首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Based on the analysis of new data of a total of 60 000 km, the authors propose a new spreading model of the tectonic evolution of the South China Sea Basin and suggest that magnetic anomalies in the Basin are the magnetic anomalies of a new type in marginal basins, that the tectonic development of the Basin can be divided into three seafloor spreading phases and that the southward migration of spreading ridge is related to the asymmetric spreading.  相似文献   

2.
The importance of geomagnetic studies in the World Ocean for deep structure research and fore-casting of mineral resources is noted. A combined method for development of a marine nuclear magnetometer is adduced. The physical background of operation of nuclear magnetometers is analyzed in order to optimize the measurements of the magnetic field. The results of the experiments on detecting nuclear precession signals against the background of ship noises are considered and the elaboration of an MM-1 nuclear magnetometer at the Shirshov Institute of Oceanology is described. A technique for magnetic survey and comprehensive geological interpretation of the anomalies and Z and H field components are presented. Examples of geomagnetic studies performed in the World Ocean with the MM-Inuclear magnetometer are assessed: for the first time in Russia, linear magnetic anomalies were identified and sea-floor spreading rates were calculated (the northern part of the Indian Ocean); a regional geomagnetic survey was carried out in the region of Iceland, which proved the spreading origin of the seafloor in this vast region. A systematic analysis of geomagnetic data obtained with the MM-1 magnetometer in the World Ocean provided the creation and development of the methodology for their tectonic and geodynamical interpretation. On the basis of the geomagnetic data obtained, new fundamental conclusions about the deep structure, kinematics and paleogeodynanics of the World Ocean floor were made.  相似文献   

3.
New data collected between the northernmost tip of the East Pacific rise (18°05'N, 105°35'W) and the Middle America trench provide evidence that the seafloor, which lacks significant sedimentary cover, has a typical spreading-derived abyssal hill topography. The tectonic fabric of this seafloor is concave to the west, as it is today at the tip of the East Pacific rise. Farther to the east, at the outer wall of the trench, the seafloor topography exhibits a north-south trending fabric. We suggest that this fabric originated along the East Pacific rise, as it reached the trench and possibly subducted beneath the North America plate prior to the development of the complex connection of the East Pacific rise with the Rivera transform.  相似文献   

4.
The application of advanced enhancement techniques for geophysical anomalies to global gravity (WGM2012) and magnetic (EMAG2) models sheds light on the complex tectonic evolution of the Rio Grande Rise (RGR) in the southern South Atlantic. Long wavelength Bouguer gravity lows indicate a thicker crust beneath of the ridge, whose nature can be related to a microcontinent or an excess of volcanism within the oceanic realm. Recently dredged continental rocks reinforce the hypothesis of a microcontinent or, at least, slivers of continental crust. However, the reserval magnetic pattern of the processed magnetic anomalies provide no evidence of aborted spreading center similar to the well-studied Jan Mayen microcontinent and the surrounding (inactive) Aegir and (active) Kolbeinsey ridges in the North Atlantic Ocean. The reversal magnetic anomalies show a series N-S trending parallel stripes roughly follow the current South American coastline and segmented by E-W oriented oceanic fracture zones (FZs). The magnetic stripes are bended eastwards at the RGR, showing a more complex magnetic pattern similar to that in the Iceland. The aborted Cruzeiro do Sul Rift (CSR) and the Jean Charcot Chain (JCC) are structures that cross the RGR and contribute to the understanding of the tectonic evolution of the South Atlantic Ocean. NW-SE oriented extensive gravity lows and bathymetric valleys, which mark the CSR, are segmented by E-W trending magnetic lineaments related to FZs. This structural configuration suggests that the extensional event, which formed the rift and the seamounts chain, was replaced by strike-slip movements along the FZs. In addition, we constructed a plate kinematic model for the evolution of the RGR based on bathymetric, free-air and Bouguer gravity and magnetic data. Our model comprises five main stages of the RGR formation and evolution between late Cretaceous and Paleocene (ca. 95 - 60 Ma), separated by published seafloor isochrones. The proposed model suggests that the RGR was built at the mid-Atlantic ridge by increased magmatism probably related to the Tristan da Cunha hotspot.  相似文献   

5.
南海大洋钻探及海洋地质与地球物理前沿研究新突破   总被引:2,自引:2,他引:0  
南海是西太平洋地区规模最大且具有代表性的边缘海盆地之一。经过近几十年的研究积累,尤其是通过实施5个国际大洋钻探航次(1999–2018年)与国家自然科学基金委“南海深海过程演变”重大研究计划(2011–2019年),我国科学家获得了大量宝贵的第一手资料,取得了一系列创新进展与重大突破,标志着南海海洋地质与地球物理研究正走向国际前沿。重要研究成果包括:(1)新提出南海是“板缘张裂”盆地,与经典的大西洋型陆缘模式不同;(2)大洋钻探首次获取了基底玄武岩样品,结合中国在南海首次深拖地磁测量实验,精确测定了南海海盆玄武岩年龄,揭示南海海盆从东向西分段扩张;(3)大洋钻探结果发现南海陆缘岩石圈减薄之初岩浆迅速出现,未发现缓慢破裂造成的蛇纹岩出露;(4)发现南海扩张结束后仍存在大量岩浆活动,可能受控于多种构造与地幔因素;(5)地球化学证据与地球动力学模拟都显示南海岩浆的形成受到周边俯冲带的影响。目前我国的海洋地球科学正在进入崭新的发展阶段,有望以南海为基点,开始拓展到周边大洋,通过主导大型研究计划以及建设我国大洋钻探平台,以提升我国在南海、西太平洋与印度洋海洋地质科学研究的实质性影响力与引领地位。  相似文献   

6.
The data from a recent magnetic compilation by Verhoefet al. (1991) off west Africa were used in combination with data in the western Atlantic to review the Mesozoic plate kinematic evolution of the central North Atlantic. The magnetic profile data were analyzed to identify the M-series sea floor spreading anomalies on the African plate. Oceanic fracture zones were identified from magnetic anomalies and seismic and gravity measurements. The identified sea floor spreading anomalies on the African plate were combined with those on the North American plate to calculate reconstruction poles for this part of the central Atlantic. The total separation poles derived in this paper describe a smooth curve, suggesting that the motion of the pole through time was continuous. Although the new sea floor spreading history differs only slightly from the one presented by Klitgord and Schouten (1986), it predicts smoother flowlines. On the other hand, the sea floor spreading history as depicted by the flowlines for the eastern central Atlantic deviates substantially from that of Sundvik and Larson (1988). A revised spreading history is also presented for the Cretaceous Magnetic Quiet Zone, where large changes in spreading direction occurred, that can not be resolved when fitting magnetic isochrons only, but which are evident from fracture zone traces and directions of sea floor spreading topography.Deceased 11 November 1991  相似文献   

7.
On the basis of bathymetric data and other geological and geophysical data obtained during the first survey conducted by Chinese Mainland in the area off eastern Taiwan Island from May to June in 2000, the morphological features of the region, the tectonic control to the seafloor topography and their tectonic implication are studied and discussed. The results have revealed that both the slope zone of the Ryukyu arc and the Ryukyu Trench present a typical morphotectonic characteristics controlled by the trench-arc system in the West Pacific Ocean. At the slope of eastern Taiwan Island the isobathic lines parallel to the coastline and distribute densely in nearly N-S direction and the slope gradient of topography is large. Such a unique feature is attributed to the collision of the Luzon arc and Eurasia continent. In the Huatung Basin, turbidity fans and submarine canyons are well developed, the formations of which are mainly related to the steep topography of the slope of the Luzon arc and the abundant s  相似文献   

8.
海底地形对开展海洋科学调查和研究十分重要。以多波束为主的回声测深技术测量成本高且效率低,几十年来仅实现了全球约20%的海床测绘。对于空白区(特别是深海区域),可以借助重力异常和重力垂直梯度异常进行回归分析反演得到,但该方法得到的比例因子鲁棒性不强。为了解决这一问题,同时考虑到两种重力数据在表征海底地形长短波长的不同优势,本文结合滑动窗口赋权和稳健回归分析来反演海底地形。在太平洋皇帝山海域(35°~45°N,165°~175°E)的实验结果表明:在船测检核点处,本文构建模型的标准差为61.02 m,相比于单一重力数据反演模型,精度分别提高了14.92%(重力异常)和2.08%(重力垂直梯度异常),能较好地反映皇帝海山链的地形走势。  相似文献   

9.
ALVIN investigations have defined the fine-scale structural and volcanic patterns produced by active rift and spreading center propagation and failure near 95.5° W on the Galapagos spreading center. Behind the initial lithospheric rifting, which is propagating nearly due west at about 50 km m.y.–1, a triangular block of preexisting lithosphere is being stretched and fractured, with some recent volcanism along curving fissures. A well-organized seafloor spreading center, an extensively faulted and fissured volcanic ridge, develops ~ 10 km (~ 200,000 years) behind the tectonic rift tip. Regional variations in the chemical compositions of the youngest lavas collected during this program contrast with those encompassing the entire 3 m.y. of propagation history for this region. A maximum in degree of magmatic differentiation occurs about 9 km behind the propagating rift tip, in a region of diffuse rifting. The propagating spreading center shows a gentle gradient in magmatic differentiation culminating at the SW-curving spreading center tip. Except for the doomed rift, which is in a constructional phase, tectonic activity also dominates over volcanic activity along the failing spreading system. In contrast to the propagating rift, failing rift lavas show a highly restricted range of compositions consistent with derivation from a declining upwelling zone accompanying rift failure. The lithosphere transferred from the Cocos to the Nazca plate by this propagator is extensively faulted and characterized by ubiquitous talus in one of the most tectonically disrupted areas of seafloor known. The pseudofault scarps, where the preexisting lithosphere was rifted apart, appear to include both normal and propagator lavas and are thus more lithologically complex than previously thought. Biological communities, probably vestimentiferan tubeworms, occur near the top of the outer pseudofault scarp, although no hydrothermal venting was observed.  相似文献   

10.
印度洋底大地构造图(1∶1 500万)基于最新地球物理数据,结合中国大洋调查航次积累的地貌、地质、地球物理和矿产资源资料编制,综合反映印度洋底及周缘地质、地貌、地球物理和资源分布等特征,将为理解和推进印度洋盆构造演化和资源分布研究提供理论支撑。本文介绍了该图编制的思路和方法、数据来源、图面内容和大地构造单元划分,认为印度洋盆具有多微陆块、多期扩张、多洋底高原、无震海岭和"入"字形洋中脊等特征。在前人研究基础上,将印度洋盆地构造演化归纳为3个阶段:(1)冈瓦纳大陆裂解与洋盆初始张开(侏罗纪-白垩纪中期);(2)洋盆持续张开与扩张中心跃迁(白垩纪中期-古近纪初期);(3)印度板块与欧亚板块俯冲碰撞及非洲板块裂解(新生代)。在扩张中心跃迁式的发育形式下,现今印度洋盆多微陆块、多期扩张中心和"入"字形的洋中脊基本构造格局在古近纪早期便已形成。  相似文献   

11.
东南印度洋脊(Southeast Indian Ridge, 简称SEIR)是中速扩张洋中脊, 在其中的108°—134°E区域的全扩张速率为72~76 mm·a -1。但在接近澳大利亚-南极洲不整合带(Australian-Antarctic Discordance, 简称AAD)区内, 海底地貌沿洋中脊的变化强烈, 其变化范围涵盖了从慢速到快速扩张洋中脊上常见的例子, 且出现了明显的地球物理与地球化学异常, 说明洋中脊在AAD区附近的岩浆供应量极不均匀。文章定量分析了高精度多波束测深数据, 计算了洋中脊不同段的地形坡度、断层比例以及平面与剖面的岩浆参数M值, 结合研究区内剩余地幔布格重力异常以及洋中脊轴部地球化学指标Na8.0、Fe8.0等资料, 分析与讨论了研究区的断层构造与岩浆活动特征的关系。研究发现, 东南印度洋脊108°—134°E区域的B区(在AAD区内)及C5段(在AAD区外西侧)发育有大量的海洋核杂岩, 而且B区的海洋核杂岩单体规模更大, 其中最大的位于B3区, 沿洋中脊扩张方向延伸约50km。研究结果首次系统性地显示, 相比东南印度洋的其他区域, B和C5异常区具有偏低的平面与剖面M值、偏高的断层比例、偏正的地幔布格重力异常以及偏高的Na8.0值与偏低的Fe8.0值, 这些异常特征可能反映了B区和C5段的岩浆初始熔融深度较浅以及岩浆熔融程度较低, 因此导致其岩浆供应量异常少, 形成较薄的地壳。研究结果同时表明, 在岩浆供应量极少的洋中脊, 构造伸展作用有利于海洋核杂岩的发育, 导致地壳进一步减薄。  相似文献   

12.
Tectonic and volcanic activity along the East Pacific Rise near Lat. 21°N is generally restricted to a 3–4‐km‐wide area centered over the rise axis. The East Pacific Rise is a medium‐rate (60 mm/yr) spreading center characterized by modest (100–200 m) relief of hills and seapeaks across the crestal region that is typical for such spreading centers. Few tectonic features appear in an axial volcanic zone 600–1, 200 m wide characterized by fresh, glassy pillow basalt and little or no sediment cover. This volcanic terrain is commonly flanked by tectonic zones where older lavas are cut by numerous normal faults bounding horst and graben systems and open fissures; these tectonic zones are commonly of unequal width on each side of the central volcanic zone and locally may be absent on one side. Bottom photographs and visual observations from a manned submersible indicate that most faults and fissures in the tectonic zones are young. Farther than 2 or 3 km from the axial volcanic zone, recent tectonic activity appears limited to a few faults that bound linear abyssal hills with total offset, suggesting relatively minor extension, so that instrumentation to measure the rate of plate separation along the rise crest will have to span both the volcanic and tectonic zones. The total width of the active plate boundary is at least 20 km, although less than 10% of the separation of the oceanic plates is accounted for by fault displacement and open fissures observed in the tectonic zones and on adjacent rise flanks. The asymmetric widths of the extensional tectonic zones result from migration of the volcanic extrusive zone over time.  相似文献   

13.
We present results from a SeaMARC II bathymetry, gravity, and magnetics survey of the northern end of the large-offset propagating East Rift of the Easter microplate. The East Rift is offset by more than 300 km from the East Pacific Rise and its northern end has rifted into approximately 3 Ma lithosphere of the Nazca Plate forming a broad (70–100 km) zone of high (up to 4 km) relief referred to as the Pito Rift. This region appears to have undergone distributed and asymmetric extension that has been primarily accommodated tectonically, by block faulting and tilting, and to a lesser degree by seafloor spreading on a more recently developed magmatic accretionary axis. The larger fault blocks have dimensions of 10–15 km and have up to several km of throw between adjacent blocks suggesting that isostatic adjustments occur on the scale of the individual blocks. Three-dimensional terrain corrected Bouguer anomalies, a three-dimensional magnetic inversion, and SeaMARC II backscatter data locate the recently developed magmatic axis in an asymmetric position in the western part of the rift. The zone of magmatic accretion is characterized by an axis of negative Bouguer gravity anomalies, a band of positive magnetizations, and a high amplitude magnetization zone locating its tip approximately 10 km south of the Pito Deep, the deepest point in the rift area. Positive Bouguer gravity anomalies and negative magnetizations characterize the faulted area to the east of the spreading axis supporting the interpretation that this area consists primarily of pre-existing Nazca plate that has been block faulted and stretched, and that no substantial new accretion has occurred there. The wide zone of deformation in the Pito Rift area and the changing trend of the fault blocks from nearly N-S in the east to NW-SE in the west may be a result of the rapidly changing kinematics of the Easter microplate and/or may result from ridge-transform like shear stresses developed at the termination of the East Rift against the Nazca plate. The broad zone of deformation developed at the Pito Rift and its apparent continuation some distance south along the East Rift has important implications for microplate mechanics and kinematic reconstructions since it suggests that initial microplate boundaries may consist in part of broad zones of deformation characterized by the formation of lithospheric scale fault blocks, and that what appear to be pseudofaults may actually be the outer boundaries of tectonized zones enclosing significant amounts of stretched pre-existing lithosphere.  相似文献   

14.
基于2000年5~6月在台湾岛以东海域调查获得的多波束全覆盖测深等地质和地球物理资料,对该海域海底地形特征进行了研究,探讨了构造对海底地形的控制作用及其构造地质意义.研究表明,琉球岛弧岛坡区和琉球海沟表现为典型的西太平洋沟-弧-盆体系控制下的构造地形;台湾岛东部岛坡等深线近南北向平行密集排列,地形坡度大,弧陆碰撞造就了该区独特的地形特征;花东盆地海底峡谷发育,其形成主要受基底起伏和走滑断裂的控制;加瓜海脊东西两侧水深和地形特征明显不同,但其基底可能属于花东盆地,加瓜海脊的东侧对应了两个不同性质板块的边界;西菲律宾海盆表现为北西向线状脊-槽相间排列,并遭受北东向转换断层的切割,根据海底地形、转换断层和磁异常条带的方向推测,研究区海底形成于距今60~45Ma的西菲律宾海盆北东-南西向扩张期.  相似文献   

15.
2015—2018年, 国家自然科学基金重大研究计划“南海深海过程演变”的重点支持项目“南海东部马尼拉俯冲带深部结构探测与研究”以马尼拉俯冲带为研究重点, 从深部地球物理的角度探索南海形成演化史与运行规律。项目执行期间, 在国家基金委共享航次协助下, 先后开展和参与5次综合地球物理探测, 共投放海底地震仪(Ocean Bottom Seismometer, OBS)台站73台次, 海底电磁仪(Ocean Bottom ElectroMagnetometers, OBEM)仪器5台次, 累积放炮达13872炮, 成功获得了60台OBS数据和5台OBEM数据。同时, 取得了一系列创新性研究成果: (1)基于人工地震探测及天然地震层析成像结果, 确定南海东北部的地壳属性为受到张裂后期岩浆活动影响的减薄陆壳(12~15km), 划分了南海北部陆缘洋陆边界(Continent-Ocean Boundary, COB); (2)根据多道地震反射剖面, 划分了马尼拉俯冲带北部增生楔前缘的精细结构; (3)圈定了南海停止扩张时洋壳范围; (4)初步构建了南海与菲律宾海板块构造演化模型。本项目为重大研究计划“南海深海过程演变”核心科学问题(海底扩张的年代与过程)提供了实质性的证据, 同时为南海构造演化生命史的“骨架”提供了重要的基础数据, 具有深远的科学意义。  相似文献   

16.
Spreading cycles in the Pacific Ocean   总被引:1,自引:0,他引:1  
Changes in the spreading rates in the Pharallon-Pacific-Izanagi (Kula) triple junction during the Cretaceous and Cenozoic are revised using new data of the dynamics of the Pacific plate. The cyclic character of the spreading is recognized, and the stages of its acceleration and deceleration are distinguished. Approximately 130, 87, and 42 My B.P., at the culminations of the cycles, when maximal spreading rates were reached, the principal rearrangements in the tectonic evolution of the ocean occurred. The spreading rates were minimal about 140, 120, 65, and 15 My B.P. The latter periods are marked by pulses of basalt magmatism in the west, east, and northeast of the Pacific Ocean. The study recognized no signs of the intrusion of the Middle Cretaceous superplume, which was suggested by Larson. Both the cycling revealed and the pulsations of the intraplate volcanism are most probably related to the regularities of the deformations of the oceanic lithosphere and reflect the periodic alternations of regimes of compression and extension of the Pacific plate during the last 180 My.  相似文献   

17.
南海中央海盆岩石圈纵向演化模拟   总被引:1,自引:0,他引:1  
基于南海海盆的地质构造历史、地球物理和构造应力场资料建立准三维有限元模型,对南海中央海盆进行岩石圈纵向演化动力学模拟.本文采用弹塑性各向同性连续岩石介质模型,充分考虑拉伸速率、拉伸位移以及模型参数对模拟结果的影响,共建立了3个模型进行比较.从数值模拟结果可以看出中央海盆在被动拉张的地质构造背景下是单向生长的,动态模拟出南海中央海盆在形成过程中的陆缘裂离、海底扩张两个阶段的岩石圈纵向演化过程,并且分析了两个阶段岩石圈的动力学性质.提出水平的被动拉张力是南海岩石圈纵向演化前两个阶段形成的主要因素,并且在这两个阶段中,岩石圈的纵向演化时间主要集中在海底扩张阶段.  相似文献   

18.
The Siqueiros transform fault system, which offsets the East Pacific Rise between 8°20N–8°30N, has been mapped with the Sea MARC II sonar system and is found to consist of four intra-transform spreading centers and five strike-slip faults. The bathymetric and side-looking sonar data define the total width of the transform domain to be 20km. The transform domain includes prominent topographic features that are related to either seafloor spreading processes at the short spreading centers or shearing along the bounding faults. The spreading axes and the seafloor on the flanks of each small spreading center comprise morphological and structural features which suggest that the two western spreading centers are older than the eastern spreading centers. Structural data for the Clipperton, Orozco and Siqueiros transforms, indicate that the relative plate motion geometry of the Pacific-Cocos plate boundary has been stable for the past 1.5 Ma. Because the seafloor spreading fabric on the flanks of the western spreading centers is 500 000 years old and parallels the present EPR abyssal hill trend (350°) we conclude that a small change in plate motion was not the cause for intra-transform spreading center development in Siqueiros. We suggest that the impetus for the development of intra-transform spreading centers along the Siqueiros transform system was provided by the interaction of small melt anomalies in the mantle (SMAM) with deepseated, throughgoing lithospheric fractures within the shear zone. Initially, eruption sites may have been preferentially located along strike-slip faults and/or along cross-faults that eventually developed into pull-apart basins. Spreading centers C and D in the eastern portion of Siqueiros are in this initial pull-apart stage. Continued intrusion and volcanism along a short ridge within a pull-apart basin may lead to the formation of a stable, small intra-transform spreading center that creates a narrow swath of ridge-parallel structures within the transform domain. The morphology and structure of the axes and flanks of spreading centers A and B in the western and central portion of Siqueiros reflect this type of evolution and suggest that magmatism associated with these intra-transform spreading centers has been active for the past 0.5–1.0 Ma.  相似文献   

19.
The continental breakup which gave way to the formation of the oceanic South China Sea (SCS) basin began in the latest Cretaceous in the northeastern SCS and propagated in southern and western direction over a long period of time, possibly more than 40 m.y. The seafloor spreading history of the South China Sea has been interpreted in different ways in the past and the debate over the correct timing of the major tectonic events continues. We review the different models that have been published and present a revised interpretation of seafloor spreading anomalies based on three datasets with documented high quality which cover all of the SCS but the northernmost and southernmost parts. We can precisely date the onset of seafloor spreading in the central part of the SCS at 32 Ma. After a ridge jump at 25 Ma spreading also began in the southwestern sub-basin and spreading ended at 20.5 Ma in the entire basin, followed by a phase of magmatic seamount formation mainly along the abandoned spreading ridge. Spreading rates vary from 56 mm/yr in the early stages to 72 mm/yr after the ridge jump to 80 mm/yr in the southwestern sub-basin. We find indications for a stepwise propagation of the seafloor spreading from northeast to southwest in segments bounded by major fracture zones. Seafloor spreading ended abruptly probably because the subduction zone along the eastern and southern boundary of the SCS (of which today the Manila Trench remains) was blocked by collision with a continental fragment, possibly the northern part of Palawan or a part of the Dangerous Grounds.  相似文献   

20.
The southwestern part of the Scotia Sea, at the corner of the Shackleton Fracture Zone with the South Scotia Ridge has been investigated, combining marine magnetic profiles, multichannel seismic reflection data, and satellite-derived gravity anomaly data. From the integrated analysis of data, we identified the presence of the oldest part of the crust in this sector, which tentative age is older than anomaly C10 (28.7 Ma). The area is surrounded by structural features clearly imaged by seismic data, which correspond to gravity lows in the satellite-derived map, and presents a rhomboid-shaped geometry. Along its southern boundary, structural features related to convergence and possible incipient subduction beneath the continental South Scotia Ridge have been evidenced from the seismic profile. We interpret this area, now located at the edge of the south-western Scotia Sea, as a relict of ocean-like crust formed during an earlier, possibly diffuse and disorganized episode of spreading at the first onset of the Drake Passage opening. The successive episode of organized seafloor spreading responsible for the opening of the Drake Passage that definitively separated southern South America from the Antarctic Peninsula, instigated ridge-push forces that can account for the subduction-related structures found along the western part of the South Scotia Ridge. This seafloor accretion phase occurred from 27 to about 10 Ma, when spreading stopped in the western Scotia Sea Ridge, as resulted from the identification of the marine magnetic anomalies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号