首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
边坡破坏是累积性过程,从变形到破坏的过程中会产生永久位移,如果永久位移过大,极有可能产生滑坡.因此根据不同工况下采集到的位移数据,分析地震作用下反倾层状岩质边坡在不同内摩擦角下的破坏特征.利用二维数值流形法(NMM),以青藏高原金沙江流域西藏昌都地区芒康县索多西乡贡扎倾倒滑坡为研究对象,依据实地考察数据及室内力学试验得...  相似文献   

2.
为研究地震时高路堑黄土边坡破坏的细观力学过程,以黄土地区某高速公路边坡为例,在野外工程地质勘察和室内试验基础上,用强度折减法对开挖后的高路堑黄土边坡的初始状态进行分析,进而对该高路堑边坡采用PFC2D建立数值计算模型,模拟边坡地震响应全过程;通过分析地震响应过程中颗粒的位移、配位数、孔隙率、应力和应变率等关键要素,从细...  相似文献   

3.
黄土地区地震岩土灾害严重,本文以兰州新区一纯黄土边坡为原型,开展了大型振动台模型试验,研究纯黄土边坡在地震荷载作用下的动力响应规律与破坏机制。结果表明:与其他岩性或土性的边坡一样,纯黄土边坡表层加速度放大效应明显,在坡肩附近达到最大,呈现出高程效应即随高程的增加放大效应增强,同时放大效应也会随地震烈度的增加而增强,当烈度达到600 gal时,坡肩处放大系数最大为2.06;边坡表层土压力远小于与其同一高程的内部土压力,表层变化规律基本一致且随地震动的增加数值相差不大,在临空面上,坡脚附近土压力为最大,其值在0.7~0.75 kPa;随地震烈度的增加,边坡表面裂纹逐步由细小短裂缝演变为横向贯穿的深裂缝,在坡肩附近尤为显著,试验中,最大沉降约10 cm,坡肩最大水平位移为5~8 cm,模型边坡最终发生拉裂滑移式破坏。该研究结果可为纯黄土边坡在地震荷载作用下的稳定性研究提供一定参考。  相似文献   

4.
Based on the horizontal movement velocities and their error estimations of 144GPS stations in North China de-duced from the results obtained from multiple GPS measurements carried out in the period of 1992-2001,the horizontal deformation in the area is stuklied.The movements,entire deformations,local deformations,activeity patterns and intensities along the boundary zones are derived.And then the risk of strong earthquake in the area is estimated.In the research,the horizontal displacement observations can be considered as the sum of three parts.The first part is the entire motion following Eurasian plate,which can be derived from NUVAL-IA model;the second part is the relative motions and deformations between the sub-tectonic blocks in the studied area,which can be derived from a set of displacement observations determined by the expanded QUAD method in the paper;the third part is the local deformations and errors in the sub-tectonic blocks,which can be described as the inhomoge-neous strains of the block.The method and results are introduced in detail in the paper.  相似文献   

5.

Gravity retaining wall with geogrids has showed excellent seismic performance from Wenchuan great earthquake. However, seismic damage mechanism of this kind of wall is not sufficiently clear. In view of this, a large shaking table test of the gravity retaining wall with geogrids to reinforce the subgrade slope was carried out, and based on the Hilbert-Huang transform and the marginal spectrum theory, the energy identification method of the slope dynamic failure mode was studied. The results show that the geogrids can effectively reduce displacement and rotation of the retaining wall, and it can effectively absorb the energy of the ground movement when combined with the surrounding soil. In addition, it also reveals the failure development of the gravity retaining wall with geogrids to reinforce the subgrade slope. The damage started in the deep zone near the geogrids, and then gradually extended to the surface of the subgrade slope and other zones, finally formed a continuous failure surface along the geogrids. The analysis results of the failure mode identified by the Hilbert marginal spectrum are in good consistency with the experimental results, which prove that the Hilbert marginal spectrum can be applied to obtain the seismic damage mechanism of slope.

  相似文献   

6.
To evaluate techniques for assessing earthquake-triggeredlandslide hazard in the Southern Apennines (Italy), a GIS-based analysis was used to modelseismically induced slope deformations. Geological, geotechnical, geomorphological and seismologicaldata were integrated into a standard earthquake slope stability model. The model assessed thelandslide potential that existed during the 1980 Irpinian earthquake in the Upper Sele river Valley.The standard Newmark displacement analysis, widely used for predicting the location of shallowunstable slopes, does not take into account errors and/or uncertainties in the input parameters.Therefore, a probabilistic Newmark displacement analysis technique has been used. Probabilistictechniques allow, e.g., an estimation of the probability that a slope will exceed a certain criticalvalue of Newmark displacement. In our probabilistic method, a Monte-Carlo based simulation modelis used in conjunction with a GIS. The random variability of geotechnical data is modelled by probabilitydensity functions (pdfs), while for the seismic input three different regression laws wereconsidered. Input probability distributions are sampled and the resulting values input into empiricalrelations for estimating Newmark displacement. The outcome is a map in which to each siteis related a spatial probability distribution for the expected displacement in response to seismic loading.Results of the experiments show a high grade of uncertainty in the application of the Newmarkanalysis both for the deterministic and probabilistic approach in a complex geological setting suchas the high Sele valley, quite common in the Southern Apennines. They show a strong dependence onthe reliability of the spatial data used in input, so that, when the model is used at basin scale,results are strongly influenced by local environmental condition (e.g., topography, lithology, groundwatercondition) and decrease the model performance.  相似文献   

7.
拟准检定法用于划分不同运动趋势块体   总被引:6,自引:0,他引:6       下载免费PDF全文
利用位移观测数据区分不同形变趋势块体一般分三步进行:基准检测、块体范围区分和各块体内异常形变检测.本文提出用拟准检定法来实现这三步.前两步初选拟准观测是关键.对于基准检测,按形变位移量大小;对于块体范围区分,则按形变方向.最后,通过一个模拟算例,简单介绍了每一步的实施步骤,并比较了拟准检定法与抗差估计(Huber)法、假设检验法的检测效果.结果表明,拟准检定法可以将上述三步成功实现,而抗差估计法只能检测出块体内的异常形变,对稳定基准检测和块体范围划分是失败的;假设检验法在该三步检测中均为失败.从而验证了拟准检定法具有粗差定位准确、崩溃污染率高的优越性.   相似文献   

8.
A method for constructing seismic slope failure probability matrices is presented. The core of the method is a probabilistic sliding block model which allows for systematic incorporation of the uncertainties associated with both the ground excitation and the strength of the slope materials. The extent of damage to a slope is defined in terms of the magnitude of the earthquake-induced permanent displacement. The intensity of the ground shaking is characterized by a peak ground acceleration as well as an earthquake magnitude, and the possible scatter in the ground motion details is included through the use of an equivalent stationary motion model. After the effects of essential contributing factors are discussed, regional seismic slope failure probability matrices are presented for general applications.  相似文献   

9.
应用有限单元方法,计算了2015年尼泊尔MS8.1大地震发生产生的同震变形和应力变化.计算中考虑地球为球体以确保远场应力场变化得到可靠结果,采用PREM模型的地球分层模型,考虑了中国地震局(CEA)和美国地质调查局(USGS)各自提供的断层滑动模型.结果表明:尼泊尔MS8.1地震是一个比较典型的低角度逆冲地震,水平位移和应力降较大;地震造成南北方向上的水平位移最突出,且集中在首都加德满都附近区域.USGS断层滑动模型地表最大位移量达到3.5m,CEA滑动模型最大为1.2m;东西向和垂直方向上的同震位移相对较小;同震位移量级在0.1m的影响区域可达300km;地震造成尼泊尔地区最大库仑应力变化可达到MPa量级,地震危险性依然较大.此次MS8.1地震对我国西藏地区有一定影响,特别是雅鲁藏布江地区和拉萨块体南北走向的正断层,库仑应力变化为正,量级可达数千帕乃至十余千帕,应该注意该区被诱发中强震的可能性.  相似文献   

10.
Newmark永久位移是评价边坡在地震时稳定性的一个重要指标,近年来广泛应用于地震边坡危险性评价中。传统Newmark永久位移法在计算临界加速度时假定其为常数,未考虑滑动面上抗剪强度参数的变化,过低估计了边坡的永久位移。为了解决这一问题,本文从岩土结构理论获得思路,详细分析滑块底面抗剪强度参数在地震中的变化过程,以边坡震动过程中黏聚力逐步丧失为基本思路,在黏聚力符合一定概率分布的基础上,提出了一种利用蒙特卡罗法模拟其动态减小过程从而实现临界加速度动态变化的计算方法。经过算例计算,黏聚力和临界加速度体现了地震过程中边坡滑块黏聚力和临界加速度的动态变化,位移大小符合地震边坡实际位移的常规数值。本文提出的蒙特卡罗法实现动态黏聚力和动态临界加速度的计算过程与地震时程相对应,不仅在一定程度上解决了抗剪强度参数的动态变化问题,还解决了传统Newmark位移计算中永久位移比实际位移偏小的问题。  相似文献   

11.
Recent applications of sliding block theory to geotechnical design   总被引:3,自引:0,他引:3  
The sliding block theory was proposed by Newmark for determining the permanent displacement of embankments and dams under earthquake loading. This paper highlights recent applications of sliding block theory to different geotechnical structures. The equations to determine seismic factor of safety, yield acceleration and permanent displacement are given for rock block, soil slope, landfill cover, geosynthetic-reinforced soil retaining wall, and composite breakwater. The presented equations for seismic stability degenerate to that of static stability in the absence of earthquake. The permanent displacement for various structures can be obtained from that of a horizontal sliding block through a correction factor. A simplified procedure is included for the permanent displacement under vertical acceleration. The sliding block approach is rational for design under high seismic load.  相似文献   

12.
综合介绍2008年汶川大地震以来,GPS观测得到的国内外10多次6—9级,不同构造、不同类型的大地震前兆地壳形变震例:2008年汶川8级大地震、2011年东日本9级巨震、2013年芦山7级,直至2020年6月墨西哥7.4级地震和7月美国阿拉斯加州以南海域7.8级地震等。利用GPS连续观测站区域参考框架水平位移时间序列和水平位移场,特别是水平位移向量时间序列的研究证明,同震水平位移是研究地震前兆形变存在的关键;利用垂直位移和水平位移向量时间序列、同震垂直位移及同震水平位移向量的分解,揭示地震弹性回跳真实方式;提出了符合GPS观测和岩石破裂试验结果的地震压-剪弹性回跳模型;根据已有震例,提出预报不同震级地震的可能性和监测临震前兆形变的GNSS站布设设想。   相似文献   

13.
Introduction The accumulation of high precision GPS data has great significance for understanding and explaining crustal movement and establishing the geodynamical model correctly. However, it is an important basic task to study block movement with the displacement data which covers the datum influence information, as well as the deformation information of the block and abnormal deforma-tion information in the block such as fault or zone of fracture and so on. Firstly steady or com-parativel…  相似文献   

14.
地震荷载下边坡抗滑桩桩土机理的三维模拟分析   总被引:1,自引:0,他引:1       下载免费PDF全文
地震是诱发边坡破坏的重要因素之一,而抗滑桩是一种重要的边坡防治工程措施,因此开展地震作用下抗滑桩机理对于边坡防护具有重要的工程意义。本文以广东省梅州市茶阳车站为工程实例,运用ABAQUS软件建立三维模型,对地震作用下的桩土作用机理进行数值模拟分析。研究表明:(1)在地震作用下,边坡中上部水平位移较大,最大值为87.05mm,凹陷处水平位移远小于凸起处;(2)地震作用下抗滑桩会由于地震荷载产生远大于地震前的应力:静力作用下桩身最大值是147.24kPa,地震波输入14s时桩身最大值达到了326.36kPa;(3)地震作用下抗滑桩的应变亦远大于静力作用下的应变:静力作用下抗滑桩应变最大值是4.63×10~(-5),在地震波输入的第14s时桩身应变最大值是34.10×10~(-5)。因此在工程实践中对于地震作用下的抗滑桩边坡加固需要考虑桩的强度与刚度。研究结论对于边坡防治以及工程实践具有一定的指导意义。  相似文献   

15.
Different models were developed for evaluating the probabilistic three-dimensional (3D) stability analysis of earth slopes and embankments under earthquake loading using both the safety factor and the displacement criteria of slope failure. In the 3D analysis, the critical and total slope widths become two new and important parameters.The probabilistic models evaluate the probability of failure under seismic loading considering the different sources of uncertainties involved in the problem, i.e. uncertainties stemming from the discrepancies between laboratory-measured and in-situ values of shear strength parameters, randomness of earthquake occurrence, and earthquake-induced acceleration. The models also takes into consideration the spatial variabilities and correlations of soil properties.Five probabilistic models of earthquake-induced displacement were developed based on the non-exceedance of a limited value criterion. Moreover, a probabilistic model for dynamic slope stability analysis was developed based on 3D dynamic safety factor.These models are formulated and incorporated within a computer program (PTDDSSA).A sensitivity analysis was conducted on the different parameters involved in the developed models by applying those models to a well-known landslides (Selset landslide) under different levels of seismic hazard.The parametric study was conducted to evaluate the effect of different input parameters on the resulting critical failure width, 3D dynamic safety factor, earthquake-induced displacement and the probability of failure. Input parameters include: average values and coefficients of variations of water table, cohesion and angle of friction for effective stress analysis, scales of fluctuations in both distance and time, hypocentral distance, earthquake magnitude, earthquake strong shaking period, etc.The hypocentral distance and earthquake magnitude were found to have major influence on the earthquake-induced displacement, probability of failure (i.e. probability of allowable displacement exceedance), and dynamic 2D and 3D safety factors.  相似文献   

16.
地震诱发黄土滑坡的滑距估测   总被引:3,自引:0,他引:3       下载免费PDF全文
认为用坡体波动振荡效应来解释地震滑坡的形成是合理的,地震动使坡体波动振荡产生的启程剧发速度会直接影响到滑后行程速度和整个滑动土体的滑移距离。最大滑距可分为地震时坡体波动振荡产生的位移和地震波动停止后滑坡的滑移距离两部分,先采用Newmark有限滑动位移分析模型计算前者的永久地震位移,再进一步计算后者。经海原地震滑坡实例计算,文中地震滑坡滑距计算公式实用有效。  相似文献   

17.
A 2-bay, 6-storey model test reinforced concrete frame (scale l:5) subjected to sequential earthquakes of increasing magnitude is considered in this paper. The frame was designed with a weak storey, in which the columns are weakened by using thinner and weaker reinforcement bars. The aim of the work is to study the global response to a damaging strong motion earthquake event of such buildings. Special emphasis is put on examining to what extent damage in the weak storey can be identified from global response measurements during an earthquake where the structure survives, and what level of excitation is necessary in order to identify the weak storey. Furthermore, emphasis is put on examining how and where damage develops in the structure and especially how the weak storey accumulates damage. Besides the damage in each storey the structure is identified by a static load at the top storey while measuring the horizontal displacement of the stories and also visual inspection is performed. From the investigations it is found that the reason for failure in the weak storey is that the absolute value of the stiffness deteriorates to a critical value where large plastic deformations occur and the storey is not capable of transferring the shear forces from the storeys above so failure is unavoidable.  相似文献   

18.
This paper presents a new, improved, post‐earthquake damage assessment method that takes into account residual deformations attained by the damaged structure during the earthquake. Local and global residual deformations and visual damage indicators are considered to estimate the maximum deformations experienced by the structure. As a particular development, the method allows measured displacements and rotations to be considered jointly. Uncertainties associated with both the excitation and the damaged structure are explicitly accounted for. The resulting maximum displacement estimates allow a more accurate evaluation of the extent of structural damage when judging the usability/reparability of the investigated structure. A trial application of the method to a real structure tested on a shaking table is presented. The results confirm the capability of the method to estimate the maximum displacement and the residual stiffness of the damaged structure. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
The residual capability of a damaged structure to resist further load is essential in optimal seismic design and post-earthquake strengthening. An experimental study on the hysteretic characteristics of prestressed concrete frame beams under different loading histories was performed to explore the influence of load history on energy dissipation and failure characteristics of the member. Based on the test results, the failure of the beam is def ined, and the relationship between the failure moment under cyclic load and from the skeleton curve is formulated. Finally, based on displacement and energy dissipation, a model for prestressed concrete beam damage-failure evaluation is developed. In this model, the effect of deformation level, cumulative dissipated energy, and loading history on prestressed concrete beam damage–failure is incorporated, thus it is applicable to stochastic earthquake forces.  相似文献   

20.
A number of slope failures during the 2004 Niigataken Chuetsu earthquake were investigated, revealing that the travel distance becomes longer as the slope gets gentler and the failed soil mass gets larger. An energy-based approach, proposed in previous research to evaluate the travel distance of failed slopes, is modified by adding the model test results and introducing a simple evaluation method. The energy approach is then applied to a number of slopes failed during the earthquake to back-calculate mobilized friction coefficients, revealing their strong dependency on initial slope inclinations. The friction coefficient was found to be smaller than the initial slope inclination for gentler slopes, indicating that the failed soil mass tends to accelerate. In contrast, that for steeper slopes was higher than initial slope inclination. The friction coefficient was found to decrease with increasing volume of failed slope, which is quite consistent with previous case studies including large non-seismic landslides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号