首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The mechanisms and the timescales of magmatic evolution were investigated for historical lavas from the Askja central volcano in the Dyngjufjöll volcanic massif, Iceland, using major and trace element and Sr, Nd, and Pb isotopic data, as well as 238U-230Th-226Ra systematics. Lavas from the volcano show marked compositional variation from magnesian basalt through ferrobasalt to rhyolite. In the magnesian basalt-ferrobasalt suite (5-10 wt% MgO), consisting of lavas older than 1875 A.D., 87Sr/86Sr increases systematically with increasing SiO2 content; this suite is suggested to have evolved in a magma chamber located at ∼600 MPa through assimilation and fractional crystallization. On the other hand, in the ferrobasalt-rhyolite suite (1-5 wt% MgO), including 1875 A.D. basalt and rhyolite and 20th century lavas, 87Sr/86Sr tends to decrease slightly with increasing SiO2 content. It is suggested that a relatively large magma chamber occupied by ferrobasalt magma was present at ∼100 MPa beneath the Öskjuvatn caldera, and that icelandite and rhyolite magmas were produced by extraction of the less and more evolved interstitial melt, respectively, from the mushy boundary layer along the margin of the ferrobasalt magma chamber, followed by accumulation of the melt to form separate magma bodies. Ferrobasalt and icelandite lavas in the ferrobasalt-rhyolite suite have a significant radioactive disequilibrium in terms of (226Ra/230Th), and its systematic decrease with magmatic evolution is considered to reflect aging, along with assimilation and fractional crystallization processes. Using a mass-balance model in which simultaneous fractional crystallization, crustal assimilation, and radioactive decay are taken into account, the timescale for the generation of icelandite magma from ferrobasalt was constrained to be <∼3 kyr which is largely dependent on Ra crystal-melt partition coefficients we used.  相似文献   

2.
La Pacana is one of the largest known calderas on Earth, andis the source of at least two major ignimbrite eruptions witha combined volume of some 2700 km3. These ignimbrites have stronglycontrasting compositions, raising the question of whether theyare genetically related. The Toconao ignimbrite is crystal poor,and contains rhyolitic (76–77 wt % SiO2) tube pumices.The overlying Atana ignimbrite is a homogeneous tuff whose pumiceis dacitic (66–70 wt % SiO2), dense (40–60% vesicularity)and crystal rich (30–40 % crystals). Phase equilibriaindicate that the Atana magma equilibrated at temperatures of770–790°C with melt water contents of 3·1–4·4wt %. The pre-eruptive Toconao magma was cooler (730–750°C)and its melt more water rich (6·3–6·8 wt% H2O). A pressure of 200 MPa is inferred from mineral barometryfor the Atana magma chamber. Isotope compositions are variablebut overlapping for both units (87Sr/86Sri 0·7094–0·7131;143Nd/144Nd 0·51222–0·51230) and are consistentwith a dominantly crustal origin. Glass analyses from Atanapumices are similar in composition to those in Toconao tubepumices, demonstrating that the Toconao magma could representa differentiated melt of the Atana magma. Fractional crystallizationmodelling suggests that the Toconao magma can be produced by30% crystallization of the observed Atana mineral phases. Toconaomelt characteristics and intensive parameters are consistentwith a volatile oversaturation-driven eruption. However, thelow H2O content, high viscosity and high crystal content ofthe Atana magma imply an external eruption trigger. KEY WORDS: Central Andes; crystal-rich dacite; eruption trigger; high-silica rhyolite; zoned magma chamber  相似文献   

3.
The caldera-forming 26·5 ka Oruanui eruption (Taupo,New Zealand) erupted 530 km3 of magma, >99% rhyolitic, <1%mafic. The rhyolite varies from 71·8 to 76·7 wt% SiO2 and 76 to 112 ppm Rb but is dominantly 74–76 wt% SiO2. Average rhyolite compositions at each stratigraphiclevel do not change significantly through the eruption sequence.Oxide geothermometry, phase equilibria and volatile contentsimply magma storage at 830–760°C, and 100–200MPa. Most rhyolite compositional variations are explicable by28% crystal fractionation involving the phenocryst and accessoryphases (plagioclase, orthopyroxene, hornblende, quartz, magnetite,ilmenite, apatite and zircon). However, scatter in some elementconcentrations and 87Sr/86Sr ratios, and the presence of non-equilibriumcrystal compositions imply that mixing of liquids, phenocrystsand inherited crystals was also important in assembling thecompositional spectrum of rhyolite. Mafic compositions comprisea tholeiitic group (52·3–63·3 wt % SiO2)formed by fractionation and crustal contamination of a contaminatedtholeiitic basalt, and a calc-alkaline group (56·7–60·5wt % SiO2) formed by mixing of a primitive olivine–plagioclasebasalt with rhyolitic and tholeiitic mafic magmas. Both maficgroups are distinct from other Taupo Volcanic Zone eruptivesof comparable SiO2 content. Development and destruction by eruptionof the Oruanui magma body occurred within 40 kyr and Oruanuicompositions have not been replicated in vigorous younger activity.The Oruanui rhyolite did not form in a single stage of evolutionfrom a more primitive forerunner but by rapid rejuvenation ofa longer-lived polygenetic, multi-age ‘stockpile’of silicic plutonic components in the Taupo magmatic system. KEY WORDS: Taupo Volcanic Zone; Taupo volcano; Oruanui eruption; rhyolite, zoned magma chamber; juvenile mafic compositions; eruption withdrawal systematics  相似文献   

4.
The Los Humeros volcanic center, located 180 km east of MexicoCity, is one of several silicic centers in the ‘back-arc’portion of the Mexican Neovolcanic Belt. Eruptive products spanthe compositional range from high-silica rhyolite to basalt.During the last 0?46 Ma, three major explosive eruptions andan extended period of lava flow emplacement periodically sampledan integrated magma reservoir that was initially zoned fromrhyolitic uppermost levels to andesitic and perhaps basalticlower levels, with compositional gaps in the ranges 63–67and 72–75 per cent SiO2. The compositional zonation canlargely be explained by fractional crystallization, but mustbe accompanied by assimilation to explain the range of Sr andNd isotopic ratios. Higher than predicted concentrations ofNi, Cr, and strongly incompatible elements such as Rb and Bain andesites suggest continuous replenishment of a fractionatingchamber by mantle-derived basalts. The volumetric predominanceof rhyolite in the early history of the center points to a longperiod of accumulation of differentiates without eruptive withdrawal. Once volcanic activity started tapping the chamber, eruptiverates seem to have exceeded the rate of regeneration of differentiatedmagma. Although there is overlap in the compositional zonationof the products of successive eruptive events, the dominantvolume of each is always more mafic than that of the precedingeruption, indicating only limited regeneration of differentiatedmagmas during repose periods. This seems to have been a consequenceof the chamber remaining in approximate thermal balance duringthe last 0?46 Ma, as shown by similar Fe-Ti oxide temperaturesfor given magma compositions, regardless of age. Calculationssuggest that the chamber received thermal input through theinjection of basalt at an average rate of 0?1 km3 per thousandyears. Apparently this thermal input was too small to generatedifferentiated magma by partial melting of the wall rocks ofthe chamber, but large enough to offset conductive or hydrothermalcooling that would promote differentiation by extensive crystallization.  相似文献   

5.
Pelitic xenoliths derived from amphibolite grade basement rocksoccur within a Pleistocene, trachytic, pyroclastic unit of theWehr volcano, East Eifel, West Germany: With increasing temperatureand/or prolonged heating at high temperature, quartz-plagioclaseand micaceous layers of the xenoliths have undergone meltingto form buchites and thermal reconstitution by dehydration reactions,melting and crystallization to form restites respectively. Thexenoliths provide detailed evidence of melting, high temperaturedecomposition of minerals, nucleation and growth of new phasesand P-T-fo2 conditions of contact metamorphism of basement rocksby the Wehr magma. Melting begins at quartz-oligoclase (An17·3Ab82·3Or0·4-An20·0Ab78·1Or1·9)grain boundaries in quartz-plagioclase rich layers and the amountof melting is controlled by H2O and alkalis released duringdehydroxylation/oxidation of associated micas. Initially, glasscompositions are heterogeneous, but with increasing degreesof melting they become more homogeneous and are similar to S-typegranitic minimum melts with SiO2 between 71 and 77 wt. per cent;A/(CNK) ratios of 1·2–1·4; Na2O < 2·95and normative corundum contents of 1·9–4·0per cent. Near micas plagioclase melts by preferential dissolutionof the NaAlSi3O8 component accompanied by a simultaneous increasein CaAl2Si2O8 (up to 20 mol. per cent An higher than the bulkplagioclase composition) at the melting edge. With increasingtemperature the end product of fractional melting is the formationand persistence of refractory bytownite (An78–80) in thosexenoliths where extensive melting has taken place. Initial stage decomposition of muscovite involves dehydroxylation(H2O and alkali loss). At higher temperatures muscovite breaksdown to mullite, sillimanite, corundum, sanidine and a peraluminousmelt. Mullite (40–43 mol. per cent SiO2) and sillimanite(49 mol. per cent SiO2) are Fe2O3 and TiO2 rich (up to 6·1–0·84and 3·6–0·24 wt. per cent respectively).Al-rich mullite (up to 77 wt. per cent Al2O3) occurs with corundumwhich has high Fe2O3 and TiO2 (up to 6·9 and 2·1wt. per cent respectively). Annealing at high temperatures andreducing conditions results in the exsolution of mullite fromsillimanite and ilmenite from corundum. Glass resulting fromthe melting of muscovite in the presence of quartz is peraluminous(A/(CNK) = 1·3) with SiO2 contents of 66–69 percent and normative corundum of 4 per cent. Sanidine (An1·9Ab26·0Or72·1-An1·3Ab15·9Or82·9)crystallized from the melt. Dehydroxylation and oxidation of biotite results in a decreaseof K2O from 8·6 to less than 1 wt. per cent and oxidetotals (less H2O + contents) from 96·5 to 88·6,exsolution of Al-magnetite, and a decrease in the Fe/(Fe + Mg)ratio from 0·41 to 0·17. Partial melting of biotitein the presence of quartz/plagioclase to pleonaste, Al-Ti magnetite,sanidine(An2·0Ab34·9Or63·1) and melt takesplace at higher temperatures. Glass in the vicinity of meltedbiotite is pale brown and highly peraluminous (A/CNK = 2·1)with up to 6 wt. per cent MgO+FeO(total iroq) and up to 10 percent normative corundum. Near liquidus biotite with higher Al2O3and TiO2 than partially melted biotite crystallized from themelt. Ti-rich biotites (up to 6 wt. per cent TiO2) occur withinthe restite layers of thermally reconstituted xenoliths. Meltingof Ti-rich biotite and sillimanite in contact with the siliceousmelt of the buchite parts of xenoliths resulted in the formationof cordierite (100 Mg/(Mg+Fe+Mn) = 76·5–69·4),Al-Ti magnetite and sanidine, and development of cordierite/quartzintergrowths into the buchite melt. Growth of sanidine enclosedrelic Ca-plagioclase to form patchy intergrowths in the restitelayers. Cordierite (100 Mg/(Mg+Fe+Mn) = 64–69), quartz,sillimanite, mullite, magnetite and ilmenite, crystallized fromthe peraluminous buchite melt. Green-brown spinels of the pleonaste-magnetite series have awide compositional variation of (mol. per cent) FeAl2O4—66·6–45·0;MgAl2O4—53·0–18·7; Fe3O4—6·9–28·1;MnAl2O4—1·2–1·5; Fe2TiO4—0·6–6·2.Rims are generally enriched in the Fe3O4 component as a resultof oxidation. Compositions of ilmenite and magnetite (single,homogeneous and composite grains) are highly variable and resultfrom varying degrees of high temperature oxidation that is associatedwith dehydroxylation of micas and melting. Oxidation mainlyresults in increasing Fe3+, Al and decreasing Ti4+, Fe2+ inilmenite, and increasing Fe2+, Ti4+ and decreasing Fe3+ in associatedmagnetite. A higher degree of oxidation is reached with exsolutionof rutile from ilmenite and formation of titanhematite and withexsolution of pleonaste from magnetite. Ti-Al rich magnetite(5·1–7·5 and 8·5–13·5wt. per cent respectively) and ilmenite crystallized from meltsin buchitic parts of the xenoliths. Chemical and mineralogic evidence indicates that even with extensivemelting the primary compositions of individual layers in thexenoliths remained unmodified. Apparently the xenoliths didnot remain long enough at high temperatures for desilicationand enrichment in Al2O3, TiO2, FeO, Fe2O3, and MgO that resultsby removal of a ‘granitic’ melt, and/or by interactionwith the magma, to occur. T °C-fo2 values calculated from unoxidized magnetite/ilmenitegive temperatures ranging from 615–710°C for contactmetamorphism and the beginning of melting, and between 873 and1054°C for the crystallization of oxides and mullite/sillimanitefrom high temperature peraluminous melts. fo2 values of metamorphismand melting were between the Ni-NiO and Fe2O3-Fe3O4 buffer curves.The relative abundance of xenolith types, geophysical evidenceand contact metamorphic mineralogy indicates that the xenolithswere derived from depths corresponding to between 2–3kb Pload = Pfluid. The xenoliths were erupted during the latestphreatomagmatic eruption from the Wehr volcano which resultedin vesiculation of melts in partially molten xenoliths causingfragmentation and disorientation of solid restite layers.  相似文献   

6.
Mafic inclusions present in the rhyolitic lavas of Narugo volcano,Japan, are vesiculated andesites with diktytaxitic texturesmainly composed of quenched acicular plagioclase, pyroxenes,and interstitial glass. When the mafic magma was incorporatedinto the silica-rich host magma, the cores of pyroxenes andplagioclase began to crystallize (>1000°C) in a boundarylayer between the mafic and felsic magmas. Phenocryst rim compositionsand interstitial glass compositions (average 78 wt % SiO2) inthe mafic inclusions are the same as those of the phenocrystsand groundmass glass in the host rhyolite. This suggests thatthe host felsic melt infiltrated into the incompletely solidifiedmafic inclusion, and that the interstitial melt compositionin the inclusions became close to that of the host melt (c.850°C). Infiltration was enhanced by the vesiculation ofthe mafic magma. Finally, hybridized and density-reduced portionsof the mafic magma floated up from the boundary layer into thehost rhyolite. We conclude that the ascent of mafic magma triggeredthe eruption of the host rhyolitic magma. KEY WORDS: mafic inclusion; stratified magma chamber; magma mixing; mingling; Narugo volcano; Japan  相似文献   

7.
Petrogenesis of the Zoned Laacher See Tephra   总被引:2,自引:2,他引:2  
The late Quaternary Laacher See phonolitic tephra deposit (EastEifel, W. Germany) is mineral-ogically and chemically zonedfrom highly evolved, volatile-rich and crystal-poor at its basetowards a mafic, crystal-rich phonolite at the top (Wörner& Schmincke, 1984). This zonation is interpreted as theresult of a continuous eruption from a zoned magma column. Majorand trace element evidence shows that the last erupted maficULST (Upper Laacher See Tephra) phonolite can be derived froma basanite parent magma via fractional crystallization of 30per cent clinopyroxene, 24 per cent amphibole, 4 per cent phlogopite,3.8 per cent magnetite, 2.5–3.0 per cent olivine and 1per cent apatite, leaving a derivative of 30 per cent evolvedmagma. Starting from the mafic (ULST) phonolite as a parent, the zonedsequence is postulated to have been formed by progressive fractionalcrystallization of the observed phenocryst phases. This modelwas tested by a series of 7 step-by-step mass balance fractionationcalculations. Abundance, modal composition and relative variationsof calculated fractionated phases agree well with the observedphenocryst abundances: sanidine followed by plagioclase andminor amounts of mafic phases are to be fractionated to givethe observed zoned sequence. The most evolved phonolite, however, cannot be generated bysubtraction of phenocrysts from the underlying phonolite. Processessuch as liquid-state differentiation may therefore have chemicallymodified the upper part (cupola) of the Laacher See magma columnsubsequent to crystal fractionation. The erupted phonolite magma (5.3 km3) was calculated to havestarted with a volume of 56 km3 of parental basanite magma whichfractionated to form 16.6 km3 of mafic phonolite. This magmafurther differentiated to give a 5.3 km3 zoned (erupted) phonolitecolumn. The non-erupted volume of 50 km3 is postulated to forma cooling cumulate body below the present day Laacher See volcano. The Laacher See magma system represents a complex end-membertype of a highly evolved small volume composition ally zonedmagma chamber with steep major and trace element gradients,the uppermost volatile rich magma layer resembling the stableroof part of rhyolitic chambers.  相似文献   

8.
A simple heat balance model for an evolving magma chamber isused to make predictions of the time scales for magma differentiation,which are compared with geological and isotopic constraintson the rates of crystallization and differentiation. In a 10km3 magma chamber releasing thermal energy at a rate of 100MW, basalt and rhyolite magmas should reach 50% crystallizationafter  相似文献   

9.
In this work we investigate the olivine-phyric basalt suiteof the Aphanasey Nikitin Rise, an intraplate volcanic structureformed during the Late Cretaceous in the Indian Ocean. The parentalmelt of the basalt suite has a hypersthene-normative tholeiiticcomposition with low H2O content (0·3–0·5wt %) and high SiO2/Al2O3 (3·5). The basalt suite ischaracterized by Nb, Ta, Th and U depletion, and uniquely low206Pb/204Pb and 143Nd/144Nd among the Cretaceous tholeiiticbasalts of the Indian Ocean. Our modelling demonstrates thatfractional crystallization of depleted mantle-derived melt andlower continental crust assimilation is a suitable model forthe genesis of the parental magma of this suite. The continentalcrustal material involved is characterized by long-term Rb,U and Th depletion and probably remained isolated for >109years in cratonic Gondwanan lithosphere. On a broader scale,two geochemical groups can be distinguished among tholeiitesformed in the Indian Ocean basin during the period 115–75Ma, from the Aphanasey Nikitin Rise, the southern Kerguelenand Naturaliste plateaux and the Broken Ridge. Both groups havea compositional range from hypersthene-normative basalt to basalticandesite and are characterized by Nb–Ta depletion, extremelylow  相似文献   

10.
Mechanisms of fractional crystallization with simultaneous crustalassimilation (AFC) are examined for the Kutsugata and Tanetomilavas, an alkali basalt–dacite suite erupted sequentiallyfrom Rishiri Volcano, northern Japan. The major element variationswithin the suite can be explained by boundary layer fractionation;that is, mixing of a magma in the main part of the magma bodywith a fractionated interstitial melt transported from the mushyboundary layer at the floor. Systematic variations in SiO2 correlatewith variations in the Pb, Sr and Nd isotopic compositions ofthe lavas. The geochemical variations of the lavas are explainedby a constant and relatively low ratio of assimilated mass tocrystallized mass (‘r value’). In the magma chamberin which the Kutsugata and Tanetomi magmas evolved, a strongthermal gradient was present and it is suggested that the marginalpart of the reservoir was completely solidified. The assimilantwas transported by crack flow from the partially fused floorcrust to the partially crystallized floor mush zone throughfractures in the solidified margin, formed mainly by thermalstresses resulting from cooling of the solidified margin andheating of the crust. The crustal melt was then mixed with thefractionated interstitial melt in the mushy zone, and the mixedmelt was further transported by compositional convection tothe main magma, causing its geochemical evolution to be characteristicof AFC. The volume flux of the assimilant from the crust tothe magma chamber is suggested to have decreased progressivelywith time (proportional to t–1/2), and was about 3 x 10–2m/year at t = 10 years and 1 x 10–2 m/year at t = 100years. It has been commonly considered that the heat balancebetween magmas and the surrounding crust controls the couplingof assimilation and fractional crystallization processes (i.e.absolute value of r). However, it is inferred from this studythat the ratio of assimilated mass to crystallized mass canbe controlled by the transport process of the assimilant fromthe crust to magma chambers. KEY WORDS: assimilation and fractional crystallization; mass balance model; magma chamber; melt transport; Pb isotope  相似文献   

11.
Vico volcano has erupted potassic and ultrapotassic magmas,ranging from silica-saturated to silica-undersaturated types,in three distinct volcanic periods over the past 0·5Myr. During Period I magma compositions changed from latiteto trachyte and rhyolite, with minor phono-tephrite; duringPeriods II and III the erupted magmas were primarly phono-tephriteto tephri-phonolite and phonolite; however, magmatic episodesinvolving leucite-free eruptives with latitic, trachytic andolivine latitic compositions also occurred. In Period II, leucite-bearingmagmas (87Sr/86Srinitial = 0·71037–0·71115)were derived from a primitive tephrite parental magma. Modellingof phonolites with different modal plagioclase and Sr contentsindicates that low-Sr phonolitic lavas differentiated from tephri-phonoliteby fractional crystallization of 7% olivine + 27% clinopyroxene+ 54% plagioclase + 10% Fe–Ti oxides + 4% apatite at lowpressure, whereas high-Sr phonolitic lavas were generated byfractional crystallization at higher pressure. More differentiatedphonolites were generated from the parental magma of the high-Srphonolitic tephra by fractional crystallization of 10–29%clinopyroxene + 12–15% plagioclase + 44–67% sanidine+ 2–4% phlogopite + 1–3% apatite + 7–10% Fe–Tioxides. In contrast, leucite-bearing rocks of Period III (87Sr/86Srinitial= 0·70812–0·70948) were derived from a potassictrachybasalt by assimilation–fractional crystallizationwith 20–40% of solid removed and r = 0·4–0·5(where r is assimilation rate/crystallization rate) at differentpressures. Silica-saturated magmas of Period II (87Sr/86Srinitial= 0·71044–0·71052) appear to have been generatedfrom an olivine latite similar to some of the youngest eruptedproducts. A primitive tephrite, a potassic trachybasalt andan olivine latite are inferred to be the parental magmas atVico. These magmas were generated by partial melting of a veinedlithospheric mantle sources with different vein–peridotite/wall-rockproportions, amount of residual apatite and distinct isolationtimes for the veins. KEY WORDS: isotope and trace element geochemistry; polybaric differentiation; veined mantle; potassic and ultrapotassic rocks; Vico volcano; central Italy  相似文献   

12.
The Younger Andesites and Dacites of Iztacc?huatl volcano, Mexico,constitute a medium-K calcalkaline rock suite (58–66 wt.per cent SiO2) characterized by high Mg-numbers (100Mg/(Mg+0?85Fe2+=55–66) and relatively high abundances of MgO (2?5–6?6wt. per cent), Ni(17–158 p.p.m.), and Cr (42–224p.p.m.). Chemical stratigraphy plots of eruptive sequences indicatethe existence of a plexus of long-lived dacite magma chambersperiodically replenished by influxes of basaltic magma ascendingfrom depth. Short-term geochemical evolution after batch influxwas dictated by magma mixing and eventual dilution of the basalticcomponent by ‘quasi-steady state’ hornblende dacitemagma. The chemical data support textural and mineralogicalevidence for rapid homogenization of originally diverse magmasby convective blending of residual liquids accompanied by dynamicfractional crystallization (Nixon, 1988). Internally-consistent mixing calculations used to derive thecomposition of basaltic magma influx incorporate analyticaluncertainties and the observed range of salic end-member compositions.Mafic end-members are basalts to basaltic andesites (52–54wt. per cent SiO2) with Mg-numbers (73–76), MgO (9–11wt. per cent), Ni (250 p.p.m.), and Cr (340–510 p.p.m.)concentrations, and liquidus olivine compositions (Fo90–88),appropriate for unfractionated partial melts of mantle peridotite.The majority of model compositions are Ol-Hy-normative, similarto those of primitive basaltic lavas on the flanks of Iztacc?huatland in the Valley of Mexico. However, calculated magma batchesrange from weakly Qz-normative to strongly Ne-normative. Bothcalculated and analyzed basaltic compositions are distinguishedby highly variable abundances of alkalies and incompatible traceelements, notably Rb, Ba, Sr, P, Zr, and Y. Initial 87Sr/86Sr ratios for Iztacc?huatl lavas (0?7040–0?7046;n=24) are comparable to those for primitive basaltic rocks (0?7037–0?7045;?=4) and indicate that (1) mantle source regions are isotopicallyheterogeneous; and (2) contamination of iztacc?huatl magma chambersby radiogenic crustal rocks was not a significant factor inthe evolution of calc-alkaline andesites and dacites. The replenishment of Iztacc?huatl dacite reservoirs by Ne-normativemagmas late in the history of cone growth precludes exhaustionof mantle source regions by progressive partial melting. Thewaning stages of volcanic activity at Iztacc?huatl appear toreflect the inability of dense basaltic influxes to successfullypenetrate a large high-level chamber of low density hornblendedacite magma.  相似文献   

13.
Fe-rich dunite xenoliths within the Kimberley kimberlites compriseolivine neoblasts with minor elongated, parallel-oriented ilmenite,and rarely olivine porphyroclasts and spinel. Compared withtypical mantle peridotites, olivines in the Fe-rich duniteshave lower forsterite (Fo87–89) and NiO contents (1300–2800ppm), which precludes a restitic origin for the dunites. Chrome-richspinels are remnants of a metasomatic reaction that producedilmenite and phlogopite. Trace element compositions differ betweenporphyroclastic and neoblastic olivine, the latter having higherTi, V, Cr and Ni and lower Zn, Zr and Nb contents, documentingtheir different origins. The dunites have high 187Os/ 188Osratios (0·11–0·15) that result in youngmodel ages for most samples, whereas three samples show isotopicmixtures between Phanerozoic neoblasts and ancient porphyroclasticmaterial. Most Fe-rich dunite xenoliths are interpreted to berecrystallized cumulates related to fractional crystallizationof Jurassic Karoo flood basalt magmatism, whereas the porphyroclastsare interpreted to be remnants from a much earlier (probablyArchaean Ventersdorp) magmatic episode. The calculated parentalmagma for the most primitive olivine neoblasts in the Fe-richdunites is similar to low-Ti Karoo basalts. Modelling the crystalfractionation of the inferred parental magma with pMELTS yieldselement fractionation trends that mirror the element variationof primitive low-Ti Karoo basalts. KEY WORDS: dunite xenoliths; fractional crystallization; Karoo; large igneous province; pMELTS; Re–Os; trace elements  相似文献   

14.
We have performed time series experiments for periods rangingfrom 3 min to 44 h on the interaction of granite melt and partiallymolten basalt at 920C and 10 kbar, in the presence of 5 wt.%water. With time, the assemblage of the basalt domain changesfrom predominantly amphibole+plagioclase to clinopyroxene+garnet;the melt fraction increases from {small tilde}2•5 to 40%;and between the two domains, the melt compositions progressivelyequilibrate. Initially in each run, melts of the basalt domainhave uniform plateau concentrations for SiO2, Al2O3, CaO, MgO,and FeO because the activities of these components are regulatedby the mineral assemblage, but at advanced stages of reaction,no such control is evident. We have derived analytical expressionsto describe and simulate the diffusion profiles. The concentrationprofiles for SiO2, Al2O3, CaO, and Na2O in the granite, emanatingfrom the basalt–granite interface, have been used to estimateeffective diffusivities. The values from the shorter runs arecompared with those of the experiment of longest duration forwhich we assumed finite couples in our calculations. In thediffusion calculations for K2O the difference in melt fractionbetween the two domains is accounted for. The resulting values(in cm2/s) are: DNa2O=6 10–7, DK2O=3 10–7, DMgO=9 10–8, DCaO=(4–6) 10–8, and DSiO2 and DAl2O3=(3–0•6) 10–8. They are in reasonable agreement with values fromother studies. On the basis of our experiments we calculatethat mafic enclaves of magmatic origin should equilibrate toa large degree with their host magma in slowly cooling non-convectinggranitic plutons. Enclaves approaching complete re-equilibrationretain distinctly higher modal amounts of mafic minerals. Theydo not compositionally resemble binary magma mixtures, but aremore like host magma with accumulated crystals. We show thatthe modal differences between enclave and host are indicativeof the temperature of homogenization and that, in principle,this temperature can be deduced from equilibrium phase diagrams. * Present address: Mineralogisch-Petrologisches Institut, Universitt Gttingen, Goldschmidtstrasse 1, 3400 Gttingen, Germany  相似文献   

15.
K-feldspar megacrysts (Kfm) are used to investigate the magmaticevolution of the 7 Ma Monte Capanne (MC) monzogranite (Elba,Italy). Dissolution and regrowth of Kfm during magma mixingor mingling events produce indented resorption surfaces associatedwith high Ba contents. Diffusion calculations demonstrate thatKfm chemical zoning is primary. Core-to-rim variations in Ba,Rb, Sr, Li and P support magma mixing (i.e. high Ba and P andlow Rb/Sr at rims), but more complex variations require othermechanisms. In particular, we show that disequilibrium growth(related to variations in diffusion rates in the melt) may haveoccurred as a result of thermal disturbance following influxof mafic magma in the magma chamber. Initial 87Sr/86Sr ratios(ISr) (obtained by microdrilling) decrease from core to rim.Inner core analyses define a mixing trend extending towardsa high ISr–Rb/Sr melt component, whereas the outer coresand rims display a more restricted range of ISr, but a largerrange of Rb/Sr. Lower ISr at the rim of one megacryst suggestsmixing with high-K calc-alkaline mantle-derived volcanics ofsimilar age on Capraia. Trace element and isotopic profilessuggest (1) early megacryst growth in magmas contaminated bycrust and refreshed by high ISr silicic melts (as seen in theinner cores) and (2) later recharge with mafic magmas (as seenin the outer cores) followed by (3) crystal fractionation, withpossible interaction with hydrothermal fluids (as seen in therim). The model is compatible with the field occurrence of maficenclaves and xenoliths. KEY WORDS: Elba; monzogranite; K-feldspar megacrysts; zoning; magma mixing; trace element; Sr isotopes; petrogenesis  相似文献   

16.
The Tertiary to Recent basalts of Victoria and Tasmania havemineralogical and major element characteristics of magmas encompassingthe range from quartz tholeiites to olivine melilitites. Abundancesof trace elements such as incompatible elements, including therare earth elements (REE), and the compatible elements Ni, Coand Sc, vary systematically through this compositional spectrum.On the basis of included mantle xenoliths, appropriate 100 Mg/Mg+ Fe+2 (68–72) and high Ni contents many of these basaltsrepresent primary magmas (i.e., unmodified partial melts ofmantle peridotite). For fractionated basalts we have derivedmodel primary magma compositions by estimating the compositionalchanges caused by fractional crystallization of olivine andpyroxene at low or moderate pressure. A pyrolite model mantlecomposition has been used to establish and evaluate partialmelting models for these primary magmas. By definition and experimentaltesting the specific pyrolite composition yields parental olivinetholeiite magma similar to that of KilaeauIki, Hawaii (1959–60)and residual harzburgite by 33 per cent melting. It is shownthat a source pyrolite composition differing only in having0.3–0.4 per cent TiO2 rather than 0.7 per cent TiO2, isable to yield the spectrum of primary basalts for the Victorian-Tasmanianprovince by 4 per cent to 25 per cent partial melting. The mineralogiesof residual peridotites are consistent with known liquidus phaserelationships of the primary magmas at high pressures and thechemical compositions of residual peridotite are similar tonatural depleted or refractory lherzolites and harzburgites.For low degrees of melting the nature of the liquid and of theresidual peridotite are sensitively dependent on the contentof H2O, CO2 and the CO2/H2O in the source pyrolite. The melting models have been tested for their ability to accountfor the minor and trace element, particularly the distinctivelyfractionated REE, contents of the primary magmas. A single sourcepyrolite composition can yield the observed minor and traceelement abundances (within at most a factor of 2 and commonlymuch closer) for olivine melilitite (4–6 per cent melt),olivine nephelinite, basanite (5–7 per cent melt), alkaliolivine basalt (11–15 per cent melt), olivine basalt andolivine tholeiite (20–25 per cent melt) provided thatthe source pyrolite was already enriched in strongly incompatibleelements (Ba, Sr, Th, U, LREE) at 6–9 x chondritic abundancesand less enriched (2.5–3 x chondrites) in moderately incompatible(Ti, Zr, Hf, Y, HREE) prior to the partial melting event. Thesources regions for S.E. Australian basalts are similar to thosefor oceanic island basalts (Hawaii, Comores, Iceland, Azores)or for continental and rift-valley basaltic provinces and verydifferent in trace element abundances from the model sourceregions for most mid-ocean ridge basalts. We infer that thismantle heterogeneity has resulted from migration within theupper mantle (LVZ or below the LVZ) of a melt or fluid (H2O,CO2-enriched) with incompatible element concentrations similarto those of olivine melilitite, kimberlite or carbonatite. Asa result of this migration, some mantle regions are enrichedin incompatible elements and other areas are depleted. Although it is possible, within the general framework of a lherzolitesource composition, to derive the basanites, olivine nephelinitesand olivine melilitites from a source rock with chondritic relativeREE abundances at 2–5 x chondritic levels, these modelsrequire extremely small degrees of melting (0.4 per cent forolivine melilitite to 1 per cent for basanite). Furthermore,it is not possible to derive the olivine tholeiite magmas fromsource regions with chondritic relative REE abundances withoutconflicting with major element and experimental petrology argumentsrequiring high degrees (15 per cent) of melting and the absenceof residual garnet. If these arguments are disregarded, andpartial melting models are constrained to source regions withchondritic relative REE abundances, then magmas from olivinemelilitites to olivine tholeiites can be modelled if degreesof melting are sufficiently small, e.g., 7 per cent meltingfor olivine tholeiite. However, the source regions must be heterogenousfrom 1 to 5 x chondritic in absolute REE abundances and heterogerieousin other trace elements as well. This model is rejected in favorof the model requiring variation in degree of melting from 4per cent to 25 per cent and mantle source regions ranging fromLREE-enriched to LREE-depleted relative to chondritic REE abundances.  相似文献   

17.
TAMURA  Y. 《Journal of Petrology》1995,36(2):417-434
The Mio-Pliocene Shirahama Group, Izu Peninsula, Central Japan,a well-exposed submarine volcanic arc complex of lava flows,pyroclastic rocks and associated shallow intrusives, is characterizedby a tholeiitic series (basalt to dacite) and a calc-alkalineseries (andesite to dacite). Chemical variations in the tholeiiticseries and calc-alkaline series are consistent with crystalfractionation from basalt and magnesian andesite (boninite),respectively. Crystal–liquid phase relations of thesemagmas have been investigated by study of sample suites fromthese two series. Compositions of liquids in equilibrium withphenocrysts were determined by microprobe grid analyses, inwhich 49 points were averaged in 03 mm 03 mm groundmassareas. The liquid compositions, coupled with the phenocrystmineralogy of the same samples, define the liquid lines of descentof these volcanic arc magmas. Major findings include the following:(1) Crystallization of the tholeiitic series magma is consistentwith early stage crystallization in the simple system Fo–Di–Silica–H2O,with olivine having a reaction relation to augite and the tholeiiticliquid. (2) The later stage products of the tholeiitic seriesmagma are, however, crystal-poor (<10%) dacites with no maficminerals, suggesting that tholeiitic liquids, hypersthene andaugite were no longer on the cotectic (3) A characteristic ofthe calc-alkaline series magmas is the development of rhyoliticliquids. Hypersthene, augite, plagioclase and Fe–Ti oxideoccur in most calc-alkaline rocks studied, and hornblende andquartz can be found in about half of these. However, their differentiationpaths show that the cotectic relation between quartz and liquidended at a later stage, resulting in the resorption of quartzphenocrysts and ultimately in the formation of quartz-free magmas.(4) The late-stage liquids of both the tholeiitic and calc-alkalineseries have deviated from their cotectics, which cannot be explainedby fractional crystallization alone. The addition of H2O froman outside system is probably required to explain the differentiationpaths. (5) The formation of chilled margins, the in situ crystallizationof a magma chamber in the solidification zone, and/or the migrationof groundwater into the magma chamber are thought to be likelyprocesses affecting magmas during their migration and intrusioninto the crust. An extreme effect of H2O addition would be tolower the liquidus temperatures of all precipitating silicatephases far below their restorable range before eruption, resultingin the production of aphyric magmas. Even when a temperaturedecrease in the magma chamber causes a liquid to intersect theliquidus of a pre-existing phase, the addition of H2O shiftsthe cotectic toward SiO2, resulting in quartz being the lastphase to crystallize. The resorption of quartz is interpretedto be the result of a liquidus boundary shift caused by theaddition of H2O. The genesis of aphyric rhyolites is thereforeinferred to result from fractional crystallization followingaddition of H20. KEY WORDS: Shirahama Group; Japan; island arc; rhyolite; magma series  相似文献   

18.
The 1·13 Ga Ilímaussaq intrusive complex, SouthGreenland, is composed of various types of alkali granite andsilica-undersaturated alkaline to agpaitic nepheline syenitesrelated to three subsequently intruded magma batches. Mineralchemistry indicates continuous fractionation trends within eachrock type, but with distinct differences among them. The last,peralkaline magma batch is the most fractionated in terms ofXFemafic mineral, feldspar composition and mineral assemblage.This indicates that an evolving magma chamber at depth discontinuouslyreleased more highly fractionated alkaline melts. Fluid inclusionsin some sodalites record a pressure drop from 3·5 to1 kbar indicating that crystallization started during magmaascent and continued in the high-level magma chamber. On thebasis of phase equilibria and preliminary fluid inclusion data,crystallization temperature drops from >1000°C (augitesyenite liquidus) to <500°C (lujavrite solidus) and silicaactivity decreases from  相似文献   

19.
 A variety of cognate basalt to basaltic andesite inclusions and dacite pumices occur in the 7-Ma Rattlesnake Tuff of eastern Oregon. The tuff represents ∼280 km3 of high-silica rhyolite magma zoned from highly differentiated rhyolite near the roof to less evolved rhyolite at deeper levels. The mafic inclusions provide a window into the processes acting beneath a large silicic chamber. Quenched basaltic andesite inclusions are substantially enriched in incompatible trace elements compared to regional primitive high-alumina olivine tholeiite (HAOT) lavas, but continuous chemical and mineralogical trends indicate a genetic relationship between them. Basaltic andesite evolved from primitive basalt mainly through protracted crystal fractionation and multiple cycles (≥10) of mafic recharge, which enriched incompatible elements while maintaining a mafic bulk composition. The crystal fractionation history is partially preserved in the mineralogy of crystal-rich inclusions (olivine, plagioclase ± clinopyroxene) and the recharge history is supported by the presence of mafic inclusions containing olivines of Fo80. Small amounts of assimilation (∼2%) of high-silica rhyolite magma improves the calculated fit between observed and modeled enrichments in basaltic andesite and reduces the number of fractionation and recharge cycles needed. The composition of dacite pumices is consistent with mixing of equal proportions of basaltic andesite and least-evolved, high-silica rhyolite. In support of the mixing model, most dacite pumices have a bimodal mineral assemblage with crystals of rhyolitic and basaltic parentage. Equilibrium dacite phenocrysts are rare. Dacites are mainly the product of mingling of basaltic andesite and rhyolite before or during eruption and to a lesser extent of equilibration between the two. The Rattlesnake magma column illustrates the feedback between mafic and silicic magmas that drives differentiation in both. Low-density rhyolite traps basalts and induces extensive fractionation and recharge that causes incompatible element enrichment relative to the primitive input. The basaltic root zone, in turn, thermally maintains the rhyolitic magma chamber and promotes compositional zonation. Received: 1 June 1998 / Accepted: 5 February 1999  相似文献   

20.
Major and trace element data are presented for a suite of lavasand gabbroic xenoliths from the northern Mariana islands inthe west Pacific. Fractional crystallization of a gabbroic mineral assemblage,similar to that observed in the xenoliths, appears to be thepredominant control on major and trace element variation withinthe lavas. Mixing calculations indicate that this ‘extract’has an average composition of PLAG:CPX:MAG:OLIV =60:25:10:5.Amphibole is not thought to be an important component of thefractionating assemblage. Consideration of REE data, in particular the pronounced negativecorrelation between Eu/Eu* and silica, allows the identificationof a ‘parental’ magma composition, representingthe most primitive lavas erupted. These are basaltic andesitein composition with approximately 53 wt.% silica. More evolvedlavas can be produced by the fractionation of a gabbroic assemblage,as noted above, while simultaneous cumulus enrichment processesmay produce apparently less evolved, more basic compositions.Mineral medal data for the lavas provide corroborative evidencefor the operation of this process, which may be common to otherintra-oceanic arc settings. Fractional crystallization appears to be selective, with titanomagnetitebeing removed from the magmatic system more efficiently thanplagioclase, suggesting a control by differential crystal settling. Comparison of the Mariana ‘parent’ with picriticprimary magmas from the Solomons and Vanuatu arcs shows thatthe former can be derived from the latter by simple fractionalcrystallization of olivine and clinopyroxene, which also readilyaccounts for the low Ni and Cr concentrations observed in thesuite. In addition the Mariana ‘parent’ appearsto have been influenced by phase relations involving a reducedplagioclase field, possibly under conditions of moderate Ploadand aH2O. The model has much in common with those currently in favourfor the generation of continental flood basalts, OIBs and someMORBs in that primary magmas are picritic and the crust actsas a ‘density filter’ which prevents the ascentof primary magmas and results in volcanic products dominatedby low pressure fractionates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号