首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
新疆乌兰乌苏物候变化规律及其对气候变化的响应   总被引:1,自引:0,他引:1  
分析新疆乌兰乌苏农业气象试验站1980—2002年物候与相应气候因子资料,得出乌兰乌苏23a来气温增高,降水增多,气候增暖增湿;候鸟停留时间增长,与积温、日照时数和降水量的年变化趋势一致,除降水外,其他均存在显著正相关关系;木本植物生育期延长,与4—10月平均气温、平均相对湿度、总日照时数和总降水量趋势一致;初霜和终霜均推迟,无霜期缩短;初雪和初次积雪提前,终雪推迟,冬季雪日增长;积雪开始融化提前,完全融化推迟,融化时间增长;土壤表面开始解冻日期趋势提前,而土壤表面开始冻结日期趋势推迟。另外,通过物候与气象因子建立的最优回归方程,获得物候对气候响应的定量关系,为生态环境研究提供一定的理论依据。  相似文献   

2.
Summary ?In many instances, snow cover and duration are a major controlling factor on a range of environmental systems in mountain regions. When assessing the impacts of climatic change on mountain ecosystems and river basins whose origin lie in the Alps, one of the key controls on such systems will reside in changes in snow amount and duration. At present, regional climate models or statistical downscaling techniques, which are the principal methods applied to the derivation of climatic variables in a future, changing climate, do not provide adequate information at the scales required for investigations in which snow is playing a major role. A study has thus been undertaken on the behavior of snow in the Swiss Alps, in particular the duration of the seasonal snow-pack, on the basis of observational data from a number of Swiss climatological stations. It is seen that there is a distinct link between snow-cover duration and height (i.e., temperature), and that this link has a specific “signature” according to the type of winter. Milder winters are associated with higher precipitation levels than colder winters, but with more solid precipitation at elevations exceeding 1,700–2,000 m above sea-level, and more liquid precipitation below. These results can be combined within a single diagram, linking winter minimum temperature, winter precipitation, and snow-cover duration. The resulting contour surfaces can then be used to assess the manner in which the length of the snow-season may change according to specified shifts in temperature and precipitation. While the technique is clearly empirical, it can be combined with regional climate model information to provide a useful estimate of the length of the snow season with snow cover, for various climate-impacts studies. Received May 14, 2002; revised August 12, 2002; accepted August 17, 2002  相似文献   

3.
An analysis is presented of an ensemble of regional climate model (RCM) experiments from the ENSEMBLES project in terms of mean winter snow water equivalent (SWE), the seasonal evolution of snow cover, and the duration of the continuous snow cover season in the European Alps. Two sets of simulations are considered, one driven by GCMs assuming the SRES A1B greenhouse gas scenario for the period 1951–2099, and the other by the ERA-40 reanalysis for the recent past. The simulated SWE for Switzerland for the winters 1971–2000 is validated against an observational data set derived from daily snow depth measurements. Model validation shows that the RCMs are capable of simulating the general spatial and seasonal variability of Alpine snow cover, but generally underestimate snow at elevations below 1,000 m and overestimate snow above 1,500 m. Model biases in snow cover can partly be related to biases in the atmospheric forcing. The analysis of climate projections for the twenty first century reveals high inter-model agreement on the following points: The strongest relative reduction in winter mean SWE is found below 1,500 m, amounting to 40–80 % by mid century relative to 1971–2000 and depending upon the model considered. At these elevations, mean winter temperatures are close to the melting point. At higher elevations the decrease of mean winter SWE is less pronounced but still a robust feature. For instance, at elevations of 2,000–2,500 m, SWE reductions amount to 10–60 % by mid century and to 30–80 % by the end of the century. The duration of the continuous snow cover season shows an asymmetric reduction with strongest shortening in springtime when ablation is the dominant factor for changes in SWE. We also find a substantial ensemble-mean reduction of snow reliability relevant to winter tourism at elevations below about 1,800 m by mid century, and at elevations below about 2,000 m by the end of the century.  相似文献   

4.
Snow pack in the Romanian Carpathians under changing climatic conditions   总被引:2,自引:0,他引:2  
Snow pack characteristics and duration are considered to be key indicators of climate change in mountain regions, especially during the winter season (herein considered to last from the 1st of November to the 30th of April). Deviations recorded in the regime of the main explanatory variables of snow pack changes (i.e. temperature and precipitation) offer useful information on winter climate variability, in the conditions of the winter warming trend already seen in some areas of the Romanian Carpathians. The present work focuses on changes and trends in snow pack characteristics and its related parameters, registered at the 15 weather stations located in the alpine, sub-alpine and forest belts in all the three Romanian Carpathian branches (>1,000 m) over the 1961–2003 period. Changes in the snow pack regime were investigated in relation with the modifications of winter temperature and precipitation having been detected mostly at the end of the twentieth century. A winter standardized index was calculated to group winters over the 43-year period into severity classes and detect the respective changes. Links between the number of snow cover days and seasonal NAO index were also statistically analysed in this study. The general results show large regional and altitudinal variations and the complex character of the climate in the Romanian Carpathians, leading to the idea of an ongoing warming process associated with a lower incidence of snow cover, affecting to a large extent the forested mountain areas located below 1,600–1,700 m altitude. Also negative and weak correlations were found, particularly over the December–March interval, between the number of snow cover days and seasonal NAO index values.  相似文献   

5.
The paper deals with problems of temporal and spatial variability of snow cover duration, of correlation between snow cover and winter mean air temperature patterns and of the impact of climate change on the snow cover pattern in Estonia. Snow cover fields are presented in form of IDRISI raster images. Snow cover duration measured at ca 100 stations and observation points have been interpolated into raster cells. On the base of time series of raster images, a map of mean territorial distribution of snow cover duration is calculated. Estonia is characterized by a great spatial variability of snow cover mostly caused by the influence of the Baltic Sea. General regularities of snow cover pattern are determined. A 104-year time series of spatial mean values of snow cover duration is composed and analyzed. A decreasing trend and periodical fluctuations have detected. Standardized principal component analysis is used for the time series of IDRISI raster images. It enables to study the influence of different factors on the formation of snow cover fields and territorial extent of coherent fluctuations. Correlation between snow cover duration and winter mean air temperature fields is analyzed. A spatial regression model is created for estimation of the influence of climate change on snow cover pattern in Estonia. Using incremental climate change scenarios (2 °C, 4 °C and 6 °C of warming in winter) mean decrease of snow cover duration in different regions in Estonia is calculated. According to results of model calculation, the highest decrease of snow cover duration will be take place on islands and in the coastal region of West Estonia. A permanent snow cover may not form at all. In the areas with maximum snow cover duration in North-East and South-East Estonia, that decrease should be much lower.  相似文献   

6.
Various remote sensing products and observed data sets were used to determine spatial and temporal trends in climatic variables and their relationship with snow cover area in the higher Himalayas, Nepal. The remote sensing techniques can detect spatial as well as temporal patterns in temperature and snow cover across the inaccessible terrain. Non-parametric methods (i.e. the Mann–Kendall method and Sen's slope) were used to identify trends in climatic variables. Increasing trends in temperature, approximately by 0.03 to 0.08 °C year?1 based on the station data in different season, and mixed trends in seasonal precipitation were found for the studied basin. The accuracy of MOD10A1 snow cover and fractional snow cover in the Kaligandaki Basin was assessed with respect to the Advanced Spaceborne Thermal Emission and Reflection Radiometer-based snow cover area. With increasing trends in winter and spring temperature and decreasing trends in precipitation, a significant negative trend in snow cover area during these seasons was also identified. Results indicate the possible impact of global warming on precipitation and snow cover area in the higher mountainous area. Similar investigations in other regions of Himalayas are warranted to further strengthen the understanding of impact of climate change on hydrology and water resources and extreme hydrologic events.  相似文献   

7.
An integrated program of ecosystem modeling and field studies in the mountains of the Pacific Northwest (U.S.A.) has quantified many of the ecological processes affected by climatic variability. Paleoecological and contemporary ecological data in forest ecosystems provided model parameterization and validation at broad spatial and temporal scales for tree growth, tree regeneration and treeline movement. For subalpine tree species, winter precipitation has a strong negative correlation with growth; this relationship is stronger at higher elevations and west-side sites (which have more precipitation). Temperature affects tree growth at some locations with respect to length of growing season (spring) and severity of drought at drier sites (summer). Furthermore, variable but predictable climate-growth relationships across elevation gradients suggest that tree species respond differently to climate at different locations, making a uniform response of these species to future climatic change unlikely. Multi-decadal variability in climate also affects ecosystem processes. Mountain hemlock growth at high-elevation sites is negatively correlated with winter snow depth and positively correlated with the winter Pacific Decadal Oscillation (PDO) index. At low elevations, the reverse is true. Glacier mass balance and fire severity are also linked to PDO. Rapid establishment of trees in subalpine ecosystems during this century is increasing forest cover and reducing meadow cover at many subalpine locations in the western U.S.A. and precipitation (snow depth) is a critical variable regulating conifer expansion. Lastly, modeling potential future ecosystem conditions suggests that increased climatic variability will result in increasing forest fire size and frequency, and reduced net primary productivity in drier, east-side forest ecosystems. As additional empirical data and modeling output become available, we will improve our ability to predict the effects of climatic change across a broad range of climates and mountain ecosystems in the northwestern U.S.A.  相似文献   

8.
Global climate change is expected to result in greater variation in snow cover and subsequent impacts on land surface hydrology and vegetation production in the high Trans Himalayan region (THR). This paper examines how the changes in timing and duration of snow cover affect the spatio-temporal pattern of rangeland phenology and production in the region. Moderate Resolution Imaging Spectrometer (MODIS) 16-day normalized difference vegetation index (NDVI) data from 2000 to 2009 and concurrent snow cover, precipitation and temperature data were analyzed. In contrast to numerous studies which have suggested that an earlier start of the season and an extension of the length of the growing season in mid and higher latitude areas due to global warming, this study shows a delay in the beginning of the growing season and the peak time of production, and a decline in the length of growing season in the drier part of THR following a decline and a delay in snow cover. Soil moisture in the beginning of the growing season and consequent rangeland vegetation production in drier areas of the THR was found to be strongly dependent upon the timing and duration of snow cover. However, in the wetter part of the THR, an earlier start of season, a delay in end of season and hence a longer growing season was observed, which could be attributed to warming in winter and early spring and cooling in summer and late spring and changes in timing of snow melt. The study shows a linear positive relationship between rangeland vegetation production and snow cover in the drier parts of THR, a quadratic relationship near to permanent snow line, and a negative linear relationship in wetter highlands. These findings suggest that, while temperature is important, changes in snow cover and precipitation pattern play more important roles in snow-fed, drier regions for rangeland vegetation dynamics.  相似文献   

9.
In high altitude areas snow cover duration largely determines the length of the growing season of the vegetation. A sensitivity study of snow cover to various scenarios of temperature and precipitation has been conducted to assess how snow cover and vegetation may respond for a very localized area of the high Swiss Alps (2050–2500 m above sea level). A surface energy balance model has been upgraded to compute snow depth and duration, taking into account solar radiation geometry over complex topography. Plant habitat zones have been defined and 23 species, whose photoperiodic preferences were documented in an earlier study, were grouped into each zone. The sensitivity of snowmelt to a change in mean, minimum and maximum temperature alone and a change in mean temperature combined with a precipitation change of +10% in winter and −10% in summer is investigated. A seasonal increase in the mean temperature of 3 to 5 K reduces snow cover depth and duration by more than a month on average. Snow melts two months earlier in the rock habitat zone with the mean temperature scenario than under current climate conditions. This allows the species in this habitat to flower earlier in a warmer climate, but not all plants are able to adapt to such changes.  相似文献   

10.
We investigate the response of a climate system model to two different methods for estimating snow cover fraction. In the control case, snow cover fraction changes gradually with snow depth; in the alternative scenarios (one with prescribed vegetation and one with dynamic vegetation), snow cover fraction initially increases with snow depth almost twice as fast as the control method. In cases where the vegetation was fixed (prescribed), the choice of snow cover parameterization resulted in a limited model response. Increased albedo associated with the high snow caused some moderate localized cooling (3–5°C), mostly at very high latitudes (>70°N) and during the spring season. During the other seasons, however, the cooling was not very extensive. With dynamic vegetation the change is much more dramatic. The initial increases in snow cover fraction with the new parameterization lead to a large-scale southward retreat of boreal vegetation, widespread cooling, and persistent snow cover over much of the boreal region during the boreal summer. Large cold anomalies of up to 15°C cover much of northern Eurasia and North America and the cooling is geographically extensive in the northern hemisphere extratropics, especially during the spring and summer seasons. This study demonstrates the potential for dynamic vegetation within climate models to be quite sensitive to modest forcing. This highlights the importance of dynamic vegetation, both as an amplifier of feedbacks in the climate system and as an essential consideration when implementing adjustments to existing model parameters and algorithms.  相似文献   

11.
青藏高原雪盖异常对福建雨季旱涝影响的环流诊断   总被引:3,自引:0,他引:3  
利用19555-1994年多种不同类型青藏高原积雪资料的综合再分析结果,通过分析青藏高原雪盖异常年冬季和初夏北半球大气环流特征,及北半球大气环流与福建雨季降水的遥相关,讨论高原雪盖异常反馈影响大气环流,进而导致福建雨季旱涝的可能途径,为在福建雨季旱涝预测中应用积雪因子提供一定的物理基础。  相似文献   

12.
Both observational and numerical studies demonstrate the sensitivity of the atmosphere to variations in the extent and mass of snow cover. There is therefore a need for simple but realistic snow parameterizations in forecast and climate models. A new snow hydrology scheme has recently been developed at Météo-France for use in the ARPEGE climate model and has been successfully tested against local field measurements in stand-alone experiments. This study describes the global validation of the parameterization in a 3-year integration for the present-day climate within the T42L30 version of ARPEGE. Results are compared with those from a control simulation and with available observed climatologies, in order to assess the impact of the new snow parameterization on the simulated surface climate. The seasonal cycle of the Northern Hemisphere snow cover is clearly improved when using the new scheme. The snow pack is still slightly overestimated in winter, but its poleward retreat is better reproduced during the melting season. As a consequence, the modified GCM performs well in simulating the springtime continental heating, which may play a strong role in the simulation of the Asian summer monsoon.  相似文献   

13.
年代际气候变化与1998年长江大水   总被引:11,自引:2,他引:9  
由于海温、高原积雪和大气环流异常等特定条件,引发了1998年夏季长江的特大洪涝,而90年代的气候特征也对1998年长江大水起到一定的作用。从中国夏季降水、大气环流、冬季高原积雪和海温等方面分析年代际气候变化对1998年长江大水提供有利的气候环境。  相似文献   

14.
青藏高原冬春季积雪异常对中国春夏季降水的影响   总被引:27,自引:3,他引:27  
利用1956年12月~1998年12月共42a,青藏高原及其附近地区78个积雪观测站的雪深和我国160站月降水的距平资料,分析了其气候特征,并用SVD方法分析了冬春季积雪异常与春夏季我国降水异常的关系。用区域气候模式RegCM2模拟了青藏高原积雪异常的气候效应并检验了诊断分析的结果。分析表明,雪深异常,尤其是冬季雪深异常是影响中国降水的一个因子。研究证明,高原冬季雪深异常对后期中国区域降水的影响比春季雪深异常的影响更为重要。数值模拟的结果表明,高原雪深和雪盖的正异常推迟了东亚夏季风的爆发日期,减弱了季风强度,造成华南和华北降水减少,而长江和淮河流域降水增加。冬季雪深异常比冬季雪盖异常和春季雪深异常对降水的影响更为显著。机理分析指出,高原及其邻近地区的积雪异常首先通过融雪改变土壤湿度和地表温度,从而改变了地面到大气的热量、水汽和辐射通量。由此所引起的大气环流变化又反过来影响下垫面的特征和通量输送。在湿土壤和大气之间,这样一种长时间的相互作用是造成后期气候变化的关键过程。与干土壤和大气的相互作用过程有本质差别。  相似文献   

15.
2001年全球重大气候事件概述   总被引:1,自引:0,他引:1  
李晓燕 《气象》2002,28(4):25-28
全球气候仍持续偏暖。亚洲大部出现异常冷冬,许多地区遇到数十年未见的风雪严寒;美国冬季也连续遭受暴风雪袭击。东亚、南亚、中亚有西亚发生了大范围的持久干旱,南亚、东南亚夏季暴雨频繁,造成严重洪涝灾害。欧洲、非洲及南美洲的许多国家和地区降水异常偏多,导致不同程度的洪水,俄罗斯西伯利亚地区发生百年不遇的大洪水。北大西洋飓风较常年显著偏多,西北太平洋台风也给沿海地区带来严重灾害。  相似文献   

16.
Warmer climate: less or more snow?   总被引:1,自引:0,他引:1  
Changes in snow amount, as measured by the water equivalent of the snow pack (SWE), are studied using simulations of 21st century climate by 20 global climate models. Although the simulated warming makes snow season to shorten from its both ends in all of Eurasia and North America, SWE at the height of the winter generally increases in the coldest areas. Elsewhere, snow decreases throughout the winter. The average borderline between increasing and decreasing midwinter SWE coincides broadly with the ?20°C isotherm in late 20th century November–March mean temperature, although with some variability between different areas. On the colder side of this isotherm, an increase in total precipitation generally dominates over reduced fraction of solid precipitation and more efficient melting, and SWE therefore increases. On the warmer side, where the phase of winter precipitation and snowmelt are more sensitive to the simulated warming, the reverse happens. The strong temperature dependence of the simulated SWE changes suggests that projections of SWE change could be potentially improved by taking into account biases in simulated present-day winter temperatures. A probabilistic cross verification exercise supports this suggestion.  相似文献   

17.
Ecosystems in biogeographical transition zones, or ecotones, tend to be highly sensitive to climate and can provide early indications of future change. To evaluate recent climatic changes and their impacts in a boreal-temperate ecotone in eastern North America, we analyzed ice phenology records (1975?C2007) for five lakes in the Adirondack Mountains of northern New York State. We observed rapidly decreasing trends of up to 21?days less ice cover, mostly due to later freeze-up and partially due to earlier break-up. To evaluate the local drivers of these lake ice changes, we modeled ice phenology based on local climate data, derived climatic predictors from the models, and evaluated trends in those predictors to determine which were responsible for observed changes in lake ice. November and December temperature and snow depth consistently predicted ice-in, and recent trends of warming and decreasing snow during these months were consistent with later ice formation. March and April temperature and snow depth consistently predicted ice-out, but the absence of trends in snow depth during these months, despite concurrent warming, resulted in much weaker trends for ice-out. Recent rates of warming in the Adirondacks are among the highest regionally, although with a different seasonality of changes (early winter > late winter) that is consistent with other lake ice records in the surrounding area. Projected future declines in snow cover could create positive feedbacks and accelerate current rates of ice loss due to warming. Climate sensitivity was greatest for the larger lakes in our study, including Wolf Lake, considered one of the most ecologically intact ??wilderness lakes?? in eastern North America. Our study provides further evidence of climate sensitivity of the boreal-temperate ecotone of eastern North America and points to emergent conservation challenges posed by climate change in legally protected yet vulnerable landscapes like the Adirondack Park.  相似文献   

18.
穆松宁  周广庆 《大气科学》2012,36(2):297-315
本文主要利用美国冰雪资料中心 (The National Snow and Ice Data Center) 提供的卫星反演积雪资料和ERA40土壤温度再分析资料, 采用相关分析, 对欧亚北部冬季新增雪盖面积 (冬季TFSE) 与我国夏季气候异常关系的可能物理途径进行了初步研究。结果表明, 春夏季陆面季节演变异常是上述“隔季相关” 的重要纽带: 当冬季TFSE偏大时, 欧亚北部大范围积雪—冻土自西向东、 由南向北的融化进程明显减慢, 受其影响, 至夏季, 东亚中高纬区积雪和地表冻土的融化异常强烈, 土壤温度明显偏低, 这种夏季陆面异常可能通过自身的冷却作用, 通过加强东亚中高纬异常北风对东亚中纬区夏季变冷产生直接影响, 进而与西太平洋副热带高压, 乃至与我国江南夏季降水异常产生关联; 冬季TFSE偏小时相反。分析表明, 冬季TFSE信号在东亚中高纬局地的春季积雪—冻土融化过程中被加强, 并在夏季达到显著。  相似文献   

19.
气候变暖将导致高山区冰冻圈加剧融化,一方面融水资源时空分布的不确定性增大;另一方面,融水洪水灾害发生的频度和强度也将发生改变。基于气象、水文数据和MODIS积雪覆盖数据,利用融雪径流模型(SRM),对1990—2012年共23年祁连山黑河札马什克控制区融雪期径流进行模拟与验证。结果表明:SRM在该流域具有较高的模拟精度(纳什系数为0.91),可用于分析和预估控制区径流强度变化。为此,采用黑河流域气温、降水降尺度数据,预估了未来气候变化背景下积雪范围变化及不同重现期洪水变化趋势。结果显示,与基准期相比,在RCP2.6、RCP4.5和RCP8.5情景下,最大积雪范围可减小3%~7%,且随着海拔升高,变化愈剧烈。RCP2.6情景下因气温和降水变化幅度较小,到21世纪末各重现期洪水强度保持在10%以内波动;RCP4.5情景下,各重现期洪水强度最高增大约20%;在RCP8.5情景下,各重现期洪水强度最高可增大超30%。相关分析结果显示,不同重现期洪水径流与气温和降水均具有较强相关性:重现期越长,洪峰与气温的相关性越大;重现期越短,洪峰与降水的相关性越大。通过预估气候变化背景下的融雪性洪水事件强度及重现期变化,有助于有效开展区域洪水风险管理、提高洪水资源的利用价值。  相似文献   

20.
Snow is an important environmental factor in alpine ecosystems, which influences plant phenology, growth and species composition in various ways. With current climate warming, the snow-to-rain ratio is decreasing, and the timing of snowmelt advancing. In a 2-year field experiment above treeline in the Swiss Alps, we investigated how a substantial decrease in snow depth and an earlier snowmelt affect plant phenology, growth, and reproduction of the four most abundant dwarf-shrub species in an alpine tundra community. By advancing the timing when plants started their growing season and thus lost their winter frost hardiness, earlier snowmelt also changed the number of low-temperature events they experienced while frost sensitive. This seemed to outweigh the positive effects of a longer growing season and hence, aboveground growth was reduced after advanced snowmelt in three of the four species studied. Only Loiseleuria procumbens, a specialist of wind exposed sites with little snow, benefited from an advanced snowmelt. We conclude that changes in the snow cover can have a wide range of species-specific effects on alpine tundra plants. Thus, changes in winter climate and snow cover characteristics should be taken into account when predicting climate change effects on alpine ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号