NW side up) and 4.8 m (right-lateral), respectively. The fault zone formed in Triassic sandstone, siltstone, and shale about 500 m away from the Yingxiu-Beichuan fault, a major fault in the Longmenshan fault system. A trench survey across the coseismic fault, and observations of outcrops and drill cores down to a depth of 57 m revealed that the fault zone consists of fault gouge and fault breccia of about 0.5 and 250–300 m in widths, respectively, and that the fault strikes N62°E and dips 68° to NW. Quaternary conglomerates were recovered beneath the fault in the drilling, so that the fault moved at least 55 m along the coseismic slip zone, experiencing about 18 events of similar sizes. The fault core is composed of grayish gouge (GG) and blackish gouge (BG) with very complex slip-zone structures. BG contains low-crystalline graphite of about 30 %. High-velocity friction experiments were conducted at normal stresses of 0.6–2.1 MPa and slip rates of 0.1–2.1 m/s. Both GG and BG exhibit dramatic slip weakening at constant high slip rates that can be described as an exponential decay from peak friction coefficient μ p to steady-state friction coefficient μ ss over a slip-weakening distance D c. Deformation of GG and BG is characterized by overlapped slip-zone structures and development of sharp slickenside surfaces, respectively. Comparison of our data with those reported for other outcrops indicates that the high-velocity frictional properties of the Longmenshan fault zones are quite uniform and the high-velocity weakening must have promoted dynamic rupture propagation during the Wenchuan earthquake.  相似文献   

16.
Cores from two of 13 U.S. Geological Survey research holes at Yellowstone National Park (Y-5 and Y-8) were evaluated to characterize lithology, texture, alteration, and the degree and nature of fracturing and veining. Porosity and matrix permeability measurements and petrographic examination of the cores were used to evaluate the effects of lithology and hydrothermal alteration on porosity and permeability. The intervals studied in these two core holes span the conductive zone and the upper portion of the convective geothermal reservoir. Variations in porosity and matrix permeability observed in the Y-5 and Y-8 cores are primarily controlled by lithology. Y-8 intersects three distinct lithologies: volcaniclastic sandstone, perlitic rhyolitic lava, and non-welded pumiceous ash-flow tuff. The sandstone typically has high permeability and porosity, and the tuff has very high porosity and moderate permeability, while the perlitic lava has very low porosity and is essentially impermeable. Hydrothermal self-sealing appears to have generated localized permeability barriers within the reservoir. Changes in pressure and temperature in Y-8 correspond to a zone of silicification in the volcaniclastic sandstone just above the contact with the perlitic rhyolite; this silicification has significantly reduced porosity and permeability. In rocks with inherently low matrix permeability (such as densely welded ash-flow tuff), fluid flow is controlled by the fracture network. The Y-5 core hole penetrates a thick intracaldera section of the 0.6-Ma Lava Creek ash-flow tuff. In this core, the degree of welding appears to be responsible for most of the variations in porosity, matrix permeability, and the frequency of fractures and veins. Fractures are most abundant within the more densely welded sections of the tuff. However, the most prominent zones of fracturing and mineralization are associated with hydrothermal breccias within densely welded portions of the tuff. These breccia zones represent transient conduits of high fluid flow that formed by the explosive release of overpressure in the underlying geothermal reservoir and that were subsequently sealed by supersaturated geothermal fluids. In addition to this fracture sealing, hydrothermal alteration at Yellowstone appears generally to reduce matrix permeability and focus flow along fractures, where multiple pulses of fluid flow and self-sealing have occurred.  相似文献   

17.
Detailed observation of the microstructural features of 11 fault gouge and 3 fault breccia samples collected from Tianjingshan-Xiangshan fault zone has revealed that fault gouge can be classified into 3 types: flow banded granular gouge, foliated gouge and massive gouge. The determination of the shape preferred orientation (SPO) of survivor grains in fault gouges indicates that the foliated gouge displays a profound SPO inclined to the shear zone boundary, similar to theP-foliation; flow banded granular gouge displays a SPO parallel to the shear zone boundary, while massive fault gouge and fault breccia display a random SPO. All these fault gouges fall in different fields of shear rate ternary diagram.  相似文献   

18.
香港中侏罗世屯门组火山岩主要由安山质熔岩、凝灰岩和凝灰角砾岩夹少量凝灰质砂岩组成。其中凝灰角砾岩初期曾误认为是沉积砾岩。1990年香港地质调查组重新研究后,确认是火山成因的凝灰角砾岩。按岩相分析,屯门组火山岩可分为火山通道相安山-英安质熔岩和爆发角砾岩,还有爆发空落相凝灰角砾岩。火山通道相又可分为火山颈相和岩墙相,分布在屯门组东西两侧。在青山东麓,出露一列NNW向呈断续、线状分布的火山颈群。近年来新出版的《香港地质考察指引》和《香港工程地质实践》等地质著作仍将该区爆发角砾岩误认为是沉积成因的砾岩,在地质勘探和工程设计上造成混乱,导致不应有的经济和时间上的损失。本文综合最新研究成果并与世界各地同类火山岩的特征进行对比,确证火山通道相爆发角砾岩的存在,并发现呈线状分布的古火山颈群。  相似文献   

19.
Kohtaro  Ujiie 《Island Arc》2005,14(1):2-11
Abstract   The 1999 Chi-Chi earthquake in Taiwan ( M w = 7.6) produced a surface rupture along the north–south-striking Chelungpu thrust fault with pure dip-slip (east side up) and left lateral strike-slip displacements. Near-field strong-motion data for the northern part of the fault illustrate a distinct lack of the high-frequency seismic radiation associated with a large slip (10–15 m) and a rapid slip velocity (2–4 m/s), suggesting a smooth seismic slip associated with low dynamic frictional resistance on the fault. A drillhole was constructed at shallow depths in the possible fault zones of the northern part of the Chelungpu Fault, which may have slipped during the 1999 earthquake. One of the zones consists of a 20-cm-thick, unconsolidated fault breccia with a chaotic texture lacking both discrete slip surfaces (e.g. Riedel shears) and grain crushing. Other possible fault zones are marked by the narrow (less than a few centimeters) gouge zone in which clayey material intrudes into the damaged zone outside of the gouge zone. These characteristic fault rock textures suggest that the slip mechanisms at shallow levels during the earthquake involved either granular flow of initially unconsolidated material or slip localization under elevated pore pressure along the narrow clayey gouge zone. Because both mechanisms lead to low dynamic frictional resistance on the fault, the rapid seismic slip in the deep portions of the fault (i.e. the source region of strong-motion radiation) could have been accommodated by frictionless slip on the shallow portions of the fault. The combination of strong-motion data and fault rock analysis suggests that smooth slip associated with low dynamic friction occurred on both the deep and shallow portions of the fault, resulting in a large slip between the source region and the surface in the northern region.  相似文献   

20.
龙门山断裂带大地震孕震环境的岩石磁学证据   总被引:3,自引:1,他引:2       下载免费PDF全文
地震断裂带的孕震环境对于研究地震的发生至关重要.本文以汶川地震断裂带科学钻探2号(WFSD-2)钻孔岩心中的假玄武玻璃、碎裂岩及其围岩为研究对象,通过岩石磁学测试,并结合显微结构观察探讨龙门山断裂带大地震的孕震环境.WFSD-2岩心碎裂岩中的假玄武玻璃是龙门山断裂带曾经发生过大地震活动的岩石学证据,假玄武玻璃具有高磁化率特征,而碎裂岩的磁化率值与围岩相似,假玄武玻璃中的新生磁铁矿是其高磁化率值异常的重要原因之一.假玄武玻璃中较少量的新生磁铁矿暗示了假玄武玻璃的生成环境为含氧量较低的高温还原环境.大地震断裂的摩擦热是改变龙门山断裂带中假玄武玻璃岩石磁学特征的主导因素,流体作用较弱.无高磁化率异常的碎裂岩经历的温度小于300℃,推测假玄武玻璃的生成深度较深.WFSD-2岩心中20余层假玄武玻璃脉体证明映秀—北川断裂带是一条长期活跃的断裂带,龙门山断裂带上曾经发生了多次大地震断裂活动,这些大地震可能发生在深度较大、流体作用较弱的还原性孕震环境中.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号