首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lake Estanya is a small (19 ha), freshwater to brackish, monomictic lake formed by the coalescence of two karstic sinkholes with maximum water depths of 12 and 20 m, located in the Pre‐Pyrenean Ranges (North‐eastern Spain). The lake is hydrologically closed and the water balance is controlled mostly by groundwater input and evaporation. Three main modern depositional sub‐environments can be recognized as: (i) a carbonate‐producing ‘littoral platform’; (ii) a steep ‘talus’ dominated by reworking of littoral sediments and mass‐wasting processes; and (iii) an ‘offshore, distal area’, seasonally affected by anoxia with fine‐grained, clastic sediment deposition. A seismic survey identified up to 15 m thick sedimentary infill comprising: (i) a ‘basal unit’, seismically transparent and restricted to the depocentres of both sub‐basins; (ii) an ‘intermediate unit’ characterized by continuous high‐amplitude reflections; and (iii) an ‘upper unit’ with strong parallel reflectors. Several mass‐wasting deposits occur in both sub‐basins. Five sediment cores were analysed using sedimentological, microscopic, geochemical and physical techniques. The chronological model for the sediment sequence is based on 17 accelerator mass spectrometry 14C dates. Five depositional environments were characterized by their respective sedimentary facies associations. The depositional history of Lake Estanya during the last ca 21 kyr comprises five stages: (i) a brackish, shallow, calcite‐producing lake during full glacial times (21 to 17·3 kyr bp ); (ii) a saline, permanent, relatively deep lake during the late glacial (17·3 to 11·6 kyr bp ); (iii) an ephemeral, saline lake and saline mudflat complex during the transition to the Holocene (11·6 to 9·4 kyr bp ); (iv) a saline lake with gypsum‐rich, laminated facies and abundant microbial mats punctuated by periods of more frequent flooding episodes and clastic‐dominated deposition during the Holocene (9·4 to 0·8 kyr bp ); and (v) a deep, freshwater to brackish lake with high clastic input during the last 800 years. Climate‐driven hydrological fluctuations are the main internal control in the evolution of the lake during the last 21 kyr, affecting water salinity, lake‐level changes and water stratification. However, external factors, such as karstic processes, clastic input and the occurrence of mass‐flows, are also significant. The facies model defined for Lake Estanya is an essential tool for deciphering the main factors influencing lake deposition and to evaluate the most suitable proxies for lake level, climate and environmental reconstructions, and it is applicable to modern karstic lakes and to ancient lacustrine formations.  相似文献   

2.
This research provides an ancient analogue for biologically mediated dolomite precipitation in microbial mats and biofilms, and describes the involvement of highly structured extracellular polymeric secretion (EPS) templates in dolomite nucleation. The structure of EPS is shown to match the hexagonal–trigonal lattice geometry of dolomite, which favoured the epitaxial crystallization of dolomite on the organic substrate. This structure of EPS also matches the arrangement of silica nanospheres in opal, which further accounts for the organically‐templated formation of opal enabling the non‐replacive co‐existence of dolomite and silica. The study is focused on a 50 m thick dolomite succession that is exposed in central areas of the Tertiary Duero Basin and was deposited in a mudflat‐saline lake sedimentary complex during the Middle to Late Miocene (9 to 15 Ma). In the intermediate intervals of the succession, poorly indurated dolomite beds pass gradually into silica beds. On the basis of sedimentological, compositional, geochemical and petrographic data, silica and dolomite beds have been interpreted as mineralized microbial mats. The silica beds formed in marginal areas of the lake in response to intense evaporative concentrations; this resulted in the rapid and early precipitation of opal. Silicification accounted for the exceptional preservation of the microbial mat structure, including biofilms, filamentous and coccoid microbes, and EPS. Extracellular polymeric secretions have a layered structure, each layer being composed of fibres which are arranged in accordance with a reticular pattern, with frequent intersection angles at 120° and 60°. Therefore, the structure of EPS matches the lattice geometry of dolomite and the arrangement of silica nanospheres in opal. Additionally, EPS binds different elements, with preference to Si and Mg. The concurrence of suitable composition and surface lattice morphologies in the EPS favoured the crystallization of dolomite on the substrate. In some cases, dolomite nucleation took place epicellularly on coccoid micro‐organisms, which gave way to spheroid crystals. Organic surfaces enable the inorganic mineral precipitation by lowering the free energy barrier to nucleation. Most of the microbial mats probably developed on the lake floor, under sub‐aqueous conditions, where the decomposition of organic matter took place. The subsequent formation of openly packed dolomite crystals, with inter‐related Si‐enriched fibrils throughout, is evidence for the pre‐existence of fibrillar structures in the mats. Miocene dolomite crystals are poorly ordered and non‐stoichiometric, with a slight Ca‐excess (up to 5%), which is indicative of the low diagenetic potential the microbial dolomite has towards a more ordered and stoichiometric structure; this confirms that microbial imprints can be preserved in the geological record, and validates their use as biosignatures.  相似文献   

3.
The origin of fine‐grained dolomite in peritidal rocks has been the subject of much debate recently and evidence is presented here for a microbial origin of this dolomite type in the Norian Dolomia Principale of northern Calabria (southern Italy). Microbial carbonates there consist of stromatolites, thrombolites, and aphanitic dolomites. High‐relief thrombolites and stromatolites characterize sub‐tidal facies, and low‐relief and planar stromatolites, with local oncoids, typify the inter‐supratidal facies. Skeletal remains are very rare in the latter, whereas a relatively rich biota of skeletal cyanophycea, red algae and foraminifera is present in the sub‐tidal facies. Some 75% of the succession consists of fabric‐preserving dolomite, especially within the microbial facies, whereas the rest is composed of coarse dolomite with little fabric preservation. Three end‐members of dolomite replacement fabric are distinguished: type 1 and type 2, fabric retentive, with crystal size <5 and 5–60 μm, respectively; and type 3, fabric destructive, with larger crystals, from 60 to several hundred microns. In addition, there are dolomite cements, precipitated in the central parts of primary cavities during later diagenesis. Microbialite textures in stromatolites are generally composed of thin, dark micritic laminae of type 1 dolomite, alternating with thicker lighter‐coloured laminae of the coarser type 2 dolomite. Thrombolites are composed of dark, micritic clotted fabrics with peloids, composed of type 1 dolomite, surrounded by coarser type 2 dolomite. Marine fibrous cement crusts are also present, now composed of type 2 dolomite. Scanning electron microscope observations of the organic‐rich micritic laminae and clots of the inter‐supratidal microbialites reveal the presence of spherical structures which are interpreted as mineralized bacterial remains. These probably derived from the fossilization of micron‐sized coccoid bacteria and spheroidal–ovoidal nanometre‐scale dwarf‐type bacterial forms. Furthermore, there are traces of degraded organic matter, probably also of bacterial origin. The microbial dolomites were precipitated in a hypersaline environment, most likely through evaporative dolomitization, as suggested by the excess Ca in the dolomites, the small crystal size, and the positive δ18O values. The occurrence of fossilized bacteria and organic matter in the fabric‐preserving dolomite of the microbialites could indicate an involvement of bacteria and organic matter degradation in the precipitation of syn‐sedimentary dolomite.  相似文献   

4.
Authigenic clays are an important control on reservoir quality in lacustrine carbonates but remain challenging to predict. Lacustrine depositional systems respond to climatic variations in rainfall, surface runoff and groundwater input, and evaporation, and result in rapid and frequent changes in lake volume; this is expressed through changing water depth and shoreline position. In the upper portion of the Early Palaeocene Yacoraite Formation of the Salta Basin in Argentina, extensive lacustrine deposits were deposited during the sag phase of rifting. Prior high-resolution stratigraphic studies have suggested that climatic factors control microbial carbonate sequences within a ‘balanced fill’ lake, with variation in the lake level having a major influence on facies association changes. This study characterizes the evolution of facies and mineralogy within the Yacoraite Formation, focusing on the distribution of clay minerals, making a link between the high, medium and low-frequency sequence stratigraphic cycles. The low-frequency transgressive hemicycle of the upper portion of the Yacoraite Formation is comprised of abundant siliciclastic facies, suggesting a wetter period. Microbialites occurring in this interval are coarse-grained and agglutinated. Detrital clay minerals such as illite and chlorite and associated siliciclastic sediments were input to the lake during high-frequency transgressive periods. During high-frequency regressive hemicycles, sedimentation was dominated by carbonate facies with Ca-rich dolomite and the authigenic clays are comprised of chlorite/smectite mixed-layers. By contrast, the low frequency regressive hemicycle records fine-grained agglutinated microbialite with horizons of fibrous calcite, more stoichiometric dolomite, barite and authigenic magnesian smectite. This indicates elevated ion concentrations in the lake under intense evaporation during an arid period. Understanding the conditions that are favourable for formation and preservation of authigenic clays within the lacustrine environment can improve understanding of reservoir quality in comparable economically important deposits.  相似文献   

5.
Expansive playa‐lake systems situated in high‐altitude piggyback basins are important and conspicuous components of both modern and ancient cordilleran orogenic systems. Extant playa lakes provide vital habitat for numerous endemic species, whereas sediments from these deposystems may record signals of climate change or develop natural resources over geological time. Laguna de los Pozuelos (North‐west Argentina) provides the opportunity for an actualistic sedimentological and geochemical assessment of a piggyback basin playa lake in an area of critical interest for understanding Quaternary palaeoclimate dynamics. Silty clays and diatom ooze are the dominant playa‐lake centre microfacies, with concentrations of total organic carbon and biogenic silica commonly exceeding 1·5 wt% in this sub‐environment. Elemental and stable isotopic analyses point to a mixed organic matter composition in the playa‐lake centre, with substantial contributions from algae and transported aquatic macrophytes. Bulk sediment and organic mass accumulation rates in the southern playa‐lake centre approach 0·22 g cm?2 year?1 and 2·89 mg cm?2 year?1, respectively, indicating moderately rapid deposition with negligible deflation over historic time. Playa margin facies contain higher percentages of fragmented biogenic carbonate (ostracods and charophytes) and inorganically precipitated aragonite crusts due to seasonal pumping and evaporation of ground water. Organic matter accumulation is limited along these heavily bioturbated wet and dry mud flats. Fluvial–lacustrine transitional environments, which are key waterbird habitats, are either silty terminal splay (northern axis) or sandy deltas (southern axis) containing highly oxidized and partially allochthonous organic matter. Modern analogue data from Laguna de los Pozuelos provide key insights for: (i) environmental reconstructions of ancient lake sequences; and (ii) improving facies models for piggyback basins.  相似文献   

6.
近年来,随着对微生物白云石模式研究的不断深入,为解释“白云石问题”提供了新思路。前人对微生物白云石成因研究侧重于微生物对未固结沉积物的改造,即有机准同生白云石化作用,这与实验室中以微生物为媒介形成的“有机原生白云石”在成因机理上存在差异。笔者将微生物白云石机理引入湖相原生白云石成因解释中,认为在湖水—沉积物交界处也会发生微生物成因的原生白云石沉淀,即有机原生白云石。湖水与沉积物交界处的微环境存在明显区别,总体可分为有氧和缺氧2种亚环境,不同亚环境中生活有不同的微生物群落。根据湖泊亚环境特性和微生物种类及其在白云石形成过程中所发挥的作用,可以区分出细菌有氧氧化模式、硫酸盐还原模式和产甲烷模式3种微生物白云石模式。不同模式对应于不同的湖泊环境: 细菌有氧氧化模式主要发生于有氧、高Mg/Ca值的咸水/盐湖环境;硫酸盐还原模式主要发生于缺氧、高Mg/Ca值的咸水/盐湖环境;产甲烷模式主要发生于缺氧、低Mg/Ca值的淡水/咸水湖环境。另外,还探讨了pH值变化、SO42-的存在和硫化物对镁水合物脱水的影响以及微生物白云石沉淀的环境因子。对微生物成因的原生白云石模式的深入认识,将为湖相白云石成因研究提供新的理论基础和研究思路。  相似文献   

7.
Recent robotic missions to Mars have offered new insights into the extent, diversity and habitability of the Martian sedimentary rock record. Since the Curiosity rover landed in Gale crater in August 2012, the Mars Science Laboratory Science Team has explored the origins and habitability of ancient fluvial, deltaic, lacustrine and aeolian deposits preserved within the crater. This study describes the sedimentology of a ca 13 m thick succession named the Pahrump Hills member of the Murray formation, the first thick fine‐grained deposit discovered in situ on Mars. This work evaluates the depositional processes responsible for its formation and reconstructs its palaeoenvironmental setting. The Pahrump Hills succession can be sub‐divided into four distinct sedimentary facies: (i) thinly laminated mudstone; (ii) low‐angle cross‐stratified mudstone; (iii) cross‐stratified sandstone; and (iv) thickly laminated mudstone–sandstone. The very fine grain size of the mudstone facies and abundant millimetre‐scale and sub‐millimetre‐scale laminations exhibiting quasi‐uniform thickness throughout the Pahrump Hills succession are most consistent with lacustrine deposition. Low‐angle geometric discordances in the mudstone facies are interpreted as ‘scour and drape’ structures and suggest the action of currents, such as those associated with hyperpycnal river‐generated plumes plunging into a lake. Observation of an overall upward coarsening in grain size and thickening of laminae throughout the Pahrump Hills succession is consistent with deposition from basinward progradation of a fluvial‐deltaic system derived from the northern crater rim into the Gale crater lake. Palaeohydraulic modelling constrains the salinity of the ancient lake in Gale crater: assuming river sediment concentrations typical of floods on Earth, plunging river plumes and sedimentary structures like those observed at Pahrump Hills would have required lake densities near freshwater to form. The depositional model for the Pahrump Hills member presented here implies the presence of an ancient sustained, habitable freshwater lake in Gale crater for at least ca 103 to 107 Earth years.  相似文献   

8.
The non-marine Campins Basin developed in the Oligocene, during a period of early rifting of the Catalan Coastal Ranges. Lacustrine deposits, interbedded between two alluvial units, comprise shallow and deep lacustrine facies. The lower, shallow lacustrine facies are made up of microbialite buildups and thin limestone beds. In the studied area, these facies are overlain by deep lacustrine facies which consist of alternations of several, metre-thick carbonate- and mudstone-dominated intervals. In addition to calcite, which is characteristic of the shallow lacustrine facies, aragonite and abundant dolomite are present in the deep lacustrine facies. This mineralogical change in the sequence reflects an overall increase in the Mg/Ca ratio of the lake waters. The deep lacustrine sequences are interpreted as having formed in a hydrologically closed basin that was subject to changes in the Mg/Ca ratio of the water, probably related to variations in the evaporation/precipitation rate. The sedimentological, mineralogical and isotopic characteristics of the Campins Basin dolomites suggest that, in general, they are primary in origin. The stable isotope data show an approximate covariance between δ13C and δ18O in the lower shallow lacustrine carbonates (calcite) which suggests that they formed during the onset of closure of the lake. The δ13C and δ18O values of the deep lacustrine carbonates display three different clusters that are roughly related to the carbonate mineralogy. Normalisation with respect to calcite of the isotopic compositions of dolomite and aragonite from the deep lacustrine carbonates allows the integration of all these isotope values into one covariant trend. The sequential appearance of different carbonate minerals and the isotopic covariant trend may indicate an overall evaporative concentration of the lake waters. The change in slope of the covariant trend for the isotope values between the shallow and the deep lacustrine carbonates might reflect the change in the waterbody morphology recorded in the basin fill sequence.  相似文献   

9.
Two Palaeogene fluvial fan systems linked to the south‐Pyrenean margin are recognized in the eastern Ebro Basin: the Cardona–Súria and Solsona–Sanaüja fans. These had radii of 40 and 35 km and were 800 and 600 km2 in area respectively. During the Priabonian to the Middle Rupelian, the fluvial fans built into a hydrologically closed foreland basin, and shallow lacustrine systems persisted in the basin centre. In the studied area, both fans are part of the same upward‐coarsening megasequence (up to 800 m thick), driven by hinterland drainage expansion and foreland propagation of Pyrenean thrusts. Fourteen sedimentary facies have been grouped into seven facies associations corresponding to medial fluvial fan, channelized terminal lobe, non‐channelized terminal lobe, mudflat, deltaic, evaporitic playa‐lake and carbonate‐rich, shallow lacustrine environments. Lateral correlations define two styles of alluvial‐lacustrine transition. During low lake‐level stages, terminal lobes developed, whereas during lake highstands, fluvial‐dominated deltas and interdistributary bays were formed. Terminal lobe deposits are characterized by extensive (100–600 m wide) sheet‐like fine sandstone beds formed by sub‐aqueous, quasi‐steady, hyperpycnal turbidity currents. Sedimentary structures and trace fossils indicate rapid desiccation and sub‐aerial exposure of the lobe deposits. These deposits are arranged in coarsening–fining sequences (metres to tens of metres in thickness) controlled by a combination of tectonics, climatic oscillations and autocyclic sedimentary processes. The presence of anomalously deeply incised distributary channels associated with distal terminal lobe or mudflat deposits indicates rapid lake‐level falls. Deltaic deposits form progradational coarsening‐upward sequences (several metres thick) characterized by channel and friction‐dominated mouth‐bar facies overlying white‐grey offshore lacustrine facies. Deltaic bar deposits are less extensive (50–300 m wide) than the terminal lobes and were also deposited by hyperpycnal currents, although they lack evidence of emergence. Sandy deltaic deposits accumulated locally at the mouths of main feeder distal fan streams and were separated by muddy interdistributary bays; whereas the terminal lobe sheets expand from a series of mid‐fan intersection points and coalesced to form a more continuous sandy fan fringe.  相似文献   

10.
Abstract Laguna Mar Chiquita, a highly variable closed saline lake located in the Pampean plains of central Argentina, is presently the largest saline lake in South America (≈ 6000 km2). Recent variations in its hydrological budget have produced dry and wet intervals that resulted in distinctive lake level fluctuations. Results of a multiproxy study of a set of sedimentary cores indicate that the system has clearly recorded these hydrological variations from the end of the Little Ice Age (≈ ad 1770) to the present. Sedimentological and geochemical data combined with a robust chronology based on 210Pb profiles and historical data provide the framework for a sedimentary model of a lacustrine basin with highly variable water depth and salinity. Lake level drops and concurrent increases in salinity promoted the development of gypsum–calcite–halite layers and a marked decrease in primary productivity. The deposits of these dry stages are evaporite‐bearing sediments with a low organic matter content. Conversely, highstands are recorded as diatomaceous organic matter‐rich muds. Average bulk sediment accumulation rose from 0·22 g cm?2 year?1 in lowstands to 0·32 g cm?2 year?1 during highstands. These results show that Laguna Mar Chiquita is a good sensor of high‐ and low‐frequency changes in the recent hydrological budget and, therefore, document climatic changes at middle latitudes in south‐eastern South America. Dry conditions were mostly dominant until the last quarter of the twentieth century, when a humid interval without precedent during the last 240 years of the lake's recorded history started. Thus, it is an ideal system to model sedimentary and geochemical response to environmental changes in a saline lacustrine basin.  相似文献   

11.
A. Sáez  L. Cabrera 《Sedimentology》2002,49(5):1073-1094
ABSTRACT A small, closed, lacustrine system developed during the restraining overstep stages of the Oligocene As Pontes strike‐slip basin (Spain). The increase in basin accommodation and the headward spread of the drainage, which increased the water input, triggered a change from shallow, holomictic to deeper, meromictic conditions. The lower, shallow, lacustrine assemblage consists of mudstone–carbonate cycles recording lacustrine–palustrine ramp deposition in a saline lake. High Sr content in some early diagenetic calcites suggests that aragonite and calcite made up the primary carbonate muds. Early dolomitization took place together with widespread pedogenic activity. The upper, deep, freshwater, lacustrine assemblage includes bundles of carbonate–clay rhythmites and fine‐grained turbidite beds. Primary calcite and diagenetic siderite make up the carbonate laminae. The Mg content of the primary carbonates records variations in Mg/Ca ratios in lacustrine waters. δ18O and δ13C covariance trends in calcite reinforce closed drainage conditions. δ18O data indicate that the lake system changed rapidly from short‐lived isotopically light periods (i.e. from seasonal to pluriannual) to longer steady‐state periods of heavier δ18O (i.e. from pluriannual to millennial). The small δ13C changes in the covariant trends were caused by dilute inflow, changing the contributions of dissolved organic carbon in the system and/or internal variations in lacustrine organic productivity and recycling. In both shallow and deep carbonate facies, sulphate reduction and methanogenesis may account, respectively, for the larger negative and positive δ13C shifts recorded in the early diagenetic carbonates (calcite, dolomite and siderite). The lacustrine system was very susceptible to high‐frequency, climatically forced water balance variations. These climatic oscillations interfered with the low‐frequency tectonic and morphological changes in the basin catchment. This resulted in the superposition of high‐order depositional, mineralogical and geochemical cycles and rhythms on the lower order lacustrine infill sequence.  相似文献   

12.
ABSTRACT The middle Miocene sedimentary fill of the Calatayud Basin in north‐eastern Spain consists of proximal to distal alluvial fan‐floodplain and shallow lacustrine deposits. Four main facies groups characteristic of different sedimentary environments are recognized: (1) proximal and medial alluvial fan facies that comprise clast‐supported gravel and subordinate sandstone and mudstone, the latter exhibiting incipient pedogenic features; (2) distal alluvial fan facies, formed mainly of massive mudstone, carbonate‐rich palaeosols and local carbonate pond deposits; (3) lake margin facies, which show two distinct lithofacies associations depending on their distribution relative to the alluvial fan system, i.e. front (lithofacies A), comprising massive siliciclastic mudstone and tabular carbonates, or lateral (lithofacies B) showing laminated and/or massive siliciclastic mudstone alternating with tabular and/or laminated carbonate beds; and (4) mudflat–shallow lake facies showing a remarkable cyclical alternation of green‐grey and/or red siliciclastic mudstone units and white dolomitic carbonate beds. The cyclic mudflat–shallow lake succession, as exposed in the Orera composite section (OCS), is dominantly composed of small‐scale mudstone–carbonate/dolomite cycles. The mudstone intervals of the sedimentary cycles are interpreted as a result of sedimentation from suspension by distal sheet floods, the deposits evolving either under subaerial exposure or water‐saturated conditions, depending on their location on the lacustrine mudflat and on climate. The dolomite intervals accumulated during lake‐level highstands with Mg‐rich waters becoming increasingly concentrated. Lowstand to highstand lake‐level changes indicated by the mudstone/dolomite units of the small‐scale cycles reflect a climate control (from dry to wet conditions) on the sedimentation in the area. The spatial distribution of the different lithofacies implies that deposition of the small‐scale cycles took place in a low‐gradient, shallow lake basin located in an interfan zone. The development of the basin was constrained by gradual alluvial fan aggradation. Additional support for the palaeoenvironmental interpretation is derived from the isotopic compositions of carbonates from the various lithofacies that show a wide range of δ18O and δ13C values varying from ?7·9 to 3·0‰ PDB and from ?9·2 to ?1·7‰ PDB respectively. More negative δ18O and δ13C values are from carbonate‐rich palaeosols and lake‐margin carbonates, which extended in front of the alluvial fan systems, whereas more positive values correspond to dolomite beds deposited in the shallow lacustrine environment. The results show a clear trend of δ18O enrichment in the carbonates from lake margin to the centre of the shallow lake basin, thereby also demonstrating that the lake evolved under hydrologically closed conditions.  相似文献   

13.
Modern Ca:Mg carbonate stromatolites form in association with the microbial mat in the hypersaline coastal lagoon, Lagoa Vermelha (Brazil). The stromatolites, although showing diversified fabrics characterized by thin or crude lamination and/or thrombolitic clotting, exhibit a pervasive peloidal microfabric. The peloidal texture consists of dark, micritic aggregates of very high‐Mg calcite and/or Ca dolomite formed by an iso‐oriented assemblage of sub‐micron trigonal polyhedrons and organic matter. Limpid acicular crystals of aragonite arranged in spherulites surround these aggregates. Unlike the aragonite crystals, organic matter is present consistently in the dark, micritic carbonate comprising the peloids. This organic matter is observed as sub‐micron flat and filamentous mucus‐like structures inside the interspaces of the high‐Mg calcite and Ca dolomite crystals and is interpreted as the remains of degraded extracellular polymeric substances. Moreover, many fossilized bacterial cells are associated strictly with both carbonate phases. These cells consist mainly of 0·2 to 4 μm in diameter, sub‐spherical, rod‐like and filamentous forms, isolated or in colony‐like clusters. The co‐existence of fossil extracellular polymeric substances and bacterial bodies, associated with the polyhedrons of Ca:Mg carbonate, implies that the organic matter and microbial metabolism played a fundamental role in the precipitation of the minerals that form the peloids. By contrast, the lack of extracellular polymeric substances in the aragonitic phase indicates an additional precipitation mechanism. The complex processes that induce mineral precipitation in the modern Lagoa Vermelha microbial mat appear to be recorded in the studied lithified stromatolites. Sub‐micron polyhedral crystal formation of high‐Mg calcite and/or Ca dolomite results from the coalescence of carbonate nanoglobules around degraded organic matter nuclei. Sub‐micron polyhedral crystals aggregate to form larger ovoidal crystals that constitute peloids. Subsequent precipitation of aragonitic spherulites around peloids occurs as micro‐environmental water conditions around the peloids change.  相似文献   

14.
罗布泊位于塔里木盆地东端,地处欧亚大陆深腹地,罗北凹地则是罗布泊东北部的一个次级凹地。通过对罗北凹地LDK01深孔沉积物粒度、磁化率和地球化学的分析,并结合沉积物的岩性、盐类矿物形态特征和和组合类型、构造背景,对罗布泊地区第四纪成钾环境的阶段性变化规律进行探讨。研究表明,罗布泊地区早更新世以来依次发育了河流相、三角洲相、湖泊相-风成相等沉积体系,并呈现出明显快速的湖相推进和退缩交替的频繁变化,指示盐湖演化是干湿气候周期变化和湖盆周围山区淡水周期补给共同作用结果。第四纪时期罗北凹地发展并最终形成塔里木"高山深盆"中最深的次级凹地地貌,这是青藏高原隆升导致的向北挤压的必然结果,大地构造和环境的变化直接控制了罗布泊盐湖的构造演化和沉积体系的转变。罗布泊盐湖的演化大致可分为三个阶段:第一阶段为断陷阶段,早更新世以来主要沉积淡水河流湖泊相陆源碎屑物;第二阶段为坳陷阶段,中更新世中期发育膏岩湖相,以石膏等硫酸盐析出为主要特征;第三阶段为萎缩阶段,进入晚更新世,大量盐湖相钙芒硝沉积至全新世时期石盐等氯化物析出;上述三个阶段构成一个完整蒸发沉积构造旋回并于最终阶段中形成了超大型的钾盐矿床。  相似文献   

15.
东营凹陷沙河街组湖相烃源岩的组合特征   总被引:30,自引:5,他引:30       下载免费PDF全文
古近系沙河街组是东营凹陷最重要的成藏组合。在前人研究基础上 ,系统采集该组 6 0 0余块烃源岩样品和 30个油田 186个原油样品 ,分别进行了多项有机地球化学测试。结合其沉积序列和地球化学分析结果 ,将沙河街组烃源岩划分为咸水湖相 (沙四段上部 )、半咸水深湖相 (沙三段下部 )和淡水湖相 -三角洲 (沙三段中部 )三种成因类型 ,它们分别对应欠充填、平衡充填和过充填的湖泊类型 ,代表了陆相断陷盆地烃源岩三种最基本的成因模式 ;并发现沙河街组烃源岩存在强烈的非均质性 ,尤其在平衡充填过程中表现更为突出 ,这种非均质性与湖平面的升降变化密切相关 ,据此提出了波动湖相沉积。通过深入的油 -源对比工作 ,确立了咸水湖相和半咸水深湖相烃源岩为东营凹陷的主力源岩。还探讨了有机质的赋存状态和油气运移方式 ,指出咸水湖相烃源岩形成的油气以侧向运移为主 ,形成的油气藏分布在盆地的边缘 ;半咸水深湖相烃源岩形成的油气以垂向运移为主 ,形成的油气藏主要分布在盆地的中心 ,油藏类型主要为隐蔽性油气藏  相似文献   

16.
A thick sedimentary sequence comprising fluvial, lacustrine and volcano-sedimentary rocks is present in the Neogene Beypazari Basin, central Anatolia. These units display considerable lateral facies variation and interfinger with alkaline volcanic rocks along the north-eastern margin of the basin. The uppermost Miocene Kirmir Formation contains numerous evaporite horizons. The evaporite sequence is up to 250 m thick and may be divided into four lithofacies. In ascending stratigraphical order these are: (1) gypsiferous claystone facies, (2) thenardite-glauberite facies, (3) laminar gypsum facies and (4) crystalline gypsum facies. These facies interfinger with one another laterally along a section from the margins to central parts of the basin. The lithological and sedimentological features of the Kirmir Formation indicate fluvial, saline playa mudflat, hypersaline ephemeral playa lake and very shallow subaqueous playa lake depositional environments, which probably were influenced by alternating semi-arid and evaporative conditions.  相似文献   

17.
《Sedimentology》2018,65(1):235-262
Chemostratigraphic studies on lacustrine sedimentary sequences provide essential insights on past cyclic climatic events, on their repetition and prediction through time. Diagenetic overprint of primary features often hinders the use of such studies for palaeoenvironmental reconstruction. Here the potential of integrated geochemical and petrographic methods is evaluated to record freshwater to saline oscillations within the ancient marginal lacustrine carbonates of the Miocene Ries Crater Lake (Germany). This area is critical because it represents the transition from shoreline to proximal domains of a hydrologically closed system, affected by recurrent emergent events, representing the boundaries of successive sedimentary cycles. Chemostratigraphy targets shifts related to subaerial exposure and/or climatic fluctuations. Methods combine facies changes with δ 13C–δ 18O chemostratigraphy from matrix carbonates across five closely spaced, temporally equivalent stratigraphic sections. Isotope composition of ostracod shells, gastropods and cements is provided for comparison. Cathodoluminescence and back‐scatter electron microscopy were performed to discriminate primary (syn‐)depositional, from secondary diagenetic features. Meteoric diagenesis is expressed by substantial early dissolution and dark blue luminescent sparry cements carrying negative δ 13C and δ 18O. Sedimentary cycles are not correlated by isotope chemostratigraphy. Both matrix δ 13C and δ 18O range from ca −7·5 to +4·0‰ and show clear positive covariance (R  = 0·97) whose nature differs from that of previous basin‐oriented studies on the lake: negative values are here unconnected to original freshwater lacustrine conditions but reflect extensive meteoric diagenesis, while positive values probably represent primary saline lake water chemistry. Noisy geochemical curves relate to heterogeneities in (primary) porosity, resulting in selective carbonate diagenesis. This study exemplifies that ancient lacustrine carbonates, despite extensive meteoric weathering, are able to retain key information for both palaeoenvironmental reconstruction and the understanding of diagenetic processes in relation to those primary conditions. Also, it emphasizes the limitation of chemostratigraphy in fossil carbonates, and specifically in settings that are sensitive for the preservation of primary environmental signals, such as lake margins prone to meteoric diagenesis.  相似文献   

18.
The Late Miocene lacustrine Acıgöl Basin, SW Turkey, formed as an orogen-top, extensional half-graben, with the subaqueous accommodation controlled by the lake level and the bulk accommodation provided by active subsidence along a WSW-trending normal fault at the basin's southern margin. The basin-fill sedimentary succession consists of terminal alluvial-fan facies overlain by ephemeral lake-margin facies and perennial lake facies, with widespread fluvial facies at the top. The distal alluvial-fan facies include massive to stratified sandstones and massive mudstones with intervening nodular dolostones and incipient pedogenic horizons. The lake-margin facies are micritic magnesites passing laterally into peloidal, irregularly laminated magnesites towards the palaeolake margin and overlain by marlstones and dolostones, all with abundant evidence of episodic subaerial exposure (desiccation cracks, pedogenic features, and tepee structures). The perennial lake facies are micritic magnesites passing upwards into clayey dolostones and dolomitic or clayey marlstones. The fluvial facies capping the succession include planar cross-stratified conglomerates (channel-fill deposits), planar parallel-stratified, planar cross-stratified and rippled cross-laminated sandstones (crevasse-fill and crevasse splay deposits), and assemblages of mudstones intercalated with thin sandstone beds (overbank floodplain deposits).The sedimentological, mineralogical and geochemical data reveal large variations in the basin's hydrological regime, including short-term oscillations and bulk rise of the lake level, periodical changes in the Mg/Ca ratio and terrigenous mud supply, and a negative covariance of δ18O and δ13C fluctuations. The composition of terrigenous sediment and the chemistry of water supplied to the lake were controlled by the weathering, chemical leaching and erosion of the ultramafic–dolomitic bedrock in the catchment area. The bedrock yielded Mg-rich carbonate solutions that caused the deposition of Mg-carbonates in the lake.Despite short-term lake-level fluctuations, the lake's net water budget remained positive. It is suggested that the region's present-day climate and Mg-rich alkaline lakes can serve as an analogue for the climatic and hydrological conditions in the Late Miocene Acıgöl Basin.  相似文献   

19.
This paper presents a sedimentary record from Lake ?ukie located in the southeastern part of the Central European Plain, beyond the reach of the maximum extent of the last glaciation. The lake has thermokarstic origin and developed during the last glacial termination due to subsidence of the sub‐Quaternary carbonate basement triggered by permafrost thawing. A sediment core was investigated to reconstruct water trophic state and lake depth changes during the Holocene. We aimed at showing the relationship between ecological and geochemical changes in the lake and regional/supraregional climatic and hydrological trends throughout the Holocene. Results of subfossil Cladocera analysis were combined with data on the geochemistry and stable C and O isotopes in sedimentary carbonates. Isotopic and geochemical proxies helped to detect sources of sedimentary particles in the lake and thus to reconstruct changes in the intensity of atmospheric and catchment processes (e.g. precipitation and surface runoff). The Cladocera analysis results indicated endogenic processes in the lake such as trophic changes. Our data revealed that Lake ?ukie has always been a rather eutrophic water body and the periods of particularly high productivity were in the lower Preboreal and upper Subatlantic. Periods of increased water depth were recorded in the lower Preboreal, lower Boreal and upper Subboreal, whereas low water stands were obtained during the late Preboreal, late Boreal, late Atlantic and Atlantic/Subboreal transition as well as during the lower Subboreal. The sediment succession from Lake ?ukie provides the first full Holocene record of carbon and oxygen stable isotopes in lacustrine carbonates from the eastern part of the Central European Lowland. The record is characterized by uncommonly high δ13C and δ18O values of the carbonates resulting from a combination of within‐lake processes and dissolution of the carbonate bedrock of Cretaceous age. The impact of the old carbonates on isotope values was helpful in the reconstruction of the catchment forcing on the lake.  相似文献   

20.
1980年6月,本文作者之一的K. Kelts曾去美国参加由经济古生物学者和矿物学者协会组织的地质旅行。该行主要是观察和研究怀俄明州西南始新统绿河组的沉积环境。对此次旅行中带回瑞士苏黎世联邦理工学院地质研究所的样品,曾作了切片、X-射线衍射和碳氧同位素分析。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号