首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The central portion of the Aldan Shield hosts very widely spread Archean and Early Proterozoic granitoids, much of which are granite-gneisses. Geochemical lines of evidence, data on inclusions in minerals, and Sm-Nd isotopic geochemical data suggest that the protoliths of granite-gneisses in the central part of the Aldan Shield were granitoids that had various composition, age, and were derived from distinct sources and under different parameters and were then emplaced in different geodynamic environments. The granitoids belong to at least two types of different composition that occur within spatially separated areas. The protoliths of granite-gneisses in the western part of the Western Aldan Megablock and the junction zone of the Chara-Olekma and Aldan geoblocks (granite-gneisses of type I) had the same age and affiliated to the same associations as the within-plate granitoids of the Nelyukinskii Complex. Their parental melts were derived at 2.4–2.5 Ga by the melting of Archean tonalite-trondhjemite orthogneisses of the Olekma and Aldan complexes. The protolith of granite-gneisses in the eastern portion of the Western Aldan Megablock (granite-gneisses of type II) can be subdivided into two groups according to their composition: granitoids with geochemical characteristics of subduction- and collision-related rocks. The protoliths of the type-II granite-gneisses with geochemical characteristics of subduction granitoids were produced simultaneously with the development of the Fedorovskaya island arc (at 2003–2013 Ma), whereas the protoliths of the type-II granite-gneisses with geochemical characteristics of collision granitoids were formed in the course of accretion of the Fedorovskaya island arc and the Olekma-Aldan continental microplate at 1962–2003 Ma, via the melting of magmatic rocks of the Fedorovskaya unit and older continental crustal material.  相似文献   

2.
The application of the principle and algorithm of the cluster analysis of rock compositions in magmatic complexes, which were described elsewhere, made it possible to reveal the spaceless and spatial geochemical structure of the Yoko-Dovyren layered mafic-ultramafic massif. The diversity of rocks composing this intrusion was demonstrated to comprise eleven discrete geochemical types (clusters): dunites, harzburgites, melanotroctolites, troctolites, two types of olivine gabbro, two types of olivine gabbronorites, quartz gabbronorites, and granophyres. These geochemical types of rocks and the corresponding fractionation parameters (the iron atomic fraction f of mafic minerals and the anorthite concentration An of plagioclase) define a succession corresponding to the tendencies in the crystallization of a magma of respective composition. This geochemical succession is in complete agreement with the succession in which rocks were formed in the intrusion (from dunite in its bottom part to quartz gabbronorites and granophyres near its roof) and is complicated by cyclical repetitions. The main tendency revealed in the cyclic layering is as follows: cyclical intercalations consist of rocks corresponding to the neighboring members of the rock succession (plagiodunites and melanotroctolites, melanotroctolites and troctolites, troctolites and olivine gabbro, olivine gabbro and olivine gabbronorites). These tendencies are closely similar to those identified in the Kivakka intrusion, a fact suggesting that these tendencies can be common for all layered complexes of mafic and ultramafic rocks. Original Russian Text ? A.A. Yaroshevskii, S.V. Bolikhovskaya, E.V. Koptev-Dvornikov, 2006, published in Geokhimiya, 2006, No. 10, pp. 1027–1039.  相似文献   

3.
Overall petrologic and geochemical data indicate that the early Paleozoic magmatism in the Olkhon area of the Baikal Region exhibits diverse types of granitoids, whose time of formation is estimated at a narrow age interval of 500-465 Ma. This magmatism was responsible for the formation of both autochthonous gneiss-migmatite-granitoid suites (Sharanur complex) and multiphase intrusions (Aya complex) emplaced into the upper horizons of the continental crust. In major-element chemistry, K2O/Na2O values, and rare-element composition the migmatite-plagiogranites and calc-alkaline and subalkaline granitoids of the Sharanur complex are similar to the host gneisses and schists, as they were likely derived from melting of the ancient metamorphic substratum of the Olkhon series. In new isotope-geochemical characteristics (ICP MS method) the Sharanur granitoids are close to the first-phase biotite granites of the Aya massif, whose further geochemical evolution was governed mainly by intrachamber magmatic differentiation leading to the production of second-phase leucogranites enriched in HREE and HFSE (in particular, Ta and Nb) and depleted in Sr, Ba, Eu, Li, and LREE. The origin of the autochthonous and intrusive granitoids is related to early Paleozoic collision events within the Olkhon metamorphic terrane, while the formation of syncollisional granitoids is best explained by both melting of the crust protolith (Sharanur complex) and magmatic differentiation (multiphase Aya intrusion). All mineralogical and geochemical characteristics indicate that these granitoids are distinguished from rare-metal pegmatoid granites and Li-F and Rb-Be-Nb pegmatites, whose vein bodies crosscut the granitoids, and are regarded as middle Paleozoic rocks, which mark the transition to within-plate magmatism in the Baikal Region.  相似文献   

4.
The Batouri gold mining area in southeastern Cameroon is part of the Adamawa–Yadé Domain of the Central African Fold Belt (Pan-African). It is underlain by a variety of granitic rocks, including alkali-feldspar granite, syeno-monzogranite, granodiorite, and tonalite. Geochemical data suggest that these rocks formed by differentiation of I-type tonalitic magma under oxidizing conditions in a continental volcanic arc setting. U–Pb dating of zircons from gold-associated monzogranite-granodiorite at Kambélé gave concordant ages of 619 ± 2 and 624 ± 2 Ma, while Ar–Ar dating of alkali-feldspar granite yielded a non-plateau maximum age of 640–620 Ma. These ages imply that the Batouri granitoids were emplaced during the collision of the West African Craton and the Congo Craton.

The geochemical characteristics of the Batouri granitoids as well as their oxidized state (magnetite series) are typical of gold-associated felsic rocks in subduction settings elsewhere. The similarities in age, composition, and geochemical affinities of these granitoids with those reported from other localities in the Adamawa–Yadé Domain reinforce the earlier assumption that the granitic rocks of this domain represent parts of a regional-scale batholith, with commonly small-scale, high-grade auriferous quartz veins in structurally favourable sites. The spatial and temporal association of gold mineralization and the Batouri granitoids may suggest potential for regional-scale, high-tonnage, granite-related gold ore.  相似文献   

5.
Early Paleozoic granitoids of autochthonous and allochthonous facies in the Baikal area (Ol’khon Island, Khamar-Daban Ridge) are in close spatial association with gneisses, migmatites, and plagiogranites and are usually confined to granite–gneiss domes. They are virtually not subjected to magmatic differentiation. Formation of granitoids of the Solzan massif and Sharanur complex lasted 26–28 Myr, which might be considered an indicator of collisional granitoid magmatism. Collisional granitoids of different provinces have a series of indicative features: They are peraluminous and highly potassic and are enriched in crustal elements (Rb, Pb, and Th) but sometimes have low contents of volatiles. In contrast to collisional magmatism, petrogenesis of intraplate granitoids does not depend on the composition and age of the enclosing rocks. The geochemical evolution of intraplate granitoid magmatism in the Baikal area is expressed as an increase in contents of F, Li, Rb, Cs, Sn, Be, Ta, Zr, and Pb and a decrease in contents of Ba, Sr, Zn, Th, and U during the differentiation of multiphase intrusions. The geochemical diversity of these granitoids formed both from crustal and from mantle sources and as a result of the mantle–crust interaction, might be due to the effect of plume on the geologic evolution of intraplate magmatism. The wide range of compositions and geochemical types of igneous rocks (from alkali and subalkalic to rare-metal granitoids) within the Late Paleozoic Baikal magmatism area suggests its high ore potential.  相似文献   

6.
The Sr-Nd isotopic ratios of selected post-collisional, calc-alkaline, I-type granitoids from the Pangeon pluton, intruding the lower tectonic unit (LTU) in the Southern Rhodope in the Miocene, support the existence of two types of granitoids (PTG porphyritic tonalite granodiorite and MGG biotite granodiorite to two-mica granite) unrelated by crystal fractionation and likely derived by partial melting of the same source under different P-T conditions. The Sr-Nd isotopic ratios of mafic enclaves in the granitoids as well as metamorphic rocks from the LTU have also been determined. At 22 Ma, the IRSr range between 0.706850 and 0.708381, whereas the εNd(22) range from –3.86 to –1.05, with no relationship to granitoid types. The relationships between Sr and Nd isotopes as well as these isotopes and SiO2 provide evidence of contamination of mafic melts by interaction with crust during magma differentiation. Both partial melting and AFC processes (r = 0.2) may account for compositional variations in the Pangeon magmas. The mafic enclaves display IRSr from 0.706189 to 0.707139, and εNd(22) from –2.29 to –1.94, similar to the granitoids, supporting the hypothesis of a common origin. Amphibolites inferred to be subduction-enriched metabasalts under-plated crust during old subduction can represent the source of the Pangeon melts. The TDM of the Pangeon granitoids is in the range 0.7–1.1 Ga for the inferred extraction age of the LILE-enriched subcontinental lithospheric mantle source. The upper crustal geochemical signatures and the relatively small isotopic composition of the Pangeon granitoids make these rocks similar to the coeval eastern-Mediterranean lamproites emplaced within the same geodynamic setting; this prompts similar melt sources. Lastly, the Pangeon granitoids display geochemical characteristics, isotopic ratios, and TDM also similar to other Tertiary magmatic rocks from the Southern Rhodope and Biga peninsula, western Anatolia, suggesting a similar tectonic environment and co-magmatic evolution throughout the area.  相似文献   

7.
BEA  F. 《Journal of Petrology》1996,37(3):521-552
A systematic study with laser ablation—ICP-MS, scanningelectron microscopy and electron microprobe revealed that 70–95wt% of REE (except Eu), Y, Th and U in granite rocks and crustalprotoliths reside within REEYThU-rich accessories whose nature,composition and associations change with the rock aluminosity.The accessory assemblage of peraluminous granites, migmatitesand high-grade rocks is composed of monazite, xenotime (in low-Cavarieties), apatite, zircon, Thorthosilicate, uraninite andbetafite-pyrochlore. Metaluminous granites have allanite, sphene,apatite, zircon, monazite and Thorthosilicaie. Peralkaline graniteshave aeschinite, fergusonite, samarskite, bastnaesite, fluocerite,allanite, sphene, zircon, monazite, xenotime and Th-orthosilicate.Granulite-grade garnets are enriched in Nd and Sm by no lessthan one order of magnitude with respect to amphibolite-gradegarnets. Granulitegrade feldspars are also enriched in LREEwith respect to amphibolite-grade feldspars. Accessories causenon-Henrian behaviour of REE, Y, Th and U during melt—solidpartitioning. Because elevated fractions of monazite, xenotimeand zircon in common migmatites are included within major minerals,their behaviour during anatexis is controlled by that of theirhost. Settling curves calculated for a convecting magma showthat accessories are too small to settle appreciably, beingseparated from the melt as inclusions within larger minerals.Biotite has the greatest tendency to include accessories, therebyindirectly controlling the geochemistry of REE, Y, Th and U.We conclude that REE, Y, Th and U are unsuitable for petrogeneticalmodelling of granitoids through equilibrium-based trace-elementfractionation equations. KEY WORDS: accessory minerals; geochemical modelling; granitoids; REE, Y, Th, U  相似文献   

8.
陈履安 《贵州地质》2001,18(4):244-246
根据贵州高氟地下水的水化学特征,结合其水文地质和岩石条件等,将其分成两种主要类型,即碳酸盐岩区的高氟地下水和硅质陆源碎屑岩(含浅变硅质陆源碎屑岩)区的高氟地下水,按水-岩作用的机理,探讨了高氟地下水水化学特征形成的地球化学机制。  相似文献   

9.
Detailed geochemical, isotope, and geochronological studies were carried out for the granitoids of the Chuya and Kutima complexes in the Baikal marginal salient of the Siberian craton basement. The obtained results indicate that the granitoids of both complexes are confined to the same tectonic structure (Akitkan fold belt) and are of similar absolute age. U–Pb zircon dating of the Kutima granites yielded an age of 2019±16 Ma, which nearly coincides with the age of 2020±12 Ma obtained earlier for the granitoids of the Chuya complex. Despite the close ages, the granitoids of these complexes differ considerably in geochemical characteristics. The granitoids of the Chuya complex correspond in composition to calcic and calc-alkalic peraluminous trondhjemites, and the granites of the Kutima complex, to calc-alkalic and alkali-calcic peraluminous granites. The granites of the Chuya complex are similar to rocks of the tonalite–trondhjemite–granodiorite (TTG) series and are close in CaO, Sr, and Ba contents to I-type granites. The granites of the Kutima complex are similar in contents of major oxides to oxidized A-type granites. Study of the Nd isotope composition of the Chuya and Kutima granitoids showed their close positive values of εNd(T) (+ 1.9 to + 3.5), which indicates that both rocks formed from sources with a short crustal history. Based on petrogeochemical data, it has been established that the Chuya granitoids might have been formed through the melting of a metabasitic source, whereas the Kutima granites, through the melting of a crustal source of quartz–feldspathic composition. Estimation of the PT-conditions of granitoid melt crystallization shows that the Chuya granitoids formed at 735–776 °C (zircon saturation temperature) and > 10 kbar and the Kutima granites, at 819–920 °C and > 10 kbar. It is assumed that the granitoids of both complexes formed in thickened continental crust within an accretionary orogen.  相似文献   

10.
The mineralogical, petrological, geochemical and geochronological data on the Garevka metamorphic complex (GMC) of the Yenisey Ridge were used to evaluate the age, nature, and provenance of their protoliths. The evolution of the GMC occurred in two stages with different ages, thermodynamic regimes, and metamorphic field gradients. The final emplacement of granitoids was marked by high-pressure (HP) amphibolite facies regional metamorphism (970 Ma). At the second stage, these rocks experienced Late Riphean (900–870 Ma) retrograde epidote-amphibolite facies metamorphism accompanied by the formation of blastomylonitic complexes within narrow zones of brittle-ductile deformation. The metamorphism of migmatites (850 Ma) is coeval with the collisional medium-pressure metamorphism of the kyanite-sillimanite type. The GMC is different from the other rock complexes of the Yenisey Ridge in the presence of rapakivi-type granites. The geochemistry of these rocks, which is characterized by stronger enrichment in K2O, FeO, Y, Th, U, Zr, Hf, Nb, Ta, and REE relative to the other mineral assemblages of the GMC, is typical of anorogenic (A-type) within-plate granites. Among other distinctive features of these rocks are the strong iron enrichment of the melanocratic minerals, the presence of ilmenite as the sole Fe-Ti oxide, and crystallization from higher temperature (T = 825°C vs. T = 750°C) water-poor magmas under reducing conditions below the FMQ buffer. Significant variations in the geochemical and petrological characteristics of the GMC rocks suggest that they could not be derived from a single source. The main volume of the high-K rocks varying in composition from A-type to S-type granites was generated by melting of mixed mantlecrustal sources. The products of melting of the Late Archean-Early Proterozoic infracrustal gneisses of the Siberian Craton could be a possible source for the least oxidized rocks.  相似文献   

11.
This paper presents the first geochemical data on Cr-spinels from ultramafic rocks of the Alkhadyr terrane, which were obtained on a representative collection of samples using modern research methods. The compositional data on melt inclusions allowed the identification of three generations of Cr-spinels on the basis of their morphology, composition, and relationships with the rock-forming minerals. Different types of geochemical zoning were recognized in heterogeneous Cr-spinel grains. The composition of parental melt and crystallization temperatures of the minerals in ultramafic rocks were derived from the compositional data on Cr-spinels and trapped melt inclusions.  相似文献   

12.
新疆拜城县波孜果尔A型花岗岩类为富含铌、钽、锆等有用元素的含矿岩体。通过偏光显微镜、电子探针(EPMA)化学成分分析、电子探针背散射(BSE)对波孜果尔A型花岗岩类的矿物学特征进行了研究,并对岩浆形成的温度条件与构造背景进行了讨论。结果表明,波孜果尔A型花岗岩类包括霓石钠闪石英碱性长石正长岩、霓石钠闪碱性长石花岗岩、黑云母碱性长石正长岩3种岩石类型。主要造岩矿物包括石英、钠长石、钾长石、霓石、钠铁闪石和铁叶云母。副矿物包括锆石、烧绿石、钍石、萤石、独居石、氟碳铈镧矿、磷钇矿等。岩浆平均温度832~839℃,形成于非造山的板内构造环境,且具高温、无水、低氧逸度的成岩特点。  相似文献   

13.
Major and trace element geochemistry of Proterozoic granitoids from the Dirang and Galensiniak Formations, of Lesser and Higher Himalayas, respectively, emplaced in and around Dirang and Tawang regions of the western Arunachal Himalaya, is discussed. In general, these granitoids are massive as well as foliated in nature and are characterized by granitic mineralogical compositions. Porphyritic and hypidiomorphic textures are common in massive type, whereas others show porphyroblastic and foliated textures. Augen structure is also observed in a number of samples. Geochemical and normative compositions together with petrographic features classify them as peraluminous granitoids. Major and trace element geochemistry of most of these granitoids shows granitic nature, while few samples also show monzonitic characteristics. Observed geochemical characters, such as their peraluminous and alkali-calcic/calcic-alkalic nature, crudely defined geochemical patterns, different multi-element and rare-earth element patterns, together with low Mg# (Mg number) of these granitoids suggest their derivation from lower crustal material rather than a mantle source. Multi-element and rare-earth element patterns corroborate their genesis from different crustal melts. It is difficult to explain variations observed in granitoid rocks by partial melting alone; definitely different other processes like migration of melts, magma mixing, assimilation and fractional crystallization also played important role in the genesis of these granitoids. These melts were likely generated at low temperature (730–760 °C) and low pressure (2–5 GPa). The chemical compositions suggest that most of these Paleoproterozoic granitoids are emplaced within the syn-collisional tectonic setting, while few granitoid samples also indicate their volcanic-arc nature. Probably, later group of granitoids are slightly younger to the syn-collisional type.  相似文献   

14.
Petrographical and geochemical methods were combined to investigate the provenance, geodynamic and weathering history of the Shurijeh sandstones, Kopet-Dagh Basin. The point-counting method and XRF technique are used for modal and geochemical analyses. Based on petrographical examinations, it seems that the Shurijeh sandstones are mainly deposited in the craton interior and recycled orogen belts. In addition to petrographical investigation, geochemical analyses (major oxides and trace elements) of Late Jurassic-Early Cretaceous rocks reveal that the sedimentation processes are performed in a passive continental margin. Such interpretation is supported with geodynamic and paleogeographical studies of the Kopeh-Dagh basin during this time. The geochemical investigations suggested that the composition of probable source rocks mostly was acidic-intermediate with minor mafic igneous rocks. Based on the above, Paleo-Tethys remnants and their collision-related granitoids, in the south and west of Mashhad, may have been the source area for these rocks. CIA values, which range from 63.8 to 94.9 in samples, are suggesting a moderate to relatively high degree of alteration (weathering) in the source area. Therefore, petrographical and paleogeographical studies of siliciclastic rocks can be used for the provenance, tectonic setting and paleoweathering studies in the source area.  相似文献   

15.
张喜  高俊  董连慧  李继磊  江拓  钱青  苏文 《岩石学报》2011,27(6):1637-1648
新疆中天山乔霍特铜矿位于中天山南缘,毗邻南天山缝合带。矿区南侧出露有1个花岗闪长岩岩体,该岩体与包裹于赋矿火山岩中的钾长花岗岩均属钙碱性弱过铝质I型花岗岩,具有相似的地球化学特征,富集LILE、亏损HFSE,具显著的Eu、Ta、Nb、Ti负异常,其形成可能与南天山洋的北向俯冲密切相关。LA-ICP-MS锆石U-Pb定年获得花岗闪长岩年龄为450.4±1.1Ma,钾长花岗岩年龄为430.8±4.1Ma,指示晚奥陶世时期,乔霍特地区存在南天山洋向中天山复合弧地体之下的俯冲;早志留世晚期,俯冲作用依然持续,此时,天山地区岩浆活动强烈。乔霍特铜矿赋矿火山岩的形成时代晚于431Ma,矿区南侧出露的花岗闪长岩早于赋矿火山岩形成,成矿作用可能与花岗闪长岩的侵位无直接关系。  相似文献   

16.
Calculations of the saturation of groundwaters with respect to minerals of the rocks hosting these waters indicate that most of the analyzed groundwaters were saturates with respect to calcite, dolomite, and quartz. Brines of chloride-calcic composition were determined to be saturated with respect to calcite, whereas brines of chloride-sodic composition are saturated with respect to dolomite and quartz. The solution was simultaneously saturated with respect to six minerals for the association ankerite-calcite-dolomite-pyrite-quartz-strontianite. An increase in the number of minerals with respect to which solution is saturated is correlated with an increase in the diversity of types of groundwaters and an increase in the runoff rate. The paper proposes possible avenues for searches for relations between hydrogeological and geochemical parameters that make it possible to adapt the thermodynamic models to real geological-hydrogeological conditions. The research was centered on the testing of groundwaters for their saturation with respect to minerals of the rocks hosting these waters. This parameter plays a significant part in forming the geochemical type of natural waters because it reflects the crystallization of a mineral from a solution and, consequently, the removal of an element from the aqueous solution.  相似文献   

17.
长江中下游地区是我国一条重要的铜多金属成矿带,成矿与燕山期岩浆活动密切相关,矿床类型主要有斑岩型和矽卡岩型。在长江中下游成矿带西段的鄂东南和九瑞地区产有该带中几个十分重要的大型铜多金属矿床,如铜绿山、鸡冠嘴、铜山口、城门山、武山等。通过对该区岩体的系统对比研究表明,成矿岩体和不成矿岩体的矿物组成,主微量元素成分及成岩年龄上并无明显差异。总体而言,九瑞地区岩浆岩的形成年龄集中在141~148Ma之间,略早于鄂东南地区与铜矿相关的岩浆岩(集中在137~140Ma)。对岩浆岩全岩的Sr-Nd同位素和锆石Hf同位素研究表明,一些成矿岩体具有比不成矿岩体更高比例的幔源物质贡献。对岩浆岩中主要造岩矿物,如角闪石和黑云母的详细研究,可以区分它们的不同结晶历史,从而揭示岩浆从早至晚演化过程中,相容元素和不相容元素、成矿元素和挥发份元素的变化规律,判别岩浆分离结晶过程、流体出溶过程,指示成矿与否。通过对角闪石和黑云母温压计的应用,估测了九瑞和鄂东南地区成矿岩体与不成矿岩体的侵位压力和深度,发现成矿岩体一般具有较低的压力(4kbar)和较浅的侵位深度。九瑞和鄂东南地区成矿岩体均具有较高的氧逸度。成矿岩体演化到晚期,氧逸度显示升高的趋势,岩浆中的挥发分/成矿金属含量较高。而不成矿岩体就位前岩浆贫化Cu、S、Cl等元素,不能分异出含足够成矿元素的成矿热液。因此,通过详细的矿物学、特别是造岩矿物角闪石和黑云母以及副矿物锆石和磷灰石的主微量元素和同位素组成的研究,以及由其计算出的温度、压力、氧逸度、流体成分等参数,可以区分成矿与不成矿岩体,从而为长江中下游成矿带乃至其他类似地区的深部找矿工作提供理论指导。  相似文献   

18.
Geological, mineralogical, petrographic, geochemical, and geochronological data are reported for granitoids of the Aturkol Massif (Gorny Altai). It is shown that it was formed in within-plate setting in the Early Triassic, nearly simultaneously with flood basalts of the Kuznetsk Basin and alkalic basite and lampropyre dike swarms in the western Altai-Sayan Fold Region. At the same time, the mineralogical-petrographic, geochemical, and isotope characteristics of the considered granitoids are close to those of I-type granites. Intraplate signatures (elevated HFSE and REE) are recognized only in the least silicic rocks (granosyenites). Obtained data suggest mantle–crustal nature of the granitoids. They were formed by mixing of lamprophyre magmas with high pressure (>10 kbar) crustal melts derived from a mixed source consisting mainly of N-MORB-type metabasites with insignificant admixture of high-Ti basalts and metasedimentary rocks. The contribution of mantle component in the granitoids was insignificant (<20%). Proposed petrogenetic mechanism can provide the formation of large volumes of granitoid magmas with “crustal” geochemical and isotope signatures in an intraplate setting.  相似文献   

19.
储同庆 《物探与化探》1985,9(2):108-116
重矿物除了作矿物鉴定以外,还可进行单矿物的微量元素测定,给地球化学勘查提供有用的信息,使化探采样的对象扩大到重矿物领域。重砂矿物中除了主要元素外,还含有多种杂质元素,这些杂质元素的种类、含量高低及元素间的比值变化,是受矿物生成时的地质环境制约的。据此可以知道矿物生成时的温度、岩石和矿床的类型以及岩体的含矿性。本文综述了十几种重砂矿物中微量元素的变化与地质,岩石和矿床的关系,及用于地球化学找矿的可能性。  相似文献   

20.
Granitoids are widely spread in the Nanling Region of China.Four rockbodies in the region the been studied for their REE,Rb,Sr,Ba and Sc distributions.The four rockbodies occurred in different locations and are characterized as being different in age and type.The rock types are presented as follows:Qinghu monzonite,Guangxi;Fuxi granodiorite,Guangdong;Jiufeng monzonitic granite,Hunan;Zudong K-feldspar granite,Jiangxi.From the major and trace element distributions in these granitoids it is clearly shown that Rb/Sr ratios in the rocks tend to increase with increasing SiO2 content and differentiation index(DI),but LREE/HREE,La/Yb and K/Rb ratios tend to decrease,suggesting a correlation between trace element distribution and major element composition for the granitoids.The distribution characteristics of trace elements in each of the rockbodies are described in detail.From the comparative analysis of the Qinghu monzonite and Fuxi granodiorite it is evidenced that the REE distribution is closely related to the sequence of crystallization for the minerals,and also to the petrochemical types of these granitoids in addition to their crystal chemistry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号