首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Abstract– Hypervelocity impact experiments on dry and water‐saturated targets of fine‐grained quartz sandstone, performed within the MEMIN project, have been investigated to determine the effects of porosity and pore space saturation on deformation mechanisms in the crater’s subsurface. A dry sandstone cube and a 90% water‐saturated sandstone cube (Seeberger Sandstein, 20 cm side length, about 23% porosity) were impacted at the Fraunhofer EMI acceleration facilities by 2.5 mm diameter steel spheres at 4.8 and 5.3 km s?1, respectively. Microstructural postimpact analyses of the bisected craters revealed differences in the subsurface deformation for the dry and the wet target experiments. Enhanced grain comminution and compaction in the dry experiment and a wider extent of localized deformation in the saturated experiment suggest a direct influence of pore water on deformation mechanisms. We suggest that the pore water reduces the shock impedance mismatch between grains and pore space, and thus reduces the peak stresses at grain–grain contacts. This effect inhibits profound grain comminution and effective compaction, but allows for reduced shock wave attenuation and a more effective transport of energy into the target. The reduced shock wave attenuation is supposed to be responsible for the enhanced crater growth and the development of “near surface” fractures in the wet target.  相似文献   

2.
Abstract– Within the frame of the MEMIN research unit (Multidisciplinary Experimental and Numerical Impact Research Network), impact experiments on sandstone targets were carried out to systematically study the influence of projectile mass, velocity, and target water saturation on the cratering and ejection processes. The projectiles were accelerated with two‐stage light‐gas guns (Ernst‐Mach‐Institute) onto fine‐grained targets (Seeberger sandstone) with about 23% porosity. Collection of the ejecta on custom‐designed catchers allowed determination of particle shape, size distribution, ejection angle, and microstructures. Mapping of the ejecta imprints on the catcher surface enabled linking of the different patterns to ejection stages observed on high‐speed videos. The increase in projectile mass from 0.067 to 7.1 g correlates with an increase in the total ejected mass; ejecta angles, however, are similar in range for all experiments. The increase in projectile velocity from 2.5 to 5.1 km s?1 correlates with a total ejecta mass increase as well as in an increase in comminution efficiency, and a widening of the ejecta cone. A higher degree of water saturation of the target yields an increase in total ejecta mass up to 400% with respect to dry targets, higher ejecta velocity, and a steeper cone. These data, in turn, suggest that the reduced impedance contrast between the quartz grains of the target and the pores plays a primary role in the ejecta mass increase, while vaporization of water determines the ejecta behavior concerning ejecta velocity and particle distribution.  相似文献   

3.
Abstract— A model for an impact ejecta landform peculiar to Saturn's moon Titan is presented. Expansion of the ejecta plume from moderate‐sized craters is constrained by Titan's thick atmosphere. Much of the plume is collimated along the incoming bolide's trajectory, as was observed for plumes from impacts on Jupiter of P/Shoemaker‐Levy‐9, but is retained as a linear, diagonal ejecta cloud, unlike on Venus where the plume “blows out.” On Titan, the blowout is suppressed because the vertically‐extended atmosphere requires a long wake to reach the vacuum of space, and the modest impact velocities mean plume expansion along the wake is slow enough to allow the wake to close off. Beyond the immediate ejecta blanket around the crater, distal ejecta is released into the atmosphere from an oblique line source: this material is winnowed by the zonal wind field to form streaks, with coarse radar‐bright particles transported less far than fine radar‐dark material. Thus, the ejecta form two distinct streaks faintly reminiscent of dual comet tails, a sharply W‐E radar‐dark one, and a less swept and sometimes comma‐shaped radar‐bright one.  相似文献   

4.
Joshua E. Colwell 《Icarus》2003,164(1):188-196
We present the results of the second flight of the Collisions Into Dust Experiment (COLLIDE-2), a space shuttle payload that performs six impact experiments into simulated planetary regolith at speeds between 1 and 100 cm/s. COLLIDE-2 flew on the STS-108 mission in December 2001 following an initial flight in April 1998. The experiment was modified since the first flight to provide higher quality data, and the impact parameters were varied. Spherical quartz projectiles of 1-cm radius were launched into quartz sand and JSC-1 lunar regolith simulant targets 2-cm deep. At impact speeds below ∼20 cm/s the projectile embedded itself in the target material and did not rebound. Some ejecta were produced at ∼10 cm/s. At speeds >25 cm/s the projectile rebounded and significant ejecta was produced. We present coefficients of restitution, ejecta velocities, and limits on ejecta masses. Ejecta velocities are typically less than 10% of the impact velocity, and the fraction of impact kinetic energy partitioned into ejecta kinetic energy is also less than 10%. Taken together with a proposed aerodynamic planetesimal growth mechanism, these results support planetesimal growth at impact speeds above the nominal observed threshold of about 20 cm/s.  相似文献   

5.
Abstract— We have surveyed Martian impact craters greater than 5 km in diameter using Viking and thermal emission imaging system (THEMIS) imagery to evaluate how the planform of the rim and ejecta changes with decreasing impact angle. We infer the impact angles at which the changes occur by assuming a sin2θ dependence for the cumulative fraction of craters forming below angle θ. At impact angles less than ?40° from horizontal, the ejecta become offset downrange relative to the crater rim. As the impact angle decreases to less than ?20°, the ejecta begin to concentrate in the cross‐range direction and a “forbidden zone” that is void of ejecta develops in the uprange direction. At angles less than ?10°, a “butterfly” ejecta pattern is generated by the presence of downrange and uprange forbidden zones, and the rim planform becomes elliptical with the major axis oriented along the projectile's direction of travel. The uprange forbidden zone appears as a “V” curving outward from the rim, but the downrange forbidden zone is a straight‐edged wedge. Although fresh Martian craters greater than 5 km in diameter have ramparts indicative of surface ejecta flow, the ejecta planforms and the angles at which they occur are very similar to those for lunar craters and laboratory impacts conducted in a dry vacuum. The planforms are different from those for Venusian craters and experimental impacts in a dense atmosphere. We interpret our results to indicate that Martian ejecta are first emplaced predominantly ballistically and then experience modest surface flow.  相似文献   

6.
Abstract– The extra‐large light‐gas gun (XLLGG) at the Fraunhofer Ernst‐Mach‐Institut (EMI, Efringen‐Kirchen, Germany) is a two‐stage light‐gas gun that can accelerate projectile masses of up to 100 g up to velocities of 6 km s?1. The accelerator’s set‐up allows various combinations of pump and launch tubes for applications in different fields of hypervelocity impact research. In the framework of the MEMIN (Multidisciplinary Experimental and Modeling Impact Research Network) program, the XLLGG is used for mesoscale cratering experiments with projectiles made of steel and of iron meteorites, and targets consisting of sandstone and other rocks. The craters produced with this equipment reach a diameter of up to 40 cm, a size unique in laboratory cratering research. With the implementation of neural networks, the acceleration process is being optimized, currently yielding peak velocities of 7.8 km s?1 for a 100 g projectile. Here, we summarize technical aspects of the XLLGG.  相似文献   

7.
Abstract– This study deals with the investigation of highly dynamic processes associated with hypervelocity impacts on porous sandstone. For the impact experiments, two light‐gas accelerators with different calibers were used, capable of accelerating steel projectiles with diameters ranging from 2.5 to 12 mm to several kilometers per second. The projectiles impacted on dry and water‐saturated Seeberger Sandstone targets. The study includes investigations of the influence of pore water on the shape of the ejecta cloud as well as transient crater growth. The results show a significant influence of pore water on ejecta behavior. Steeper ejecta cone angles are observed if the impacts are conducted on wet sandstones. The transient crater grows at a faster rate and reaches a larger diameter if the target is water saturated. In our experiments, target porosity leads to smaller crater sizes compared with nonporous targets. Water within the pore space reduces porosity and counteracts this process. Power law fits were applied to the crater growth curves. The results show an increase in the scaling exponent μ with increasing pore space saturation.  相似文献   

8.
The present study focuses both on the influence of impact scale on ejecta expansion and on specific features of ejecta deposits around relatively small craters (i.e., those a few kilometers in width). The numerical model is based on the SOVA multimaterial multidimensional hydrocode, considering subaerial vertical impacts only, applying a 2‐D version of the code to projectiles of 100, 300, and 1000 m diameter. Ejecta can roughly be divided into two categories: “ballistic” ejecta and “convective” ejecta; the ballistic ejecta are the ejecta with which the air interacts only slightly, while the convective ejecta motion is entirely defined by the air flow. The degree of particle/air interaction can be defined by the time/length of particle travel before deceleration. Ejecta size‐distributions for the impacts modeled can be described by the same power law, but the size of maximum fragment increases with scale. There is no qualitative difference between the 100 m diameter projectile case and the 300 m diameter projectile impact. In both cases, fine ejecta decelerate in the air at a small distance from launching point and then rise to the stratosphere by air flows induced by the impacts. In the 1000 m‐scale impact, the mass of ejecta is so large that it moves the atmosphere itself to high altitudes. Thus, the atmosphere cannot decelerate even the fine ejecta and they consequently expand to the rarefied upper atmosphere. In the upper atmosphere, even fine ejecta move more or less ballistically and therefore may travel to high altitudes.  相似文献   

9.
The ≤27 m thick Vakkejokk Breccia is intercalated in autochthon Lower Cambrian along the Caledonian front north of Lake Torneträsk, Lapland, Sweden. The spectacular breccia is here interpreted as a proximal ejecta layer associated with an impact crater, probably ~2–3 km in size, located below Caledonian overthrusts immediately north of the main breccia section. The impact would have taken place in a shallow‐marine environment ~520 Ma ago. The breccia comprises i) a strongly disturbed lower polymict subunit with occasional, in themselves brecciated, crystalline mega‐clasts locally exceeding 50 m surrounded by contorted sediments; ii) a middle, commonly normally graded, crystalline‐rich, polymict subunit, in turn locally overlain by iii) a thin fine‐grained quartz sandstone, <30 cm thick. The upper sandstone is sporadically either overlain, or replaced, by a conglomerate. In progressively more distal parts of the ejecta layer, the lower subunit is better described as only slightly disturbed strata. The lower subunit is suggested to have formed by ejecta bombardment of the strata surrounding the impact crater, even causing some net outwards mobilization of the sediments. The middle subunit and the uppermost quartz sandstone are considered resurge deposits. The top conglomerate may be caused by subsequent wave reworking and slumping of material from the elevated rim. Quartz grains showing planar deformation features are present in the graded polymict subunit and the upper sandstone, that is, the inferred resurge deposits.  相似文献   

10.
Abstract– We present results of a numerical model of the dynamics of ejecta emplacement on asteroid 433 Eros. Ejecta blocks represent the coarsest fraction of Eros’ regolith and are important, readily visible, “tracer particles” for crater ejecta‐blanket units that may be linked back to specific source craters. Model results show that the combination of irregular shape and rapid rotation of an asteroid can result in markedly asymmetric ejecta blankets (and, it follows, ejecta block spatial distribution), with locally very sharp/distinct boundaries. We mapped boulder number densities in NEAR‐Shoemaker MSI images across a portion of a predicted sharp ejecta‐blanket boundary associated with the crater Valentine and confirm a distinct and real ejecta‐blanket boundary, significant at least at the 3‐sigma level. Using our dynamical model, we “back track” the landing trajectories of three ejecta blocks with associated landing tracks in an effort to constrain potential source regions where those blocks were ejected from Eros’ surface in impact events. The observed skip distances of the blocks upon landing on Eros’ surface and the landing speeds and elevation angles derived from our model allow us to estimate the coefficient of restitution, ε, of Eros’ surface for impacts of 10‐m‐scale blocks at approximately 5 m s?1 impact speeds. We find mean values of ε of approximately 0.09–0.18.  相似文献   

11.
We report results of an interdisciplinary project devoted to the 26 km‐diameter Ries crater and to the genesis of suevite. Recent laboratory analyses of “crater suevite” occurring within the central crater basin and of “outer suevite” on top of the continuous ejecta blanket, as well as data accumulated during the past 50 years, are interpreted within the boundary conditions imposed by a comprehensive new effort to model the crater formation and its ejecta deposits by computer code calculations (Artemieva et al. 2013). The properties of suevite are considered on all scales from megascopic to submicroscopic in the context of its geological setting. In a new approach, we reconstruct the minimum/maximum volumes of all allochthonous impact formations (108/116 km3), of suevite (14/22 km3), and the total volume of impact melt (4.9/8.0 km3) produced by the Ries impact event prior to erosion. These volumes are reasonably compatible with corresponding values obtained by numerical modeling. Taking all data on modal composition, texture, chemistry, and shock metamorphism of suevite, and the results of modeling into account, we arrive at a new empirical model implying five main consecutive phases of crater formation and ejecta emplacement. Numerical modeling indicates that only a very small fraction of suevite can be derived from the “primary ejecta plume,” which is possibly represented by the fine‐grained basal layer of outer suevite. The main mass of suevite was deposited from a “secondary plume” induced by an explosive reaction (“fuel‐coolant interaction”) of impact melt with water and volatile‐rich sedimentary rocks within a clast‐laden temporary melt pool. Both melt pool and plume appear to be heterogeneous in space and time. Outer suevite appears to be derived from an early formed, melt‐rich and clast‐poor plume region rich in strongly shocked components (melt ? clasts) and originating from an upper, more marginal zone of the melt pool. Crater suevite is obviously deposited from later formed, clast‐rich and melt‐poor plumes dominated by unshocked and weakly shocked clasts and derived from a deeper, central zone of the melt pool. Genetically, we distinguish between “primary suevite” which includes dike suevite, the lower sublayer of crater suevite, and possibly a basal layer of outer suevite, and “secondary suevite” represented by the massive upper sublayer of crater suevite and the main mass of outer suevite.  相似文献   

12.
Abstract— Impact cratering is an important geological process on Mars and the nature of Martian impact craters may provide important information as to the volatile content of the Martian crust. Terrestrial impact structures currently provide the only ground‐truth data as to the role of volatiles and an atmosphere on the impact‐cratering process. Recent advancements, based on studies of several well‐preserved terrestrial craters, have been made regarding the role and effect of volatiles on the impact‐cratering process. Combined field and laboratory studies reveal that impact melting is much more common in volatile‐rich targets than previously thought, so impact‐melt rocks, melt‐bearing breccias, and glasses should be common on Mars. Consideration of the terrestrial impact‐cratering record suggests that it is the presence or absence of subsurface volatiles and not the presence of an atmosphere that largely controls ejecta emplacement on Mars. Furthermore, recent studies at the Haughton and Ries impact structures reveal that there are two discrete episodes of ejecta deposition during the formation of complex impact craters that provide a mechanism for generating multiple layers of ejecta. It is apparent that the relative abundance of volatiles in the near‐surface region outside a transient cavity and in the target rocks within the transient cavity play a key role in controlling the amount of fluidization of Martian ejecta deposits. This study shows the value of using terrestrial analogues, in addition to observational data from robotic orbiters and landers, laboratory experiments, and numerical modeling to explore the Martian impact‐cratering record.  相似文献   

13.
Abstract— The Lockne impact event took place in a Middle Ordovician (455 Ma) epicontinental sea. The impact resulted in an at least 13.5 km wide, concentric crater in the sea floor. Lockne is one of very few locations where parts of an ejecta layer have been preserved outside the crater structure. The ejecta from the Lockne impact rests on progressively higher stratigraphic levels with increasing distance from the crater, hence forming a slightly inclined discontinuity surface in the pre‐impact strata. We report on a ~30 cm thick sandy layer at Hallen, 45 km south of the crater centre. This layer has a fining upward sequence in its lower part, followed by low‐angle cross‐laminations indicating two opposite current directions. It is rich in quartz grains with planar deformation features and contains numerous, up to 15 cm large, granite clasts from the crystalline basement at the Lockne impact site. The layer is within a sequence dated to the Baltoniodus gerdae conodont subzone. The dating is corroborated by chitinozoans indicating the latest Kukruse time below and the late Idavere above the impact layer. According to the chitinozoans biostratigraphy, some erosion may have occurred because of deposition of the impact layer. The Hallen outcrop, today 45 km from the centre of the Lockne crater, is at present the most distant accessible occurrence of ejecta from the Lockne impact. It is also the most distant location so far found where the resurge of water towards the crater has affected the bottom sediments. A greater crater diameter than hitherto assumed, thus representing greater impact energy, might explain the extent of the ejecta blanket. Fluidisation of ejecta, to be expected at a marine‐target impact, might furthermore have facilitated the wide distribution of ejecta.  相似文献   

14.
Most impacts occur at an angle with respect to the horizontal plane. This is primarily reflected in the ejecta distribution, but at very low angle structural asymmetries such as elongation of the crater and nonradial development of the central peak become apparent. Unfortunately, impact craters with pristine ejecta layers are rare on Earth and also in areas with strong past or ongoing surface erosion on other planetary bodies, and the structural analysis of central peaks requires good exposures or even on‐site access to outcrop. However, target properties are known to greatly influence the shape of the crater, especially the relatively common target configuration of a weaker layer covering a more rigid basement. One such effect is the formation of concentric craters, i.e., a nested, deeper, inner crater surrounded by a shallow, outer crater. Here, we show that with decreasing impact angle there is a downrange shift of the outer crater with respect to the nested crater. We use a combination of (1) field observation and published 3‐D numerical simulation of one of the best examples of a terrestrial, concentric impact crater formed in a layered target with preserved ejecta layer: the Lockne crater, Sweden; (2) remote sensing data for three pristine, concentric impact craters on Mars with preserved ejecta layers further constraining the direction of impact; as well as (3) laboratory impact experiments, to develop the offset in crater concentricity into a complementary method to determine the direction of impact for layered‐target craters with poorly preserved ejecta layers.  相似文献   

15.
Abstract– A Devonian siltstone from Orkney, Scotland, shows survival of biomarkers in high‐velocity impact experiments. The biomarkers were detected in ejecta fragments from experiments involving normal incidence of steel projectiles at 5–6 km s?1, and in projectile fragments from impact experiments into sand and water at 2–5 km s?1. The associated peak shock pressures were calculated to be in the range of 110–147 GPa for impacts of the steel projectiles into the siltstone target, and hydrocode simulations are used to show the variation of peak pressure with depth in the target and throughout the finite volume projectiles. Thermally sensitive biomarker ratios, including ratios of hopanoids and steranes, and the methylphenanthrene ratio, showed an increase in thermal maturity in the ejecta, and especially the projectile, fragments. Measurement of absolute concentrations of selected biomarkers indicates that changes in biomarker ratios reflect synthesis of new material rather than selective destruction. Their presence in ejecta and projectile fragments suggests that fossil biomarkers may survive hypervelocity impacts, and that experiments using biomarker‐rich rock have high potential for testing survival of organic matter in a range of impact scenarios.  相似文献   

16.
Shatter cones are diagnostic for the recognition of meteorite impact craters. They are unambiguously identifiable in the field and the only macroscopic shock deformation feature. However, the physical boundary conditions and exact formation mechanism(s) are still a subject of debate. Melt films found on shatter cone surfaces may allow the constraint of pressure–temperature conditions during or immediately after their formation. Within the framework of the MEMIN research group, we recovered 24 shatter cone fragments from the ejecta of hypervelocity impact experiments. Here, we focus on silicate melt films (now quenched to glass) found on shatter cone surfaces formed in experiments with 20–80 cm sized sandstone targets, impacted by aluminum and iron meteorite projectiles of 5 and 12 mm diameter at velocities of 7.0 and 4.6 km s−1, respectively. The recovered shatter cone fragments vary in size from 1.2 to 9.3 mm. They show slightly curved, striated surfaces, and conical geometries with apical angles of 36°–52°. The fragments were recovered from experiments with peak pressures ranging from 46 to 86 GPa, and emanated from a zone within 0.38 crater radii. Based on iSale modeling and petrographic investigations, the shatter coned material experienced low bulk shock pressures of 0.5–5 GPa, whereas deformation shows a steep increase toward the shatter cone surface leading to localized melting of the rock, resulting in both vesicular as well as polished melt textures visible under the SEM. Subjacent to the melt films are zones of fragmentation and brittle shear, indicating movement away from the shatter cone apex of the rock that surrounds the cone. Smearing and extension of the melt film indicates subsequent movement in opposite direction to the comminuted and brecciated shear zone. We believe the documented shear textures and the adjacent smooth melt films can be related to frictional melting, whereas the overlying highly vesiculated melt layer could indicate rapid pressure release. From the observation of melting and mixing of quartz, phyllosilicates, and rutile in this overlying texture, we infer high, but very localized postshock temperatures exceeding 2000 °C. The melted upper part of the shatter cone surface cross-cuts the fragmented lower section, and is accompanied by PDFs developed in quartz parallel to the {112} plane. Based on the overprinting textures and documented shock effects, we hypothesize shatter cones start to form during shock loading and remain an active fracture surface until pressure release during unloading and infer that shatter cone surfaces are mixed mode I/II fracture surfaces.  相似文献   

17.
Exploratory experimental impact studies have been performed using “soupy” mud as a target material. Although differing in details, the results appear to support the hypothesis that ejecta deposits around a class of Martian craters recently revealed in high-resolution Viking Orbiter images were emplaced as a flow of fluidized materials.  相似文献   

18.
Abstract– We carried out hypervelocity cratering experiments with steel projectiles and sandstone targets to investigate the structural and mineralogical changes that occur upon impact in the projectile and target. The masses of coherent projectile relics that were recovered in different experiments ranged between 58% and 92% of their initial projectile masses. A significant trend between impact energy, the presence of water in the target, and the mass of projectile relics could not be found. However, projectile fragmentation seems to be enhanced if the target contains substantial amounts of water. Two experiments that were performed with 1 cm sized steel projectiles impacting at 3400 and 5300 m s?1 vertically onto dry Seeberger sandstone were investigated in detail. The recovered projectiles are intensely plastically deformed. Deformation mechanisms include dislocation glide and dislocation creep. The latter led to the formation of subgrains and micrometer‐sized dynamically recrystallized grains. In case of the 5300 m s?1 impact experiment, this deformation is followed by grain annealing. In addition, brittle fracturing and friction‐controlled melting at the surface along with melting and boiling of iron and silica were observed in both experiments. We estimated that heating and melting of the projectile impacting at 5300 m s?1 consumed 4.4% of the total impact energy and was converted into thermal energy and heat of fusion. Beside the formation of centimeter‐sized projectile relics, projectile matter is distributed in the ejecta as spherules, unmelted fragments, and intermingled iron‐silica aggregates.  相似文献   

19.
Cover     
The Ritland impact structure (western Norway), 2.7 km in diameter and about 350 m deep, is a depression partly fi lled by post‐impact Cambrian shales (upper photo; courtesy of Knut Vindfallet). The lower left photo shows well‐exposed, fractured Precambrian basement, while the lower right photo illustrates the melt rock with dark inclusions of devitrifi ed melt clasts in a light gray matrix (weathered surface) (coin is about 2.5 cm across). Images courtesy of E. Kalleson and H. Dypvik.  相似文献   

20.
We present and interpret results of petrographic, mineralogical, and chemical analyses of the 1511 m deep ICDP Yaxcopoil‐1 (Yax‐1) drill core, with special emphasis on the impactite units. Using numerical model calculations of the formation, excavation, and dynamic modification of the Chicxulub crater, constrained by laboratory data, a model of the origin and emplacement of the impact formations of Yax‐1 and of the impact structure as a whole is derived. The lower part of Yax‐1 is formed by displaced Cretaceous target rocks (610 m thick), while the upper part comprises six suevite‐type allochthonous breccia units (100 m thick). From the texture and composition of these lithological units and from numerical model calculations, we were able to link the seven distinct impact‐induced units of Yax‐1 to the corresponding successive phases of the crater formation and modification, which are as follows: 1) transient cavity formation including displacement and deposition of Cretaceous “megablocks;” 2) ground surging and mixing of impact melt and lithic clasts at the base of the ejecta curtain and deposition of the lower suevite right after the formation of the transient cavity; 3) deposition of a thin veneer of melt on top of the lower suevite and lateral transport and brecciation of this melt toward the end of the collapse of the transient cavity (brecciated impact melt rock); 4) collapse of the ejecta plume and deposition of fall‐back material from the lower part of the ejecta plume to form the middle suevite near the end of the dynamic crater modification; 5) continued collapse of the ejecta plume and deposition of the upper suevite; 6) late phase of the collapse and deposition of the lower sorted suevite after interaction with the inward flowing atmosphere; 7) final phase of fall‐back from the highest part of the ejecta plume and settling of melt and solid particles through the reestablished atmosphere to form the upper sorted suevite; and 8) return of the ocean into the crater after some time and minor reworking of the uppermost suevite under aquatic conditions. Our results are compatible with: a) 180 km and 100 km for the diameters of the final crater and the transient cavity of Chicxulub, respectively, as previously proposed by several authors, and b) the interpretation of Chicxulub as a peak‐ring impact basin that is at the transition to a multi‐ring basin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号