首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
考虑全球反照率随温度的变化,利用零维能量平衡模式,对撞击能量与其诱发的气候循环和注期形成之间的关系进行了计算模拟研究,当撞击坑的直径大于15 ̄20km,全球气温在1a的时间里会产生快速的降温,降温幅度取决于撞击能量的大小,大约不到100a的时间,下降趋势逐渐减缓,全球气温缓慢上升,并稳定在250K,如果没有 别的因素影响喧一平衡温度将会存在较长一段时间。有可能导致地球上冰期气候的形成结合新生代以来  相似文献   

2.
The characteristic feature of many Upper Neoproterozoic glacial sequences is their “cap carbonates” (CC) resting without visible unconformity upon glaciogenic diamictites. Such an unusual association, peculiar structures and textures, and negative δ13C values (approximately −4 ± 2‰) that are atypical of marine carbonates provoked long debates about the nature of these carbonates, which play an important role in the Snowball Earth hypothesis. According to this hypothesis, the Earth was entirely covered by ice during large-scale glaciations, and CC accumulation was related to the global change in geochemical processes. In this work, we discuss data on the chemical and isotopic (C, O, Sr) compositions of CCs, which overlie glacial sediments of the Nichatka and Bol’shoi Patom formations accumulated in different parts of the Neoproterozoic Patom paleobasin (Central Siberia). High concentrations of Fe (up to 6400 ppm), Mn (2320 ppm), and radiogenic Sr (87Sr/86Sr0 up to 0.7172) established in CCs indicates a strong influence of the continental flow. Extraordinary Snowball Earth conditions are not necessary for the accumulation of these rocks, geochemical and sedimentological properties of which may be explained by the discharge of thawing waters into partly or completely isolated near-glacier basin, their intermittent freezing, and/or washout of “frozen” carbonates from the surface of thawing glaciers. The peculiar thin-laminated texture of CC may be related to seasonal processes of climatic cycles. They were accumulated in the course of general (relatively long-term) depletion of the atmosphere and hydrosphere in 13C, which has nothing to do with the CC formation as a specific type of carbonate sediments. Amplitude and duration of the negative δ13C excursion in carbonates associated with the Lower Vendian glacial sediments (665–635 Ma) are appreciably lower than the negative anomaly in rocks of the Zhuya Group that likely correspond to the Shuram-Vonoka Event (∼560−580 Ma ago), which probably marks the crucial point in the Precambrian deglaciation: mass destabilization of methane hydrates and degradation of the Early Vendian psychrosphere in oceans.  相似文献   

3.
新生代地外物体撞击事件诱发的古气候环境灾变   总被引:11,自引:2,他引:11       下载免费PDF全文
本文在论述新生代以来65、34、15、2.4、1.0、0.7MaB.P.六次重大撞击作用的地质地球化学证据基础上,详细地讨论了撞击作用诱发古气候灾变的过程和机制,认为撞击作用产生的尘埃、炭黑和气溶胶可产生短期的快速降温效应,温度最低可降至225K;撞击后大气中CO含量的下降则可导致最大时间尺度为105a的地球气候的寒冷期。目前撞击界线层中的氧同位素记录所反映的古气温变化支持本模式的结论。  相似文献   

4.
An increase in the cosmogenic beryllium-10 content of the Orca basin sediments due to the flooding of the Gulf of Mexico (GM) by meltwaters during the late Wisconsin interglacial is reported. A strong negative correlation (γ =-0.99) betweenδ 18 O (in the range o f-1.5‰ to +0.5‰) and10Be/Al ratio is seen. During intense flooding reflected by a decrease in δ18O by ∼ 2‰, this correlation may not hold as some of the sediments with low10Be/Al ratio and deposited on the shelf and slope regions of the GM during the earlier glacial period would also be washed into the basin. The deposited sediment would then be a mixture with a10Be/Al ratio lower than expected from the correlation  相似文献   

5.
Analysis of δ18O in igneous zircons of known age traces the evolution of intracrustal recycling and crust-mantle interaction through time. This record is especially sensitive because oxygen isotope ratios of igneous rocks are strongly affected by incorporation of supracrustal materials into melts, which commonly have δ18O values higher than in primitive mantle magmas. This study summarizes data for δ18O in zircons that have been analyzed from 1,200 dated rocks ranging over 96% of the age of Earth. Uniformly primitive to mildly evolved magmatic δ18O values are found from the first half of Earth history, but much more varied values are seen for younger magmas. The similarity of values throughout the Archean, and comparison to the composition of the “modern” mantle indicate that δ18O of primitive mantle melts have remained constant (±0.2‰) for the past 4.4 billion years. The range and variability of δ18O in all Archean zircon samples is subdued (δ18O(Zrc)=5–7.5‰) ranging from values in high temperature equilibrium with the mantle (5.3± 0.3‰) to slightly higher, more evolved compositions (6.5–7.5‰) including samples from: the Jack Hills (4.4–3.3 Ga), the Beartooth Mountains (4.0–2.9 Ga), Barberton (3.5–2.7 Ga), the Superior and Slave Provinces (3.0 to 2.7 Ga), and the Lewisian (2.7 Ga). No zircons from the Archean have been analyzed with magmatic δ18O above 7.5‰. The mildly evolved, higher Archean values (6.5–7.5‰) are interpreted to result from exchange of protoliths with surface waters at low temperature followed by melting or contamination to create mildly elevated magmas that host the zircons. During the Proterozoic, the range of δ18O(Zrc) and the highest values gradually increased in a secular change that documents maturation of the crust. After ∼1.5 Ga, high δ18O zircons (8 to >10‰) became common in many Proterozoic and Phanerozoic terranes reflecting δ18O(whole rock) values from 9 to over 12‰. The appearance of high δ18O magmas on Earth reflects nonuniformitarian changes in the composition of sediments, and rate and style of recycling of surface-derived material into magmas within the crust. Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

6.
Lake Xingcuo is a small closed,hard-water lake ,situated on eastern Tibet Plateau.Stable isotope data(δ^18O and δ^13C) from the freshwater snail Gyraulus sibirica(Dunker)in a34 cm long,radioactive isotope-dated sediment core represent the last 200 years of Lake Xingcuo environmental history.Carbon and oxygen isotope ratios in the shells of the freshwater snail bear information on the isotopic composition of the water in which the shells were formed ,which in turn characterizes the climatic conditions prevailing during the snail‘s life span.Whole-shell and incremental growth data were collected from modern and fossil shells from Lake Xingcuo.The δ18^O values of modern shells from Lake Xingcuo are in equilibrium with high δ^13CTDIC.By calibrating δ^18O and δ^13C in the shell Gyraulus sibirica(Dunker)with in-strument-measured data for the period 1954-1992,we found that the δ^18O of the snail shells is an efficient indicator to reveal air temperature in the warmer half year instead of that around the whole year,and that there is a certain positive correlation between index δ^18O and the run-ning average temperature in the warmer half-yiar period.Climatic variability on eastern Tibet Plateau,for the last two centuries,has been successfully inferred from the δ^18O record in freshwater snails in the sediments of Lake Xingcuo.As such,the last 200 years of palaeocli-matic record for this region can be separated into three periods representing oscillations between warming and cooling,which are confirmed by the Guliya ice record on the Tibet Plateau.  相似文献   

7.
Studies of meteorites are based mostly on samples that fell to Earth in the recent past (i.e., a few million years at most). The Morokweng LL-chondrite meteorite is a particularly interesting specimen as its fall is much older (ca. 145 Ma) than most other meteorites and because it is the only macro-meteorite clast (width intersected in drill core: 25 cm) found in a melt sheet of a large impact structure. When applied to the Morokweng meteorite, 40Ar/39Ar thermochronology provides an opportunity to study (1) effects associated with pre-impact and post-impact processes and (2) collision events within a potentially distinct and as yet unsampled asteroid population.A single multi-grain aliquot yielded an inverse isochron age of 625 ± 163 Ma. This suggests a major in-space collisional event at this time. We have modeled the diffusion of 40Ar within the meteorite and plagioclase during and after the ∼145 Ma impact on Earth to tentatively explain why pre-terrestrial impact 40Ar has been preserved within the plagioclase grains. The ∼145 Ma terrestrial impact age is recorded in the low-retentivity sites of the meteorite plagioclase grains that yielded a composite inverse isochron age at 141 ± 15 Ma and thus, confirms that age information about major (terrestrial or extraterrestrial) impacts can be recorded in the K-rich mineral phases of a meteorite and measured by the 40Ar/39Ar technique. More studies on fossil meteorites need to be carried out to understand if the rough 0.6 Ga age proposed here corresponds to major LL-chondrite asteroid population destructions or, rather, to an isolated collision event.  相似文献   

8.
Multi-isotope study including whole-rock Nd–Sr, single zircon Hf, and SIMS δ18O analyses of zircons sheds light on magma sources in the northernmost Arabian–Nubian Shield (ANS) during ~820–570 Ma. Reconnaissance initial Nd and Sr isotope data for the older rocks (~820–740 Ma) reaffirms previous estimates that early crustal evolution in this part of the shield involved some crustal contamination by pre-ANS material. Prominent isotope provinciality is displayed by post-collisional calc-alkaline and alkaline igneous rocks of ~635–570 Ma across a NW-SE transect across basement of the Sinai Peninsula (Egypt) and southern Israel. Silicic rocks of the NW-region are characterized by lower εNd(T)–εHf(T) and higher Sri and δ18O compared with rocks of the SE-region, and the transition between the regions is gradual. Within each region isotope ratios are independent of the extent of magma fractionation, and zircon cores and rims yield similar δ18O values. Comparison with southern segments of the ANS shows that the source for most ~635–570 Ma rocks can be modeled as the isotopically aged lower-intermediate crust in the ANS core (SE-region) and its northern, more contaminated ANS margins (NW-region). Nevertheless, Nd–Sr isotope enrichment of the lithospheric mantle is indicated by some basic magmas of the NW-region displaying the most enriched Nd–Sr isotope compositions. Comparison of Nd and Hf depleted mantle model ages for rocks of the SE-region may indicate that crustal formation events in the ANS geographical core took place at 1.1–1.2 Ga and were followed by crustal differentiation starting at ~0.9 Ga.  相似文献   

9.
The Jinwozi gold deposit consists of gold-bearing quartz veins in a biotite granodiorite of Hercynian age (zircon U-Pb age ≈ 335.7 Ma). Ore mineralogy is simple. In addition to native gold, there are only small amounts of sulfides, mainly pyrite and minor sphalerite, chalcopyrite and galena. δ34S values average 6.69‰, and δ18O 13.99‰ Abundant CO2 is contained in fluid inclusions from quartz. Homogenization temperatures of fluid inclusions are between 186 and 262 °C. REE distribution patterns indicate that the igneous mass may have been derived from a common initial material of calcareous-argillaceous sediments and alkali basalts as the country rocks. In other words, the Jinwozi granodiorite is of remelting origin from crustal material. Isotopic evidence of S, O and Pb shows that the ore-forming material is genetically related to magmatic hydrothermal activity.  相似文献   

10.
Sulfur isotope composition of carbonate-associated sulfate (δ34SCAS) and carbon isotope composition of carbonate (δ13Ccarb) were jointly investigated on the Late Permian rocks at Shangsi Section, Guanyuan, Northeast Sichuan, South China. Both δ34SCAS and δ13Ccarb show gradual decline trends in Late Permian strata, inferring the occurrence of the long-term variation of marine environmental conditions. Associated with the long-term variation are the two coincident negative shifts in δ34SCAS and δ13Ccarb, with one occurring at the boundary between Middle Permian Maokou Formation and Late Permian Wujiaping Formation and another at Middle Dalong Formation. Of significance is the second shift which clearly predates the regression and the biotic crisis at the end of Permian at Shangsi Section, providing evidence that a catastrophic event occurred prior to the biotic crisis. The frequent volcanisms indicated by the volcanic rocks or fragments, and the upwelling are proposed to cause the second negative excursion. An abrupt extreme negative δ34SCAS (ca. −20‰) associated with a low relative concentration of CAS and total organic carbon without large change in δ13Ccarb is found at the end of the second shift, which might arise from the short-term oxygenation of bottom waters and sediments that resulted from the abrupt sea level drop.  相似文献   

11.
Stable isotope ratios of oxygen (δ18O) and carbon (δ13C) in tests ofGloborotalia menardii from samples at 25 cm intervals of top 900 cm cores, representing different thicknesses of the Pleistocene, from DSDP Sites 219, 220 and 241 in the northern Indian Ocean have been measured. Based on the δ18O stratigraphy, glacial and interglacial phases during the Pleistocene have been recognized, which are in good agreement with the standard Quaternary planktonic foraminiferal/climatic zones i.e., Ericson zones at these sites, based onG. menardii abundances. The GIA (glacial interglacial amplitude) at Sites 241, 219 and 220 are of the order of 1·2, 1·4 and 1·9‰ respectively. The last glacial and interglacial maxima (18 ka BP and 125 ka BP respectively) could be identified in DSDP Cores 241, and 219 with some precision. ‘Isotopic ages’ could be assigned to the different levels of these core sections based on the correlation of δ18O record from these sites with the SPECMAP record (Imbrieet al 1984). Changes in sediment accumulation rates at different levels of the Pleistocene have been worked out on the basis of changes in oxygen isotopic ratio. Oscillations in δ13C stratigraphy at Site 241 indicated southwest monsoon induced increase in upwelling and productivity during warmer periods. At Sites 219 and 220, variations in the δ13C record were due to the mixing of bottom water.  相似文献   

12.
Study on Modern Plant C-13 in Western China and Its Significance   总被引:2,自引:0,他引:2  
Organic carbon isotopic composition(δ^13C) is one of the important proxies in paleoenvironment studies.In this paper modern plant δ^13C in the arid areas of China and Tibetan Plateau is studied.It is found that most terrestrial plant species in western China are C3 plants with δ^13C values ranging from -32.6‰ to -23.2‰ and only few species are C4 plants with δ^13C values from -16.8‰ to -13.3‰.The δ^13C is closely related to precipitation (or humidity),i.e., light δ^13C is related to high precipitation(or humid climate),while heavy δ^13C to low precipitation (or dry climate),but there is almost no relation between plant δ^13C and temperature.Submerged plants have δ^13C values ranging from -22.0‰ to -12.7‰,like C4 plants,while merged plants have δ^13C values ranging from -28.1‰ to -24.5‰,like C3 C4 plants,while marged plants have δ^13C values ranging from -28.1‰ to -24.5‰,like C3 plants.It can then be concluded that organic δ^13C variations in terrestrial sediments such as loeas and soil in western China can indicate precipitation changes,but those in lake sediments can reflect organic sources and the productivity of different types of aquatic plants.  相似文献   

13.
Enriched13C/12C ratios with δ13C ∼3%0 (w.r.t PDB) of two Late Riphean (∼ 700-610 Ma) intracratonic carbonate successions viz., Bhander Limestone of Vindhyan Basin and Raipur Limestone of Chattisgarh Basin suggest higher organic productivity during this period. This view is supported by sedimentological evidence of higher biohermal growth and consequent increase in depositional relief in the low gradient ramp settings inferred for these basins. Oxygen isotope analysis of these carbonates show distinct segregation between enriched deeper water carbonate mudstone and depleted shallow water stromatolite facies that received fresh water influx. This shows that facies-specific analyses can be useful in understanding the depositional setting of these sediments.  相似文献   

14.
The paper presents the molybdenum isotope data, along with the trace element content, to investigate the geochemical behavior of authigenic Mo during long-term burial in sediments in continental margin settings of the Yangtze block, as well as their indication to the burial of original organic carbon. The burial rate of original organic carbon was estimated on the basis of the amount of sedimentary sulfur (TS content), whilst the carbon loss by aerobic degradation was estimated according to calculated Mn contents. On these points, the original organic carbon flux was calculated, exhibiting a large range of variation (0.17–0.67 mmol/m2/day). The strong correlation between sedimentary Mo isotope values and organic carbon burial rates previously proposed on the basis of the investigations on modern ocean sediments, was also used here to estimate the organic carbon burial rate. The data gained through this model showed that organic carbon burial rates have large variations, ranging from 0.43–2.87 mmol/m2/day. Although the two sets of data gained through different geochemical records in the Yangtze block show a deviation of one order of magnitude, they do display a strong correlation. It is thus tempting to speculate that the Mo isotope signature of sediments may serve as a tracer for the accumulation rate of original organic carbon in the continental margin sediments. __________ Translated from Earth Science—Journal of China University of Geosciences, 2007, 32(6) [译自: 地球科学—中国地质大学学报]  相似文献   

15.
We report on a suite of diamonds from the Cretaceous Collier 4 kimberlite pipe, Juina, Brazil, that are predominantly nitrogen-free type II crystals showing complex internal growth structures. Syngenetic mineral inclusions comprise calcium- and titanium-rich phases with perovskite stoichiometry, Ca-rich majoritic-garnet, clinopyroxene, olivine, TAPP phase, minerals with stoichiometries of CAS and K-hollandite phases, SiO2, FeO, native iron, low-Ni sulfides, and Ca–Mg-carbonate. We divide the diamonds into three groups on the basis of the carbon isotope compositions (δ13C) of diamond core zones. Group 1 diamonds have heavy, mantle-like δ13C (−5 to −10‰) with mineral inclusions indicating a transition zone origin from mafic protoliths. Group 2 diamonds have intermediate δ13C (−12 to −15‰), with inclusion compositions indicating crystallization from near-primary and differentiated carbonated melts derived from oceanic crust in the deep upper mantle or transition zone. A 206Pb/238U age of 101 ± 7 Ma on a CaTiSi-perovskite inclusion (Group 2) is close to the kimberlite emplacement time (93.1 ± 1.5 Ma). Group 3 diamonds have extremely light δ13C (−25‰), and host inclusions have compositions akin to high-pressure–temperature phases expected to be stable in pelagic sediments subducted to transition zone depths. Collectively, the Collier 4 diamonds and their inclusions indicate multi-stage, polybaric growth histories in dynamically changing chemical environments. The young inclusion age, the ubiquitous chemical and isotopic characteristics indicative of subducted materials, and the regional tectonic history, suggest a model in which generation of sublithospheric diamonds and their inclusions, and the proto-kimberlite magmas, are related genetically, temporally and geographically to the interaction of subducted lithosphere and a Cretaceous plume.  相似文献   

16.
Isotopic compositions of organic (δ13C-Corg) and carbonate (δ13C-Ccarb) carbon were analyzed in the particulate matter (hereafter, particulates) and sediments from the North and Middle Caspian basins. Isotopic composition of Corg was used for assessing proportions of the allochthonous and autochthonous organic matter in the particulates. Difference between the δ13C-Corg values in surface sediments and particulates is explained by the aerobic and anaerobic diagenetic transformations. Isotopic composition of Corg in sediments may be used as a tool for reconstructing the Quaternary transgressive-regressive history of the Caspian Sea.  相似文献   

17.
Large volumes of silicic magma were produced on a very short timescale in the nested caldera complex of the SW Nevada volcanic field (SWNVF). Voluminous ash flows erupted in two paired events: Topopah Spring (TS, >1,200 km3, 12.8 Ma)–Tiva Canyon (TC, 1,000 km3, 12.7 Ma) and Rainier Mesa (RM, 1,200 km3, 11.6 Ma)–Ammonia Tanks (AT, 900 km3, 11.45 Ma; all cited ages are previously published 40Ar/39Ar sanidine ages). Within each pair, eruptions are separated by only 0.1–0.15 My and produced tuffs with contrasting isotopic values. These events represent nearly complete evacuation of sheet-like magma chambers formed in the extensional Basin and Range environment. We present ion microprobe ages from zircons in the zoned ash-flow sheets of TS, TC, RM, and AT in conjunction with δ18O values of zircons and other phenocrysts, which differ dramatically among subsequently erupted units. Bulk zircons in the low-δ18O AT cycle were earlier determined to exhibit ∼1.5‰ core-to-rim oxygen isotope zoning; and high-spatial resolution zircon analyses by ion microprobe reveal the presence of older grains that are zoned by 0.5–2.5‰. The following U–Pb isochron ages were calculated after correcting for the initial U–Pb disequilibria: AT (zircon rims: 11.7 ± 0.2 Ma; cores: 12.0 ± 0.1 Ma); pre-AT rhyolite lava: (12.0 ± 0.3 Ma); RM: 12.4 ± 0.3); TC: (13.2 ± 0.15 Ma); TS: (13.5 ± 0.2). Average zircon crystallization ages calculated from weighted regression or cumulative averaging are older than the Ar–Ar stratigraphy, but preserve the comparably short time gaps within each of two major eruption cycles (TS/TC, RM/AT). Notably, every sample yields average zircon ages that are 0.70–0.35 Ma older than the respective Ar–Ar eruption ages. The Th/U ratio of SWNVF zircons are 0.4–4.7, higher than typically found in igneous zircons, which correlates with elevated Th/U of the whole rocks (5–16). High Th/U could be explained if uranium was preferentially removed by hydrothermal solutions or is retained in the protolith during partial melting. For low-δ18O AT-cycle magmas, rim ages from unpolished zircons overlap within analytical uncertainties with the 40Ar/39Ar eruption age compared to core ages that are on average ∼0.2–0.3 My older than even the age of the preceding caldera forming eruption of RM tuff. This age difference, the core-to-rim oxygen isotope zoning in AT zircons, and disequilibrium quartz–zircon and melt-zircon isotopic fractionations suggest that AT magma recycled older zircons derived from the RM and older eruptive cycles. These results suggest that the low-δ18O AT magmas were generated by melting a hydrothermally-altered protolith from the same nested complex that erupted high-δ18O magmas of the RM cycle only 0.15 My prior to the eruption of the AT, the largest volume low-δ18O magma presently known.Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

18.
江西相山铀矿田位于赣东北乐安县和崇仁县边境,处于扬子古板块与华夏古板块之间的钦(州)—杭(州)结合带南侧罗霄褶皱带的北缘,属赣杭铀成矿带西南段。根据不整合面和岩石组合特征可将相山铀矿田赋矿火山岩系归入武夷群,根据岩性岩相特征和火山活动产物的规律性,可将武夷群下部紫红色砾岩、砂岩、粉砂岩、泥岩夹熔结凝灰岩、凝灰岩构成的喷发-沉积相组合归入双峰岭组、上部碎斑熔岩夹熔结凝灰岩构成的喷溢-侵出相组合归入鹅湖岭组,分别代表火山活动初始期和喷发期的产物。SHRIMP锆石U-Pb年龄表明,双峰岭组下部熔结凝灰岩年龄为(137.5±1.4)Ma(N=13,MSWD=0.73)、中部2个英安岩样品的年龄分别为(137.4±1.1)Ma(N=14,MSWD=1.3)和(137.4±1.4)Ma(N=12,MSWD=2.5)、上部晶屑凝灰岩的年龄为(136.4±1.1)Ma(N=14,MSWD=0.49),鹅湖岭组2个碎斑熔岩样品的年龄分别为(135.4±1.5)Ma(N=13,MSWD=1.3)和(135.2±1.2)Ma(N=12,MSWD=0.25),不仅说明相山铀矿田武夷群地质时代属早白垩世早期,而且年龄与地层的叠置关系吻合。划分的双峰岭组与鹅湖岭组界线不仅是岩性界面,而且是岩相界面,野外容易识别,解决了原打鼓顶组或原如意亭组划分存在的问题。结合相山铀矿田已有的高精度锆石U-Pb年龄数据,提出锆石U-Pb测年结果不能为相山铀矿田火山-侵入杂岩的时序厘定的提供依据。  相似文献   

19.
Detailed sedimentological investigations were performed on sediments from DSDP-Site 594 (Chatham Rise, east of New Zealand) in order to reconstruct the evolution of paleoclimate and paleoceanographic conditions in the Southwest Pacific during the last 6 million years. The results can be summarized as follows:
  1. High accumulation rates of biogenic opal and carbonate and the dominance of smectites in the clay fraction suggest increased oceanic productivity and an equable dominantly humid climate during the late Miocene.
  2. During Pliocene times, decreasing contents of smectites and increasing feldspar/quartz ratios point to an aridification in the source area of the terrigenous sediments, culmunating near 2.5 Ma. At that time, accumulation rates of terrigenous components distinctly increased probably caused by increased sediment supply due to intensified atmospheric and oceanic circulation, lowered sea level, and decreased vegetation cover.
  3. A hiatus (1.45 to 0.73 Ma) suggests intensified intermediate-water circulation.
  4. Major glacial/interglacial cycles characterize the upper 0.73 Ma. During glacial times, oceanic productivity and terrigenous sediment supply was distinctly increased because of intensified atmospheric and oceanic circulations and lowered sea level, whereas during interglacials productivity and terrigenous sediment supply were reduced.
  5. An increased content of amphibols in the sediments of Site 594 indicates increased volcanic activities during the last 4.25 Ma.
  相似文献   

20.
23亿年地质环境突变的证据及若干问题的讨论   总被引:15,自引:0,他引:15  
陈衍景 《地层学杂志》1990,14(3):178-184
<正> 国际前寒武地层分会投票表决25亿年为太古宙与元古宙的分界,有学者坚持以23亿年作为太古宙与元古宙的分界,表明23亿年是地球演化史上的重要时间。然而,23亿年左右的地质事件并没有受到足够的重视。在对华北克拉通南缘结晶基底的研究中,陈衍景注意到岩石圈表层、大气圈、水圈、生物圈等的性质在23亿年左右发生了根本性变化。初步推测此变化与地外因素有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号