首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
地质学   2篇
  2005年   1篇
  2003年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
Pre-eruption processes are investigated for magmas erupted in1983 from Miyake-jima volcano, which is one of the most activevolcanoes in Japan. The whole-rock compositional trends of theeruptive products are principally smooth and linear. Magmaserupted from some fissures have compositions that deviate fromthe main linear trend. Phenocryst contents of samples displacedfrom the linear compositional trends are significantly lowerthan those of samples on the main trends. Anorthite-rich plagioclasephenocrysts, present throughout the 1983 products, are too calcicto have crystallized from the erupted magma composition, andwere derived from a basaltic magma through magma mixing. Althoughthe linear whole-rock composition trends favor simple two-componentmagma mixing, this cannot explain the presence of samples thatdeviate from the main trend. Instead, the observed compositiontrends were formed by mixing of a homogeneous basaltic magmawith andesitic magmas exhibiting compositional diversity. Theoriginal linear composition trends of the andesitic end-membermagma were rotated and shifted to the direction of the basalticend-member magma by magma mixing. The samples out of the maintrends represent magmas with less basaltic component than thoseon the trend. The density and viscosity of the basaltic end-membermagma were comparable with those of the andesitic end-membermagmas. The basaltic magma, discharged from one magma chamberat 2 kbar pressure, was injected into a magma chamber at lowerpressure occupied by the chemically zoned andesite magma (1kbar), and possibly as a fountain. To establish the characteristicmixing trend of the 1983 magma, the basaltic component musthave been distributed systematically in the zoned andesite magma.A requirement is that the basaltic magma spread laterally andmixed with the andesite magma at various levels of ascent ofthe fountain in the host andesite magma. Analysis of compositionalzoning in titanomagnetite crystals revealed that the eruptionof the 1983 magmas was initiated soon after the replenishmentof the basaltic magma in the 1 kbar magma chamber. KEY WORDS: compositional trend; liquid–liquid blending; magma chamber; magma mixing; Miyake-jima Volcano  相似文献   
2.
Mechanisms of fractional crystallization with simultaneous crustalassimilation (AFC) are examined for the Kutsugata and Tanetomilavas, an alkali basalt–dacite suite erupted sequentiallyfrom Rishiri Volcano, northern Japan. The major element variationswithin the suite can be explained by boundary layer fractionation;that is, mixing of a magma in the main part of the magma bodywith a fractionated interstitial melt transported from the mushyboundary layer at the floor. Systematic variations in SiO2 correlatewith variations in the Pb, Sr and Nd isotopic compositions ofthe lavas. The geochemical variations of the lavas are explainedby a constant and relatively low ratio of assimilated mass tocrystallized mass (‘r value’). In the magma chamberin which the Kutsugata and Tanetomi magmas evolved, a strongthermal gradient was present and it is suggested that the marginalpart of the reservoir was completely solidified. The assimilantwas transported by crack flow from the partially fused floorcrust to the partially crystallized floor mush zone throughfractures in the solidified margin, formed mainly by thermalstresses resulting from cooling of the solidified margin andheating of the crust. The crustal melt was then mixed with thefractionated interstitial melt in the mushy zone, and the mixedmelt was further transported by compositional convection tothe main magma, causing its geochemical evolution to be characteristicof AFC. The volume flux of the assimilant from the crust tothe magma chamber is suggested to have decreased progressivelywith time (proportional to t–1/2), and was about 3 x 10–2m/year at t = 10 years and 1 x 10–2 m/year at t = 100years. It has been commonly considered that the heat balancebetween magmas and the surrounding crust controls the couplingof assimilation and fractional crystallization processes (i.e.absolute value of r). However, it is inferred from this studythat the ratio of assimilated mass to crystallized mass canbe controlled by the transport process of the assimilant fromthe crust to magma chambers. KEY WORDS: assimilation and fractional crystallization; mass balance model; magma chamber; melt transport; Pb isotope  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号