首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The theory of waves and instabilities in a differentially rotating disc containing a poloidal magnetic field is developed within the framework of ideal magnetohydrodynamics. A continuous spectrum, for which the eigenfunctions are localized on individual magnetic surfaces, is identified but is found not to contain any instabilities associated with differential rotation. The normal modes of a weakly magnetized thin disc are studied by extending the asymptotic methods used previously to describe the equilibria. Waves propagate radially in the disc according to a dispersion relation which is determined by solving an eigenvalue problem at each radius. The dispersion relation for a hydrodynamic disc is re-examined and the modes are classified according to their behaviour in the limit of large wavenumber. The addition of a magnetic field introduces new, potentially unstable, modes and also breaks up the dispersion diagram by causing avoided crossings. The stability boundary to the magnetorotational instability in the parameter space of polytropic equilibria is located by solving directly for marginally stable equilibria. For a given vertical magnetic field in the disc, bending of the field lines has a stabilizing effect and it is shown that stable equilibria exist which are capable of launching a predominantly centrifugally driven wind.  相似文献   

2.
A model is presented for an accretion disc with turbulent viscosity and a magnetically influenced wind. The magnetic field is generated by a dynamo in the disc, involving the turbulence and radial shear. Disc-wind solutions are found for which the wind mass flux is sufficient to play a major part in driving an imposed steady inflow, but small enough for most material to be accreted on to the central object. Constraints arise for the magnetic Reynolds and Prandtl numbers in terms of the turbulent Mach number and vertical length-scale of the disc's horizontal magnetic field. It is shown that the imposition of a stellar boundary condition enhances the wind mass flux in the very inner region of the disc and may result in jet formation.  相似文献   

3.
We consider the problem of poloidal magnetic field advection and bending of an initially vertical field owing to radial inflow in thin accretion discs. For a ratio of kinematic viscosity to magnetic diffusivity of order unity, significant bending of an externally applied vertical field cannot occur in a disc with no internal dynamo. However, we show that if poloidal field is generated by a dynamo operating near its critical state, then significant field bending may be possible. Our results are of particular relevance to wind launching from accretion discs.  相似文献   

4.
The presence of an imposed vertical magnetic field may drastically influence the structure of thin accretion discs. If the field is sufficiently strong, the rotation law can depart from the Keplerian one. We consider the structure of a disc for a given eddy magnetic diffusivity but neglect details of the energy transport. The magnetic field is assumed to be in balance with the internal energy of the accretion flow. The thickness of the disc as well as the turbulent magnetic Prandtl number and the viscosity, α , are the key parameters of our model. The calculations show that the radial velocity can reach the sound speed for a magnetic disc if the thickness is comparable to that of a non-magnetic one. This leads to a strong amplification of the accretion rate for a given surface density. The inclination angle of the magnetic field lines can exceed the critical value 30° (required to launch cold jets) even for a relatively small magnetic Prandtl number of order unity. The toroidal magnetic fields induced at the disc surface are smaller than predicted in previous studies.  相似文献   

5.
A semi-analytic method is presented for solving for the radial and vertical structures of an accretion disc, with a magnetically channelled wind flowing from its surfaces. Both magnetic and turbulent viscous effects are taken into account, and the essential wind properties are related to the disc structure. The angular momentum removed by the wind plays a major part in driving the inflow through the disc, with photospheric temperatures being sufficient to generate the required wind mass flux. The magnetic field is generated by an αω-dynamo, but the method of solution should have application with other magnetic field sources. Self-consistent disc-wind solutions result, with rms turbulent Mach numbers which are in good agreement with those found in simulations of turbulence generated from magnetic shearing instabilities.  相似文献   

6.
In the light of recent results from numerical simulations of accretion disc MHD turbulence, we revisit the problem of the configuration of large-scale magnetic fields resulting from an α Ω dynamo operating in a thin accretion disc. In particular, we analyse the consequences of the peculiar sign of the α -effect suggested by numerical simulations . We determine the symmetry of the fastest-growing modes in the kinematic dynamo approximation and, in the framework of an ' α -quenched' dynamo model, study the evolution of the magnetic field. We find that the resulting field for this negative polarity of the α -effect generally has dipole symmetry with respect to the disc midplane, although the existence of an equilibrium configuration depends on the properties of the turbulence. The role of magnetic field dragging is discussed and, finally, the presence of an external uniform magnetic field is included to address the issue of magneto centrifugal wind launching from accretion discs.  相似文献   

7.
Wind flows and collimated jets are believed to be a feature of a range of disc accreting systems. These include active galactic nuclei, T Tauri stars, X-ray binaries and cataclysmic variables. The observed collimation implies large-scale magnetic fields and it is known that dipole-symmetry fields of sufficient strength can channel wind flows emanating from the surfaces of a disc. The disc inflow leads to the bending of the poloidal magnetic field lines, and centrifugally driven magnetic winds can be launched when the bending exceeds a critical value. Such winds can result in angular momentum transport at least as effective as turbulent viscosity, and hence they can play a major part in driving the disc inflow.
It is shown here that if the standard boundary condition of vanishing viscous stress close to the stellar surface is applied, together with the standard connection between viscosity and magnetic diffusivity, then poloidal magnetic field bending increases as the star is approached with a corresponding increase in the wind mass loss rate. A significant amount of material can be lost from the system via the enhanced wind from a narrow region close to the stellar surface. This occurs for a Keplerian angular velocity distribution and for a modified form of angular velocity, which allows for matching of the disc and stellar rotation rates through a boundary layer above the stellar surface. The enhanced mass loss is significantly affected by the behaviour of the disc angular velocity as the stellar surface is approached, and hence by the stellar rotation rate. Such a mechanism may be related to the production of jets from the inner regions of disc accreting systems.  相似文献   

8.
We investigate the launching of outflows from the disc–magnetosphere boundary of slowly and rapidly rotating magnetized stars using axisymmetric and exploratory 3D magnetohydrodynamic simulations. We find long-lasting outflows in the following cases. (1) In the case of slowly rotating stars , a new type of outflow, a conical wind , is found and studied in simulations. The conical winds appear in cases where the magnetic flux of the star is bunched up by the disc into an X-type configuration. The winds have the shape of a thin conical shell with a half-opening angle  θ∼ 30°–40°  . About 10–30 per cent of the disc matter flows from the inner disc into the conical winds. The conical winds may be responsible for episodic as well as long-lasting outflows in different types of stars. There is also a low-density, higher velocity component (a jet) in the region inside the conical wind. (2) In the case of rapidly rotating stars (the 'propeller regime'), a two-component outflow is observed. One component is similar to the conical winds. A significant fraction of the disc matter may be ejected into the winds. The second component is a high-velocity, low-density magnetically dominated axial jet where matter flows along the opened polar field lines of the star. The jet has a mass flux of about 10 per cent of that of the conical wind, but its energy flux (dominantly magnetic) can be larger than the energy flux of the conical wind. The jet's angular momentum flux (also dominantly magnetic) causes the star to spin down rapidly. Propeller-driven outflows may be responsible for the jets in protostars and for their rapid spin-down. The jet is collimated by the magnetic force while the conical winds are only weakly collimated in the simulation region. Exploratory 3D simulations show that conical winds are axisymmetric about the rotational axis (of the star and the disc), even when the dipole field of the star is significantly misaligned.  相似文献   

9.
A model is presented for an accretion disc in which the inflow is driven purely by the angular momentum removed in a centrifugally accelerated magnetic wind. Turbulent discs around compact stars are considered, with the required magnetic field being generated in the disc by a simple dynamo. The turbulent magnetic Prandtl number, N p, measures the ratio of turbulent viscosity to turbulent magnetic diffusivity. Formally, the hypothetical limit   N p→ 0  corresponds to the magnetic wind torque dominating the viscous torque, but in practice the inflow is magnetically controlled for   N p≲ 0.1  .
The suggestion by previous authors that purely magnetic wind-driven discs may be unstable is investigated. A detailed steady solution is found which allows perturbations to the thermal balance and vertical equilibrium to be calculated, and hence the effect of perturbations to the magnetic diffusivity, η, to be assessed. For a standard parametrized form of η, the wind-driven angular momentum balance is found to be linearly unstable. An increase in the inflow rate leads to increased bending of the poloidal magnetic field and an enhanced wind mass loss rate. This increases the angular momentum loss rate which drives further inflow. There is a resultant increase in η, due to the temperature perturbation, but this does not relieve field bending sufficiently to prevent the instability.  相似文献   

10.
We study the effects of winds on the time evolution of isothermal, self-gravitating accretion discs by adopting a radius-dependent mass-loss rate because of the existence of the wind. Our similarity and semi-analytical solution describes time evolution of the system in the slow accretion limit. The disc structure is distinct in the inner and outer parts, irrespective of the existence of the wind. We show that the existence of wind will lead to a reduction of the surface density in the inner and outer parts of the disc in comparison to a no-wind solution. Also, the radial velocity significantly increases in the outer part of the disc, however, the accretion rate decreases due to the reduced surface density in comparison to the no-wind solution. In the inner part of the disc, mass loss due to the wind is negligible according to our solution. But the radial size of this no-wind inner region becomes smaller for stronger winds.  相似文献   

11.
The stability of turbulent accretion discs is considered, in which a magnetically influenced wind plays a major role in driving the inflow. The magnetic field is generated by a dynamo operating in the disc, involving radial shear and turbulence. The steady angular momentum balance is found to be linearly stable for a range of radial boundary conditions, and an expression is derived for the adjustment time-scale as a function of the equilibrium ratio of the magnetic and viscous disc torques.  相似文献   

12.
The dependence of the position of the solar wind sonic point on the magnetic field in the solar corona during cycle 23 is studied. This dependence is shown to be rather strong in the rising phase and at the cycle maximum. As the coronal magnetic field grows, the distance to the sonic point decreases. Since the distance to the sonic point has been shown previously to anticorrelate with the solar wind speed, the result obtained suggests a strong positive correlation between the later and the coronal magnetic field. The situation changed dramatically two years after the calendar date of the cycle maximum. Beginning in 2004 the solar wind speed ceased to depend on the magnetic field up until the cycle minimum in December 2008. In 2009 a strong dependence of the wind speed on the coronal magnetic field was restored. It is hypothesized that this effect is associated with two different coronal heating mechanisms whose relative efficiency, in turn, depends on the contribution from magnetic fields of different scales.  相似文献   

13.
Reconnection X-winds: spin-down of low-mass protostars   总被引:1,自引:0,他引:1  
We investigate the interaction of a protostellar magnetosphere with a large-scale magnetic field threading the surrounding accretion disc. It is assumed that a stellar dynamo generates a dipolar-type field with its magnetic moment aligned with the disc magnetic field. This leads to a magnetic neutral line at the disc mid-plane and gives rise to magnetic reconnection, converting closed protostellar magnetic flux into open field lines. These are simultaneously loaded with disc material, which is then ejected in a powerful wind. This process efficiently brakes down the protostar to 10–20 per cent of the break-up velocity during the embedded phase.  相似文献   

14.
We present 2.5D time-dependent simulations of the non-linear evolution of non-relativistic outflows from the surface of Keplerian accretion discs. The gas is accelerated from the surface of the disc (which is a fixed platform in these simulations) into a cold corona in stable hydrostatic equilibrium. We explore the dependence of the resulting jet characteristics upon the mass loading of the winds. Two initial configurations of the threading disc magnetic field are studied: a potential field and a uniform vertical field configuration.
We show that the nature of the resulting highly collimated, jet-like outflows (steady or episodic) is determined by the mass load of the disc wind. The mass load controls the interplay between the collimating effects of the toroidal field and the kinetic energy density in the outflow. In this regard, we demonstrate that the onset of episodic behaviour of jets appears to be determined by the quantity     which compares the speed for a toroidal Alfvén wave to cross the diameter of the jet, with the flow speed v p along the jet. This quantity decreases with increasing load. For sufficiently large N (small mass loads), disturbances appear to grow leading to instabilities and shocks. Knots are then generated and the outflow becomes episodic. These effects are qualitatively independent of the initial magnetic configuration that we employed and are probably generic to a wide variety of magnetized accretion disc models.  相似文献   

15.
We study the stability of poloidal magnetic fields anchored in a thin accretion disc. The two-dimensional hydrodynamics in the disc plane is followed by a grid-based numerical simulation including the vertically integrated magnetic forces. The three-dimensional magnetic field outside the disc is calculated in a potential field approximation from the magnetic flux density distribution in the disc. For uniformly rotating discs we confirm numerically the existence of the interchange instability as predicted by Spruit, Stehle & Papaloizou . In agreement with predictions from the shearing sheet model, discs with Keplerian rotation are found to be stabilized by the shear, as long as the contribution of magnetic forces to support against gravity is small. When this support becomes significant, we find a global instability which transports angular momentum outwardly and allows mass to accrete inwardly. The instability takes the form of a m =1 rotating 'crescent', reminiscent of the purely hydrodynamic non-linear instability previously found in pressure-supported discs. A model where the initial surface mass density Σ( r ) and B z ( r ) decrease with radius as power laws shows transient mass accretion during about six orbital periods, and settles into a state with surface density and field strength decreasing approximately exponentially with radius. We argue that this instability is likely to be the main angular momentum transport mechanism in discs with a poloidal magnetic field sufficiently strong to suppress magnetic turbulence. It may be especially relevant in jet-producing discs.  相似文献   

16.
The transfer of energy and angular momentum in the magnetic coupling (MC) of a rotating black hole (BH) with its surrounding accretion disc is discussed based on a mapping relation derived by considering the conservation of magnetic flux with two basic assumptions: (i) the magnetic field on the horizon is constant, (ii) the magnetic field on the disc surface varies as a power law with the radial coordinate of the disc. The following results are obtained: (i) the transfer direction of energy and angular momentum between the BH and the disc depends on the position of a co-rotation radius relative to the MC region on the disc, which is eventually determined by the BH spin; (ii) the evolution characteristics of a rotating BH in the MC process without disc accretion are depicted in a parameter space, and a series of values of the BH spin are given to indicate the evolution characteristics; (iii) the efficiency of converting accreted mass into radiation energy of a BH–disc system is discussed by considering the coexistence of disc accretion and the MC process; (iv) the MC effects on disc radiation and the emissivity index are discussed and it is concluded that they are consistent with the recent XMM–Newton observation of the nearby bright Seyfert 1 galaxy MCG–6-30-15 with reference to a variety of parameters of the BH–disc system.  相似文献   

17.
A full numerical solution is found for the effect of a strongly magnetic star on its accretion disc, for the case of magnetic buoyancy diffusion. As in the previously considered case of turbulent diffusion, the disc becomes disrupted when magnetic and viscous stresses become comparable. A magnetically induced temperature elevation leads to electron scattering opacity and radiation pressure becoming significant far from the stellar surface, with consequent viscous instability and vertical disruption of the disc. This, together with the previous turbulent case, suggests that such a disruption mechanism owing to strongly magnetic accretors is generally operable.  相似文献   

18.
The problem of the effect of a strongly magnetic star on a surrounding accretion disc is considered. For stellar rotation periods greater than a critical value, a numerical solution is found for a steady disc with turbulent magnetic diffusion, including electron scattering opacity and radiation pressure. Inside the corotation radius, the extraction of disc angular momentum by magnetic coupling to the star becomes strong and this leads to enhanced viscous stress and dissipation. The resulting elevated temperature causes electron scattering opacity and radiation pressure to become significant further from the star than in the absence of its magnetic field. The disc ends as its height increases rapidly due to the large central pressure, its density decreases and magnetically induced viscous instability occurs.  相似文献   

19.
In this paper we consider the equilibrium of a magnetofluid disc in Schwarzschild background with an external magnetic field, having the azimuthal and the radial components of the flow velocity nonzero. The electrical conductivityσ of the fluid is taken to be finite and thus the solution for the electromagnetic field is required to satisfy the Ohm’s law too with the four-current having onlyJ ϕ andJ t nonzero. The various physical parameters that have to correlate for possible equilibrium configurations are identified and their respective magnitudes estimated. It is found that for a given angular momentum distribution the inner edge of the disc can reach well within the usual6m limit only when the surface magnetic field of the central object is not too high when the matter density at the outer edge of the disc and the accretion rate are taken with reasonable limits  相似文献   

20.
The structure of accretion discs around magnetic T Tauri stars is calculated numerically using a particle hydrodynamical code, in which magnetic interaction is included in the framework of King's diamagnetic blob accretion model. Setting up the calculation so as to simulate the density structure of a quasi-steady disc in the equatorial plane of a T Tauri star, we find that the central star's magnetic field typically produces a central hole in the disc and spreads out the surface density distribution. We argue that this result suggets a promising mechanism for explaining the unusual flatness (IR excess) of T Tauri accretion disc spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号