首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
对采自北京周边的二叠系山西组露头及钻井泥岩样品进行了岩石学和地球化学研究,结果表明:岩石主要由粘土矿物和石英组成,兼有少量碳酸盐岩和长石;岩石中碳酸盐岩含量的高低与CaO、MgO含量有很好的对应关系;SiO2、Na2O和K2O亏损,TiO2和Fe2O3T富集,反映了基性物源的存在;微量元素特征比值显示源区母岩为非单一物源,稀土元素总量较高,轻稀土元素富集,重稀土元素平坦,铕大部分具明显负异常、少部分微弱正异常,Ce基本无异常,显示为多物源,各样品稀土元素配分模式与大陆上地壳一致,显示了沉积物具有同源性。源岩应为来自于华北地块北缘的大陆上地壳的沉积岩、花岗岩和碱性玄武岩的混合。二叠系山西组泥岩沉积于覆水较深的还原环境,源区构造背景为大陆岛弧与活动大陆边缘。  相似文献   

2.
REE geochemical studies of surficial sediment samples from the Yellow Sea of China have shown:(1)The average content of RE2O3 in the Yellow Sea sediments is 175 ppm,close to that in the East China Sea sediments.The REE distribution patterns in the Yellow Sea sediments are also similar to anomalies.These REE characteristics are typical of the continental crust.(2)The contents of REE are controlled mainly by the sediment grain size,i.e.,REE contents increase gradually with decreasing sediment grain size.REE are present mainly in clay minerals.In addition,REE contents are controlled obviously by heavy minerals.REE abundances in heavy minerals are much greater than those in light minerals.(3)Correlation analysis shows that REE have a close relationship with siderophile elements,especially Ti,which has the largest correlation coefficient relative to REE.Terrigenous clastic materials subjected to weathering and transport are suggested to be the main source of REE in the Yellow Sea sediments.  相似文献   

3.
The Coniacian-Santonian high-phosphorus oolitic iron ore at Aswan area is one of the major iron ore deposits in Egypt. However, there are no reports on its geochemistry, which includes trace and rare earth elements evaluation. Texture, mineralogy and origin of phosphorus that represents the main impurity in these ore deposits have not been discussed in previous studies. In this investigation, iron ores from three localities were subjected to petrographic, mineralogical and geochemical analyses. The Aswan oolitic iron ores consist of uniform size ooids with snowball-like texture and tangentially arranged laminae of hematite and chamosite. The ores also possess detrital quartz, apatite and fine-grained ferruginous chamosite groundmass. In addition to Fe2O3, the studied iron ores show relatively high contents of SiO2 and Al2O3 due to the abundance of quartz and chamosite. P2O5 ranges from 0.3 to 3.4 wt.% showing strong positive correlation with CaO and suggesting the occurrence of P mainly as apatite. X-ray diffraction analysis confirmed the occurrence of this apatite as hydroxyapatite. Under the optical microscope and scanning electron microscope, hydroxyapatite occurred as massive and structureless grains of undefined outlines and variable size (5–150 μm) inside the ooids and/or in the ferruginous groundmass. Among trace elements, V, Ba, Sr, Co, Zr, Y, Ni, Zn, and Cu occurred in relatively high concentrations (62–240 ppm) in comparison to other trace elements. Most of these trace elements exhibit positive correlations with SiO2, Al2O3, and TiO2 suggesting their occurrence in the detrital fraction which includes the clay minerals. ΣREE ranges between 129.5 and 617 ppm with strong positive correlations with P2O5 indicating the occurrence of REE in the apatite. Chondrite-normalized REE patterns showed LREE enrichment over HREE ((La/Yb)N = 2.3–5.4) and negative Eu anomalies (Eu/Eu* = 0.75–0.89). The oolitic texture of the studied ores forms as direct precipitation of iron-rich minerals from sea water in open space near the sediment-water interface by accretion of FeO, SiO2, and Al2O3 around suspended solid particles such as quartz and parts of broken ooliths. The fairly uniform size of the ooids reflects sorting due to the current action. The geochemistry of major and trace elements in the ores reflects their hydrogenous origin. The oolitic iron ores of the Timsha Formation represent a transgressive phase of the Tethys into southern Egypt during the Coniacian-Santonian between the non-marine Turonian Abu Agag and Santonian-Campanian Um Barmil formations. The abundance of detrital quartz, positive correlations between trace elements and TiO2 and Al2O3, and the abundance mudstone intervals within the iron ores supports the detrital source of Fe. This prediction is due to the weathering of adjacent land masses from Cambrian to late Cretaceous. The texture of the apatite and the REE patterns, which occurs entirely in the apatite, exhibits a pattern similar to those in the granite, thus suggesting a detrital origin of the hydroxyapatite that was probably derived from the Precambrian igneous rocks. Determining the mode of occurrence and grain size of hydroxyapatite assists in the maximum utilization of both physical and biological separation of apatite from the Aswan iron ores, and hence encourages the use of these ores as raw materials in the iron making industry.  相似文献   

4.
The Boziguoer A-type granitoids in Baicheng County,Xinjiang,belong to the northern margin of the Tarim platform as well as the neighboring EW-oriented alkaline intrusive rocks.The rocks comprise an aegirine or arfvedsonite quartz alkali feldspar syenite,an aegirine or arfvedsonite alkali feldspar granite,and a biotite alkali feldspar syenite.The major rock-forming minerals are albite,K-feldspar,quartz,arfvedsonite,aegirine,and siderophyllite.The accessory minerals are mainly zircon,pyrochlore,thorite,fluorite,monazite,bastnaesite,xenotime,and astrophyllite.The chemical composition of the alkaline granitoids show that SiO2 varies from 64.55% to 72.29% with a mean value of 67.32%,Na2O+K2O is high (9.85%-11.87%) with a mean of 11.14%,K2O is 2.39%-5.47% (mean =4.73%),the K2O/Na2O ratios are 0.31-0.96,Al2O3 ranges from 12.58% to 15.44%,and total FeOT is between 2.35% and 5.65%.CaO,MgO,MnO,and TiO2 are low.The REE content is high and the total SREE is (263-1219) ppm (mean =776 ppm),showing LREE enrichment and HREE depletion with strong negative Eu anomalies.In addition,the chondrite-normalized REE patterns of the alkaline granitoids belong to the "seagull" pattern of the right-type.The Zr content is (113-1246) ppm (mean =594 ppm),Zr+Nb+Ce+Y is between (478-2203) ppm with a mean of 1362 ppm.Furthermore,the alkaline granitoids have high HFSE (Ga,Nb,Ta,Zr,and Hf) content and low LILE (Ba,K,and Sr) content.The Nb/Ta ratio varies from 7.23 to 32.59 (mean =16.59) and the Zr/Hf ratio is 16.69-58.04 (mean =36.80).The zircons are depleted in LREE and enriched in HREE.The chondrite-normalized REE patterns of the zircons are of the "seagull" pattern of the left-inclined type with strong negative Eu anomaly and without a Ce anomaly.The Boziguoer A-type granitoids share similar features with A1-type granites.The average temperature of the granitic magma was estimated at 832-839℃.The Boziguoer A-type granitoids show crust-mantle mixing and may have formed in an anorogenic intraplate tectonic setting under high-temperature,anhydrous,and low oxygen fugacity conditions.  相似文献   

5.
The Suzhou granite suite is the anorogenic product, which is located on the inactive continental margin of east China. It was emplaced about 141 Ma ago, occurring as a stock with a polygonal outline on the surface, belonging to alkali potash-feldspar granites with K2O > Na2O, Reit’s alkali coefficient = 0.694, SiO2 = 74.95, and Al2O3/(K2O + Na2O)mol= 1. Besides K and Na, Li and Rb are also rather high. Highlycharged metals such as Zr, Nb, REE, Y, Sn, Th, Ga and Zn are 10, or even 50 times higher than those in the ordinary granites. Halogen elements such as F and Cl are high in abundance with F = 2700 ppm and Cl = 170 ppm on average. The abundances of deep-source elements such as Ti, Al, Ca, Mg and P are relatively low, with A12O3 = 12.65% and Ca + Mg < 1%. High Ga and low Al contents are typomorphically characteristic of A type granites. Biotite in the rocks is, for the most part, annite, usually filling in quartz and feldspar crystals, indicating that the crystallization of magma proceeded under relatively anhydrous condition. More than 40 kinds of accessory minerals have been identified, of which the mantle-derived mineral chrompicotite and moissanite is of great interest. Two different intrusions, the major and supplementary intrusions, can be distinguished in the granite suite. The rock-forming temperature is estimated to be 810°C, pressure 2.5 kbars, pH 8.1,18O/16O low(δ18OWR = 6.19‰), andfo2= 10−16. The abundances of REE are high and Eu depletion is remarkable (δEu = 0.24). A variety of mineral deposits related to the Suzhou granite suite have been recognized.  相似文献   

6.
An integrated petrographic and geochemical study of the sandstones of the Maastrichtian-aged in the Orhaniye (Kazan-Ankara-Turkey) was carried out to obtain more information on their provenance, sedimentological history and tectonic setting. Depending on their matrix and mineralogical content, the Maastrichtian sandstones are identified as lithic arenite/wacke. The Dikmendede sandstones derived from types of provenances, the recycled orogen and recycled transitional. The chemical characteristics of the Dikmendede sandstones, i.e., fairly uniform compositions, high Th/U ratios (>3.0), negative Eu anomalies (Eu/Eu* 0.72–0.99) and Th/Sc ratios (mostly less than 1.0), favor the OUC (old upper continental crust) provenance for the Dikmendede sandstones. The SiO2/Al2O3, Th/Sc (mostly <1.0) and La/Sc (<4.0) ratios are; however, slightly lower than typical OUC, and these ratios may suggest a minor contribution of young arc-derived material. The rare earth element (REE) pattern, and La/Sc versus Th/Co plot suggests that these sediments were mainly derived from felsic source rocks. The Dikmendede sandstones have high Cr (123–294 ppm) and Ni (52–212 ppm) concentrations, Cr/Ni ratio of 1.93, and a medium correlation coefficient between Cr and Ni and corresponding medium to high correlation of both (Cr and Ni, respectively) elements with Co. These relationships indicate a significant contribution of detritus from ophiolitic rocks. As rare earth element data are available for the Dikmendede sandstones, the Eu/Eu* is compared with LaN/YbN. Samples plot in the area of overlapping between continental collision, strike-slip and continental arc basins. The predominantly felsic composition of the Dikmendede sandstones is supported by the REE plots, which show enriched light REE, negative Eu anomaly and flat or uniform heavy REE. The Dikmendede sandstones have compositions similar to those of the average upper continental crust and post-Archean Australian shales. This feature indicates that the sediments were derived mainly from the upper continental crust. The Dikmendede sandstones have chemical index of alteration (CIA) values of 28–49, with an average of 40 indicating a low degree of chemical weathering in the source area. The compositional immaturity of the analyzed sandstone samples is typical of subduction-related environments, and their SiO2/Al2O3 and K2O/Na2O ratios and Co, Sc, Th and Zr contents reflect their oceanic and continental-arc settings. The Dikmendede sandstones were developed as flysch deposits derived from mixed provenance in a collision belt.  相似文献   

7.
The geochemistry of sediments is primarily controlled by their provenances, and different tectonic settings have distinctive provenance characteristics and sedimentary processes. So, it is possible to discriminate provenances, depositional environments and tectonic settings in the development of a sedimentary basin with the geochemistry of the clastic rocks. The analytical results of the present paper demonstrate that sediments in the Songliao prototype basin are enriched in silica (SiO2=66.48-80.51 %), and their ΣREE are 30-130 dmes of that of chondrite with remarkable Eu anomalies. In discriminating diagrams of Eu/Eu vs eeeeeREE and (La/Yb)N vs ΣREE, most samples locate above the line Eu/ Eu=l, on the right of the line Eu/Eu/ΣREE=1 and under the line La/Yb)N/eeeeeREE=1/8, which indicates that the depositional environment of sediments in the basin was oxidizing. In addition, variations of MgO, TiO2, A12O3, FeO+Fe2O3, Na2O and CaO vs SiO2 reflect a tendency of increasing mineral maturity of sediments  相似文献   

8.
The Losevka pluton of rare-metal albite granite, which was explored as a possible source of columbite-zircon-malacon ore, is composed of quartz, sodic plagioclase, potassium feldspar, annite, protolithionite, lepidomelane, and Li-muscovite. The average chemical composition of this rock is as follows, wt %: 74.14 SiO2, 0.04 TiO2, 14.07 Al2O3, 1.05 Fe2O3, 0.78 FeO, 0.15 MnO, 0.09 MgO, 0.47 CaO, 4.65 Na2O, 4.11 K2O, and 0.03 P2O5. The accessory minerals are zircon, malacon, and cyrtolite (874 ppm); apatite (18 ppm); ilmenite (114 ppm); xenotime and monazite (119 ppm); and Nb-columbite (463 ppm). The black inclusions up to 15 cm in size, which are observed in this granite and called “birthmarks” by local geologists, consist of the same rock-forming minerals as the surrounding granite, but are enriched in MnO, MgO, CaO, TiO2, and F and depleted in SiO2 relative to the light granite. The black granite is also distinguished by much higher Sr and Ba contents and lower La, Rb, Y, Nb, REE, Cs, Ta, Th, and U contents. The black color is caused by enrichment in manganese oxides, manganoilmenite, and Mn-annite. All rock-forming minerals are pervaded by thin veinlets of Mn-oxides. In addition, bastnaesite, Y-and Th-fluorides, zircon, and malacon have been identified. Aggregates of black-colored minerals are not the products of the fractionation of the initial magma or immiscibility effects, because the structure of the albite-potassium feldspar-quartz-mica matrix is the same both in black and light granites. The percolation of a deep-sourced fluid enriched in Mn and F into a granitic melt might be a more probable origin.  相似文献   

9.
This present study describes the elemental geochemistry of fluvial sediments in the Kurigram (upstream) to Sirajganj–Tangail (downstream) section of the Brahmaputra–Jamuna River, Bangladesh, with the aim of evaluating their provenance, weathering and tectonic setting. Petrographically, the sediments are rich in quartz (68%), followed by feldspars (8.5%) and lithic grains (7%). The bulk sediment chemistry is influenced by grain size. Concentrations of TiO2, Fe2O3, MgO, K2O, P2O5, Rb, Nb, Cr, V, Y, and, Ce, Th and Ga slightly decrease with increasing SiO2/Al2O3 and grain size, suggesting clay matrix control. In contrast, concentrations of CaO, Na2O, Sr and Pb increase with increasing SiO2/Al2O3 and grain size, suggesting residence of these substances in feldspar. Decrease in Zr as grain size increases is likely controlled both by clay matrix and heavy minerals. In addition, heavy minerals' sorting also influences Ce, Th, Y and Cr abundances in some samples. The sediments are predominantly quartzose in composition with abundant low-grade metamorphic and sedimentary lithics, low feldspars and trace volcanic detritus, indicating a quartzose recycled orogen province as a source of the sediments. Discriminant diagrams together with immobile element ratio plots show that, the Brahmaputra–Jamuna River sediments are mostly derived from rocks formed in an active continental margin. Moreover, the rare earth element ratios as well as chondrite-normalized REE patterns with flat HREE, LREE enrichment, and negative Eu anomalies indicate derivation of the sediments of Brahmaputra–Jamuna River from felsic rock sources of upper continental crust (UCC). The chemical indices of alteration suggest that Brahmaputra–Jamuna River sediments are chemically immature and experienced low chemical weathering effects. In the A–CN–K ternary diagram, most of the samples close to the plagioclase–K-feldspar join line and to the UCC plot, and in the field of various lithologies of Higher Himalayan Crystalline Series, suggesting that rocks in these series are likely source rocks. Therefore, the elemental geochemistry of the Brahmaputra–Jamuna River sediments is controlled mostly by mechanical breakdown of lithic fragments and subsequent preferential attrition of muscovite > albite > quartz.  相似文献   

10.
The present study is focused on the geochemical characterization and provenance of the shale member of the Maastrichtian Patti Formation which is well represented at the centre of the southern Bida Basin in Nigeria. The major element composition of the studied shales and clays compare favourably with the reference shales, however, the trace elements vary slightly. Application of binary plot of TiO2 versus Al2O3 and Al2O3/TiO2 ratios of the studied shale samples show mixed mafic to felsic igneous sources. The chemical composition (plot of SiO2 versus Log (K2O/Na2O) indicates active to passive continental margin province, however, a minor derivation from recycled provenance is probable. Intense chemical weathering based on the high values of Chemical Index Alteration (CIA), Chemical Index of Weathering (CIW) and Zr values obtained from the shale and clay samples a warm humid condition is suggested. The high values also probably suggest predominance of clay minerals and low feldspar. This is supported by the XRD (X-Ray Diffractometer) data which indicates predominance of kaolinite in the samples.  相似文献   

11.
REE geochemistry has been studied of sea-floor sediments of the continental shelf of the East China Sea. The average content of RE2O3 is estimated at 175 ppm based on 68 sediment samples from the continental shelf. The absolute concentrations of Y and La-Lu in the sediments are shown in Table 3. The REE distribution patterns in the sediments demonstrate a distinct depletion in Eu and a negative slope. It is considered that the fragments of Mesozoie intermediate-acid igneous rocks widely distributed in southeastern China are the main source of REE in sea-floor sediments of the East China Sea continental shelf.  相似文献   

12.
Bauxite deposits are widespread in NW Sardinia. They formed during the middle Cretaceous, in consequence of a period of emergence of the Mesozoic carbonate shelf. In the Nurra area the geometries derived by the Middle Cretaceous tectonic phases controlled the ore typologies. Two bauxite profiles, laying on different bedrocks, were sampled. The bauxitization proceeded from the surface downward, with the accumulation of Al2O3 and residual ‘immobile’ elements (Al, Ti, HFSE), and corresponding mobility and loss of SiO2 and Fe2O3. Epigenetic kaolinite formed close to faults and joints, probably as a result of silicification, introduced by low temperature hydrothermal solutions. Rare earth elements, especially LREE, are concentrated in Fe-rich bauxite horizons, probably due to scavenging by goethite. REE-enrichment is not observed in the boehmite-rich horizons. Very high REE contents are observed in a Fe-depleted horizon due to the occurrence of REE accessory minerals, probably of the bastnäsite group. Conservative indices, including TiO2/Al2O3 and Ti/Cr ratios, and Eu anomalies (Eu/Eu*), suggest that the deposits formed by weathering of sediments derived from mafic rocks of the Hercynian basement. This, in turn, implies that the basement was exposed during middle Cretaceous.  相似文献   

13.
The bimodal suite (BMS) comprises leucotonalitic and trondhjemitic gneisses interlayered with amphibolites. Based on geochemical parameters three main groups of siliceous gneiss are recognized: (i) SiO2 < 73%, Al2O3 > 14%, and fractionated light rare-earth element (REE) and flat heavy REE patterns; (ii) SiO2 and Al2O3 contents similar to (i) but with strongly fractionated REE patterns with steep heavy REE slopes; (iii) SiO2 > 73%, Al2O3 < 14%, Zr ~ 500 ppm and high contents of total REE having fractionated light REE and flat heavy REE patterns with large negative Eu anomalies. The interlayered amphibolites have major element abundances similar to those of basaltic komatiites, Mg-tholeiites and Fe-rich tholeiites. The former have gently sloping REE patterns, whereas the Mg-tholeiites have non-uniform REE patterns ranging from flat (~ 10 times chondrite) to strongly light REE-enriched. The Fe-rich amphibolites have flat REE patterns at 20–30 times chondrite.The Dwalile metamorphic suite, which is preserved in the keels of synforms within the BMS, includes peridotitic komatiites that have depleted light REE patterns similar to those of compositionally similar volcanics in the Onverwacht Group, Barberton, basaltic komatiites and tholeiites. The basaltic komatiites have REE patterns parallel to those of the BMS basaltic komatiites but with lower total REE contents. The Dwalile tholeiites have flat REE patterns.The basic and ultrabasic liquids were derived by partial melting of a mantle source which may have been heterogeneous or the heterogeneity may have resulted from sequential melting of the mantle source. The Fe-rich amphibolites were derived either from liquids generated at shallow levels or from liquids generated at depth which subsequently underwent extensive fractionation.  相似文献   

14.
The Metasedimentary rocks from the Adola metamorphic belt has been analysed for major, minor, and trace elements, including REEs, in order to investigate the provenance and tectonic setting of these rocks.On the basis of filed work, petrographic data and major element geochemistry the Adola sedimentary rocks are essentially greywackes with subordinate lithic arenite. Among the 27 samples analysed, only two samples are quartz arenite with SiO2 values above 89%. CaO-Na2O-K2O diagrams showed that most sample cluster around the average plots of granites and granodiorites. In order to determine the tectonic setting and provenance of the rocks, the samples are plotted on various binary and ternary diagrams. The plots on Fe2O3T+MgO versus TiO2, K2O/Na2O, Al2O3/SiO2 and Al2O3/(CaO+Na2O) plots show that the Adola sediments have Oceanic Island Arc(OIC), Continental Island Arc(CIA), Active Continental Margin(ACM) and Passive Margin(PM) characteristics. Most samples, however, show island arc affinity. Only two samples (the quartz arenites) fall in the Passive Margin (PM) field.The trace element characteristics of these rocks discriminate the rocks only into oceanic and continental arc fields. The relatively high abundance of the transition metals, mainly Co, Ni, Cr and the low concentration of TiO2 correlates well with the previously determined geochemical affinity of the basic rocks of Adola suggesting the dominance of the low- Ti oceanic tholeiites and even boninites in the source region.The REE patterns show three distinct groupings; a)With strong LREE enrichment, flat HREE and with out Eu anomaly, shows similar patterns with that of the oceanic island arc rocks; b) samples with strong Light REE enrichment, flat HREE pattern and strong negative Eu anomaly showing similar patterns to the Andean type andesites, probably derived from granitic gneisses and are affiliated to Active Continental Margin settings; c) this group is represented by a single plot having an enriched LREE pattern, flat HREE pattern and strong positive Eu anomaly. It is most likely that this pattern is related to a high normative plagioclase content due to local accumulation of feldspar during sedimentation rather than representing excessive Eu content of the precursor rock. The REE pattern represented by this sample is roughly similar to that of the Devonian greywackes of Australia.In conclusion, the use of geochemical characteristics of the sediments coupled with the geological information from the area strengthens the suprasubduction zone (SSZ) ophiolitic tectonic setting interpretation suggested (Yibas 1993) for the Adola belt. The trace element plots and their absolute abundance, and the REE patterns strongly constrain the tectonic setting and the provenance of the metasediments to an arc related setting.  相似文献   

15.
A previous study briefly described the occurrence of a new type of Nb(Ta)-Zr(Hf)-REY-Ga (REY: rare earth elements and yttrium) polymetallic mineralization in eastern Yunnan, southwest China. In this paper, the mineralogical and geochemical features have been further advanced through a study of two regionally extensive and relatively flat-lying mineralized layers from No. XW drill core. The layers are clay-altered volcanic ash and tuffaceous clay, and are dominated by clay minerals (mixed layer illite/smectite, kaolinite, berthierine, and chamosite); with lesser amounts of quartz and variable amounts of anatase, siderite and calcite; along with trace pyrite, barite, zircon, ilmenite, galena, chalcopyrite, and REE-bearing minerals. The mineralized samples have higher Al2O3/TiO2 values (13.7–41.4) and abundant rare metal elements (Nb, Ta, Zr, Hf, REE, Ga, Th, and U) whereas less mineralized samples are rich in V, Cr, Co, and Ni and have lower Al2O3/TiO2 values (2.32–7.67). The mineralized samples also have strong negative δEu in chondrite-normalized REE patterns. Two processes are most likely responsible for the geochemical and mineralogical anomalies of the mineralized samples: airborne volcanic ash and multi-stage injection of low-temperature hydrothermal fluids. Based on paragenetic analysis, this polymetallic mineralization is derived from the interaction between alkaline volcanic ashes and subsequent percolation of low-temperature fluids. The intense and extensive alkaline volcanism of the early Late Permian inferred from this study possibly originated from the coeval Emeishan large igneous province (ELIP). This unique Nb(Ta)-Zr(Hf)-REE-Ga mineralization style has significant economic and geological potential for the study of mineralization of the lowest Xuanwei Formation.  相似文献   

16.
The Devonian (ca. 385–360 Ma) Kola Alkaline Province includes 22 plutonic ultrabasic–alkaline complexes, some of which also contain carbonatites and rarely phoscorites. The latter are composite silicate–oxide–phosphate–carbonate rocks, occurring in close space-time genetic relations with various carbonatites. Several carbonatites types are recognized at Kola, including abundant calcite carbonatites (early- and late-stage), with subordinate amounts of late-stage dolomite carbonatites, and rarely magnesite, siderite and rhodochrosite carbonatites. In phoscorites and early-stage carbonatites the rare earth elements (REE) are distributed among the major minerals including calcite (up to 490 ppm), apatite (up to 4400 ppm in Kovdor and 3.5 wt.% REE2O3 in Khibina), and dolomite (up to 77 ppm), as well as accessory pyrochlore (up to 9.1 wt.% REE2O3) and zirconolite (up to 17.8 wt.% REE2O3). Late-stage carbonatites, at some localities, are strongly enriched in REE (up to 5.2 wt.% REE2O3 in Khibina) and the REE are major components in diverse major and minor minerals such as burbankite, carbocernaite, Ca- and Ba-fluocarbonates, ancylite and others. The rare earth minerals form two distinct mineral assemblages: primary (crystallized from a melt or carbohydrothermal fluid) and secondary (formed during metasomatic replacement). Stable (C–O) and radiogenic (Sr–Nd) isotopes data indicate that the REE minerals and their host calcite and/or dolomite have crystallized from a melt derived from the same mantle source and are co-genetic.  相似文献   

17.
In Douala (Littoral Cameroon), the Cretaceous to Quaternary formation composed of marine to continental sediments are covered by ferrallitic soils. These sediments and soils have high contents of SiO2 (≥70.0 wt%), intermediate contents of Al2O3 (11.6–28.4 wt%), Fe2O3 (0.00–20.5 wt%) and TiO2 (0.04–4.08 wt%), while K2O (≤0.18 wt%), Na2O (≤0.04 wt%), MgO (≤0.14 wt%) and CaO (≤0.02 wt%) are very low to extremely low. Apart from silica, major oxides and trace elements (REE included) are more concentrated in the fine fraction (<62.5 μm) whose proportions of phyllosilicates and heavy minerals are significant. The close co-associations between Zr, Hf, Th and ∑REE in this fraction suggest that REE distribution is controlled by monazite and zircon. CIA values indicate intense weathering. Weathering products are characterized by the association Al2O3 and Ga in kaolinite; the strong correlation between Fe2O3 and V in hematite and goethite; the affinity of TiO2 with HFSE (Hf, Nb, Th, Y and Zr) in heavy minerals. The ICV values suggest mature sediments. The PCI indicates a well-drained environment whereas U/Th and V/Cr ratios imply oxic conditions. La/Sc, La/Co, Th/Cr, Th/Sc and Eu/Eu* elemental ratios suggest a source with felsic components. Discrimination diagrams are consistent with the felsic source. The REE patterns of some High-K granite and granodiorite of the Congo Craton resemble those of the samples, indicating that they derive from similar source rocks.  相似文献   

18.
The geochemical study of siliciclastic rocks from the Lower Cambrian of Parahio Valley has been studied to describe the provenance, chemical weathering and tectonic setting. The K2O/Al2O3 ratio and positive correlation of Co (r=0.85), Ni (r=0.86), Zn (r=0.82), Rb (r=0.98) with K2O reflects that the presence of clay minerals control the abundances of these elements and suggests a warm and humid climate for this region. The chondrite normalized REE pattern of the samples is equivalent to upper continental crust, which reflects enriched LREE and flat HREE with negative Eu anomaly. The tectonic setting discriminant diagram log[K2O/Na2O] vs. SiO2; [SiO2/Al2O3] vs. log[K2O/Na2O]; [SiO2/20] – [K2O+Na2O] – [TiO2+Fe2O3+MgO] indicates transitional tectonic setting from an active continental margin to a passive margin. The discriminant function plot indicates quartzose sedimentary provenance, and to some extent, the felsic igneous provenance, derived from weathered granite, gneissic terrain and/or from pre-existing sedimentary terrain. The CIA value indicates low to moderate degree of chemical weathering and the average ICV values suggests immature sediments deposited in tectonically active settings. The A–CN–K diagram indicates that these sediments were generated from source rocks of the upper continental crust.  相似文献   

19.
The modal and chemical composition of sands from Cox’s Bazar beach (CBB) and Kuakata beach (KB) areas of Bangladesh has been investigated to infer their maturity, chemical weathering, and provenance signatures. The CBB and KB sands are typically high quartz, low feldspar, and lithic fragments, representing a recycled orogen source. Major element compositions of CBB sands are characterized by high SiO2 (83.52–89.84 wt%) and low Al2O3 (4.39–6.39 wt%), whereas KB sands contained relatively low SiO2 (63.28–79.14 wt%) and high Al2O3 (9.00–11.33 wt%) contents. The major, trace and rare earth element (REE) compositions of beach sands display comparable distribution patterns with enriched Th and SiO2 for both sands relative to upper continental crust (UCC). Pb, Rb, Y, and Fe for KB sands are little higher than UCC and the rest of the elements are marked depleted for both suites reflecting destruction of plagioclase and K-feldspar during fluvial transportation. The CBB and KB sands are compositionally low mature to immature in nature subsequently classified as subarkose and litharenite, respectively. Chondrite-normalized REE patterns for CBB and KB sands show LREE enrichment and nearly flat HREE (LaN/YbN, 7.64–9.38 and 5.48–8.82, respectively) coupled with prominent Eu anomalies (Eu/Eu*, 0.51–0.72 and 0.52–0.76, respectively), suggesting felsic source provenance. The provenance discrimination diagrams, immobile trace element ratios (Th/Sc, Zr/Sc, Ce/Sc, and Ti/Zr), and REE (∑LREE/HREE, Eu/Eu* and GdN/YbN) parameters indicate that CBB and KB sands were largely derived from felsic source rocks, with compositions close to average rhyolite, granodiorite, granite, and UCC.  相似文献   

20.
Thick horizons of iron formations including Banded Iron Formations (BIFs) and Banded Silicate Formations (BSFs) occur as E–W trending bands in the eastern part of Cauvery Suture Zone (CSZ) in the Sothern Granulite Terrane of India. Some of these occur in close association with the Neoarchean-Neoproterozoic suprasubduction zone complexes, where as some others are associated with metamorphosed accretionary sequences including pyroxene granulites and other high grade rocks. The iron formations are highly deformed and metamorphosed under amphibolite to granulite facies conditions and are composed of quartz–magnetite–hematite–goethite–garnet–pyrite together with grunerite and pyroxene. Here we report the geochemical characteristics of twenty representative samples from the iron formations that reveal a widely varying composition with Fe2O3(t) (22–65 wt.% as total iron) total- Fe2O3/TiO2 (205–6532), MnO/TiO2 (0.25–12.66) and SiO2 (33–85 wt.%), broadly representing the two types of iron formations. These formations also show very low Al/(Al + Fe + Mn) ratio (0.001–0.01), Al2O3 (0.07–0.76 wt.%), Al2O3/TiO2 ratio (2.7–21), MgO (0.01–4.41 wt.%), CaO (0.1–1.24 wt.%), Na2O (0.01–0.05 wt.%) and K2O (0.01 wt.%) together with low total REE (3.38–31.63 ppm). The trace and REE elemental distributions show wide variation with high Ni (274 ppm), and Zn contents (up to 87 ppm) when compared to mafic volcanics of the adjoining areas. Tectonic discrimination plots indicate that the iron formations of the Cauvery Suture Zone are of hydrothermal origin. Their chondrite normalized patterns show slight positive Eu anomaly (Eu/Eu* = up to 1.77) and relatively less fractionation of REE with slight LREE enrichment compared to HREE. However, the PAAS (Post Archean Average of Australian Sediments) normalized REE patterns display significant positive Eu anomaly (Eu/Eu* up to 2.32) with well represented negative Ce anomalies (Ce/Ce* = 0.66–1.28). The above results together with petrological characteristics and available geochronology of the associated lithologies suggest that the iron formations can be correlated to Algoma-type. The Fe and Si were largely supplied by medium to high temperature sub-marine hydrothermal systems in Neoarchean and Neoproterozoic convergent margin settings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号