首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Four amphibolite facies pelitic gneisses from the western Mongolian Altai Range exhibit multistage aluminosilicate formation and various chemical‐zoning patterns in garnet. Two of them contain kyanite in the matrix and sillimanite inclusions in garnet, and the others have kyanite inclusions in garnet with sillimanite or kyanite in the matrix. The Ca‐zoning patterns of the garnet are different in each rock type. U–Th–Pb monazite geochronology revealed that all rock units experienced a c. 360 Ma event, and three of them were also affected by a c. 260 Ma event. The variations in the microstructures and garnet‐zoning profiles are caused by the differences in the (i) whole‐rock chemistry, (ii) pressure conditions during garnet growth at c. 360 Ma and (iii) equilibrium temperatures at c. 260 Ma. The garnet with sillimanite inclusions records an increase in pressure at low‐P (~5.2–7.2 kbar) and moderate temperature conditions (~620–660 °C) at c. 360 Ma. The garnet with kyanite inclusions in the other rock types was also formed during an increase in pressure but at higher pressure conditions (~7.0–8.9 kbar at ~600–640 °C). The detrital zircon provenance of all the rock types is similar and is consistent with that from the sedimentary rocks in the Altai Range, suggesting that the provenance of all the rock types was a surrounding accretionary wedge. One possible scenario for the different thermal gradient is Devonian ridge subduction beneath the Altai Range, as proposed by several researchers. The subducting ridge could have supplied heat to the accretionary wedge and elevated the geotherm at c. 360 Ma. The differences in the thermal gradients that resulted in varying prograde P–T paths might be due to variations in the thermal regimes in the upper plate that were generated by the subducting ridge. The c. 260 Ma event is characterized by a relatively high‐T/P gradient (~25 °C km?1) and may be due to collision‐related granitic activity and re‐equilibrium at middle crustal depths, which caused the variations in the aluminosilicates in the matrix between the rock units.  相似文献   

2.
The early Palaeozoic South Qilian–North Qaidam orogenic belt in northwestern China records a nearly complete history of early‐stage long‐lived oceanic subduction–accretion followed by late‐stage continental collision. Most previous studies have focused on low dT/dP metamorphism (HP–UHP) in this belt whereas the paired high dT/dP belt in the hinterland has received little attention. In this contribution, phase equilibrium modelling is combined with zircon petrochronology to determine the P–T–t evolution of granulites in the North Wulan gneiss complex in the high dT/dP hinterland of the South Qilian–North Qaidam orogen. Granulites record a clockwise P–T path with near‐peak temperatures of ~800–900°C at 5.5–7 kbar. Peak metamorphism was followed by high‐T decompression. Zircon petrochronology reveals protracted zircon growth from c. 474 to 446 Ma during the high‐T portion of the P–T path. High dT/dP metamorphism in the North Wulan gneiss complex was likely the result of heat transfer from the underlying hot asthenosphere and minor coeval magmatism in an arc–back‐arc system during slab retreat and roll‐back of the South Qilian oceanic plate. Broadly contemporaneous but slightly younger HP–UHP metamorphism in the foreland of the South Qilian–North Qaidam orogenic belt indicates that the region records an early Palaeozoic paired metamorphic belt. This early Palaeozoic paired metamorphic belt provides a detailed example of dual thermal regimes in a modern‐style orogenic system that can be applied to understanding the time‐scales and P–T conditions of high dT/dP metamorphism that accompany subduction in Phanerozoic and Precambrian orogenic belts.  相似文献   

3.
A section of the orogenic middle crust (Orlica‐?nie?nik Dome, Polish/Czech Central Sudetes) was examined to constrain the duration and significance of deformation (D) and intertectonic (I) phases. In the studied metasedimentary synform, three deformation events produced an initial subhorizontal foliation S1 (D1), a subsequent subvertical foliation S2 (D2) and a late subhorizontal axial planar cleavage S3 (D3). The synform was intruded by pre‐, syn‐ and post‐D2 granitoid sheets. Crystallization–deformation relationships in mica schist samples document I1–2 garnet–staurolite growth, syn‐D2 staurolite breakdown to garnet–biotite–sillimanite/andalusite, I2–3 cordierite blastesis and late‐D3 chlorite growth. Garnet porphyroblasts show a linear Mn–Ca decrease from the core to the inner rim, a zone of alternating Ca–Y‐ and P‐rich annuli in the inner rim, and a Ca‐poor outer rim. The Ca–Y‐rich annuli probably reflect the occurrence of the allanite‐to‐monazite transition at conditions of the staurolite isograd, whereas the Ca‐poor outer rim is ascribed to staurolite demise. The reconstructed PT path, obtained by modelling the stability of parageneses and garnet zoning, documents near‐isobaric heating from ~4 kbar/485 °C to ~4.75 kbar/575 °C during I1–2. This was followed by a progression to 4–5 kbar/580–625 °C and a subsequent pressure decrease to 3–4 kbar during D2. Pressure decrease below 3 kbar is ascribed to I2–3, whereas cooling below ~500 °C occurred during D3. In the dated mica schist sample, garnet rims show strong Lu enrichment, oscillatory Lu zoning and a slight Ca increase. These features are also related to allanite breakdown coeval with staurolite appearance. As Lu‐rich garnet rims dominate the Lu–Hf budget, the 344 ± 3 Ma isochron age is ascribed to garnet crystallization at staurolite grade, near the end of I1–2. For the dated sample of amphibole–biotite granitoid sheet, a Pb–Pb single zircon evaporation age of 353 ± 1 Ma is related to the onset of plutonic activity. The results suggest a possible Devonian age for D1, and a Carboniferous burial‐exhumation cycle in mid‐crustal rocks that is broadly coeval with the exhumation of neighbouring HP rocks during D2. In the light of published ages, a succession of telescoping stages with time spans decreasing from c. 10 to 2–3 Ma is proposed. The initially long period of tectonic quiescence (I1–2 phase, c. 10 Ma) inferred in the middle crust contrasts with contemporaneous deformation at deeper levels and points to decoupled PTD histories within the orogenic wedge. An elevated gradient of ~30 °C km?1 and assumed high heating rates of c. 20 °C Ma?1 are explained by the protracted intrusion of granitoid sheets, with or without deformation, whereas fast vertical movements (2–3 Ma, D2 phase) in the crust require the activity of deformation phases.  相似文献   

4.
Dating ultra‐high–pressure (UHP) metamorphic rocks provides important timing constraints on deep subduction zone processes. Eclogites, deeply subducted rocks now exposed at the surface, undergo a wide range of metamorphic conditions (i.e. deep subduction and exhumation) and their mineralogy can preserve a detailed record of chronologic information of these dynamic processes. Here, we present an approach that integrates multiple radiogenic isotope systems in the same sample to provide a more complete timeline for the subduction–collision–exhumation processes, based on eclogites from the Dabie–Sulu orogenic belt in eastern China, one of the largest UHP terranes on Earth. In this study, we integrate garnet Lu–Hf and Sm–Nd ages with zircon and titanite U–Pb ages for three eclogite samples from the Sulu UHP terrane. We combine this age information with Zr‐in‐rutile temperature estimates, and relate these multiple chronometers to different P–T conditions. Two types of rutile, one present as inclusions in garnet and the other in the matrix, record the temperatures of UHP conditions and a hotter stage, subsequent to the peak pressure (‘hot exhumation') respectively. Garnet Lu–Hf ages (c. 238–235 Ma) record the initial prograde growth of garnet, while coupled Sm–Nd ages (c. 219–213 Ma) reflect cooling following hot exhumation. The maximum duration of UHP conditions is constrained by the age difference of these two systems in garnet (c. 235–220 Ma). Complementary zircon and titanite U–Pb ages of c. 235–230 Ma and c. 216–206 Ma provide further constraints on the timing of prograde metamorphism and the ‘cold exhumation' respectively. We demonstrate that timing of various metamorphic stages can thus be determined by employing complementary chronometers from the same samples. These age results, combined with published data from adjacent areas, show lateral diachroneity in the Dabie–Sulu orogeny. Three sub‐blocks are thus defined by progressively younger garnet ages: western Dabie (243–238 Ma), eastern Dabie–northern Sulu (238–235 Ma) and southern Sulu terranes (225–220 Ma), which possibly correlate to different crustal slices in the recently proposed subduction channel model. These observed lateral chronologic variations in a large UHP terrane can possibly be extended to other suture zones.  相似文献   

5.
We provide new insights into the prograde evolution of HP/LT metasedimentary rocks on the basis of detailed petrologic examination, element-partitioning analysis, and thermodynamic modelling of well-preserved Fe–Mg–carpholite- and Fe–Mg–chloritoid-bearing rocks from the Afyon Zone (Anatolia). We document continuous and discontinuous compositional (ferromagnesian substitution) zoning of carpholite (overall X Mg = 0.27–0.73) and chloritoid (overall X Mg = 0.07–0.30), as well as clear equilibrium and disequilibrium (i.e., reaction-related) textures involving carpholite and chloritoid, which consistently account for the consistent enrichment in Mg of both minerals through time, and the progressive replacement of carpholite by chloritoid. Mg/Fe distribution coefficients calculated between carpholite and chloritoid vary widely within samples (2.2–20.0). Among this range, only values of 7–11 correlate with equilibrium textures, in agreement with data from the literature. Equilibrium phase diagrams for metapelitic compositions are calculated using a newly modified thermodynamic dataset, including most recent data for carpholite, chloritoid, chlorite, and white mica, as well as further refinements for Fe–carpholite, and both chloritoid end-members, as required to reproduce accurately petrologic observations (phase relations, experimental constraints, Mg/Fe partitioning). Modelling reveals that Mg/Fe partitioning between carpholite and chloritoid is greatly sensitive to temperature and calls for a future evaluation of possible use as a thermometer. In addition, calculations show significant effective bulk composition changes during prograde metamorphism due to the fractionation of chloritoid formed at the expense of carpholite. We retrieve PT conditions for several carpholite and chloritoid growth stages (1) during prograde stages using unfractionated, bulk-rock XRF analyses, and (2) at peak conditions using compositions fractionated for chloritoid. The PT paths reconstructed for the Kütahya and Afyon areas shed light on contrasting temperature conditions for these areas during prograde and peak stages.  相似文献   

6.
The geochemistry and mineralogy of lamproites from south‐western Anatolia can be used as a snapshot of the lithospheric composition beneath the Menderes Massif. High and near‐constant K2O contents, the presence of mantle xenocrystic phlogopite and olivine, highly magnesian olivine phenocrysts and Cr‐rich spinel inclusions all indicate that the lithospheric mantle was phlogopite‐bearing ultradepleted harzburgite at the time of lamproite eruption (20–4 Ma). This mantle assemblage most probably originated in a complex multistage process, including (intra‐oceanic) supra‐subduction zone depletion during the final stages of southern Neotethyan ocean closure, and accretion of the forearc oceanic lithosphere as shallowly subducted material to the already assembled Anatolia. The data presented here support shallow subduction of the oceanic lithosphere as a cause of the uplift of the Menderes Massif, in contrast to the traditional core‐complex model. Terra Nova, 00, 000–000, 2010  相似文献   

7.
Geothermobarometric and geochronological work indicates a complete Eocene/early Oligocene blueschist/greenschist facies metamorphic cycle of the Cycladic Blueschist Unit on Naxos Island in the Aegean Sea region. Using the average pressure–temperature (P–T) method of thermocalc coupled with detailed textural work, we separate an early blueschist facies event at 576 ± 16 to 619 ± 32°C and 15.5 ± 0.5 to 16.3 ± 0.9 kbar from a subsequent greenschist facies overprint at 384 ± 30°C and 3.8 ± 1.1 kbar. Multi‐mineral Rb–Sr isochron dating yields crystallization ages for near peak‐pressure blueschist facies assemblages between 40.5 ± 1.0 and 38.3 ± 0.5 Ma. The greenschist facies overprint commonly did not result in complete resetting of age signatures. Maximum ages for the end of greenschist facies reworking, obtained from disequilibrium patterns, cluster near c. 32 Ma, with one sample showing rejuvenation at c. 27 Ma. We conclude that the high‐P rocks from south Naxos were exhumed to upper mid‐crustal levels in the late Eocene and early Oligocene at rates of 7.4 ± 4.6 km/Ma, completing a full blueschist‐/greenschist facies metamorphic cycle soon after subduction within c. 8 Ma. The greenschist facies overprint of the blueschist facies rocks from south Naxos resulted from rapid exhumation and associated deformation/fluid‐controlled metamorphic re‐equilibration, and is unrelated to the strong high‐T metamorphism associated with the Miocene formation of the Naxos migmatite dome. It follows that the Miocene thermal overprint had no impact on rock textures or Sr isotopic signatures, and that the rocks of south Naxos underwent three metamorphic events, one more than hitherto envisaged.  相似文献   

8.
West Anatolia, together with the Aegean Sea and the easternmost part of Europe, is one of the best examples of continental extensional tectonics. It is a complex area bounded by the Aegean–Cyprus Arc to the south and the North Anatolian Fault Zone (NAFZ) to the north. Within this complex and enigmatic framework, the Sandıklı Graben (10 km wide, 30 km long) has formed at the eastern continuation of the Western Anatolian extensional province at the north‐northwestward edge of the Isparta Angle. Recent studies have suggested that the horst–graben structures in West Anatolia formed in two distinct extensional phases. According to this model the first phase of extension commenced in the Early–Middle Miocene and the last, which is accepted as the onset of neotectonic regime, in Early Pliocene. However, it is controversial whether two‐phase extension was separated by a short period of erosion or compression during Late Miocene–Early Pliocene. Both field observations and kinematic analysis imply that the Sandıklı Graben has existed since the Late Pliocene, with biaxial extension on its margins which does not necessarily indicate rotation of regional stress distribution in time. Although the graben formed later in the neotectonic period, the commencement of extension in the area could be Early Pliocene (c. 5 Ma) following a severe but short time of erosion at the end of Late Miocene. The onset of the extensional regime might be due to the initiation of westward motion of Anatolian Platelet along the NAFZ that could be triggered by the higher rate of subduction at the east Aegean–Cyprus Arc in the south of the Aegean Sea. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

9.
We report two new eclogite localities (at Kanayamadani and Shinadani) in the high‐P (HP) metamorphic rocks of the Omi area in the western most region of Niigata Prefecture, Japan, which form part of the Hida Gaien Belt, and determine metamorphic conditions and pressure–temperature (PT) paths. The metamorphic evolution of the eclogites is characterized by a tight hairpin‐shaped PT path from prograde epidote–blueschist facies to peak eclogite facies and then retrograde blueschist facies. The prograde metamorphic stage is characterized by various amphibole (winchite, barroisite, glaucophane) inclusions in garnet, whereas the peak eclogite facies assemblage is characterized by omphacite, garnet, phengite and rutile. Peak PT conditions of the eclogites were estimated to be ~600°C and up to 2.0 GPa by conventional cation‐exchange thermobarometry, Ti‐in‐zircon thermometry and quartz inclusion Raman barometry respectively. However, the Raman spectra of carbonaceous material thermometry of metapelites associated with the eclogites gave lower peak temperatures, possibly due to metamorphism at different conditions before being brought together during exhumation. The blueschist facies overprint following the peak of metamorphism is recognized by the abundance of glaucophane in the matrix. Zircon grains in blueschist facies metasedimentary samples from two localities adjacent to the eclogites have distinct oscillatory‐zoned cores and overgrowth rims. Laser ablation inductively coupled plasma mass spectrometry U–Pb ages of the detrital cores yield a wide range between 3,200 and 400 Ma, with a peak at 600–400 Ma. In the early Palaeozoic, proto‐Japan was located along the continental margin of the South China craton, providing the source of the older population of detrital zircon grains (3,200–600 Ma) deposited in the trench‐fill sediments. In addition, subduction‐related magmatism c. 500–400 Ma is recorded in the crust below proto‐Japan, which might have been the source for the younger detrital zircon grains. The peak metamorphic age was constrained by SHRIMP dating of the overgrowth rims, yielding Tournaisian ages of 347 ± 4 Ma, suggesting subduction in the early Carboniferous. Our results provide clear constraints on the initiation of subduction, accretion and the development of an arc‐trench system along the active continental margin of the South China craton and help to unravel the Palaeozoic tectonic history of proto‐Japan.  相似文献   

10.
Northward subduction of the leading edge of the Indian continental margin to depths greater than 100 km during the early Eocene resulted in high‐pressure (HP) quartz‐eclogite to ultrahigh‐pressure (UHP) coesite–eclogite metamorphism at Tso Morari, Ladakh Himalaya, India. Integrated pressure–temperature–time determinations within petrographically well‐constrained settings for zircon‐ and/or monazite‐bearing assemblages in mafic eclogite boudins and host aluminous gneisses at Tso Morari uniquely document segments of both the prograde burial and retrograde exhumation path for HP/UHP units in this portion of the western Himalaya. Poikiloblastic cores and inclusion‐poor rims of compositionally zoned garnet in mafic eclogite were utilized with entrapped inclusions and matrix minerals for thermobarometric calculations and isochemical phase diagram construction, the latter thermodynamic modelling performed with and without the consideration of cation fractionation into garnet during prograde metamorphism. Analysis of the garnet cores document (M1) conditions of 21.5 ± 1.5 kbar and 535 ± 15 °C during early garnet growth and re‐equilibration. Sensitive high resolution ion microprobe (SHRIMP) U–Pb analysis of zircon inclusions in garnet cores yields a maximum age determination of 58.0 ± 2.2 Ma for M1. Peak HP/UHP (M2) conditions are constrained at 25.5–27.5 kbar and 630–645 °C using the assemblage garnet rim–omphacite–rutile–phengite–lawsonite–talc–quartz (coesite), with mineral compositional data and regional considerations consistent with the upper PT bracket. A SHRIMP U–Pb age determination of 50.8 ± 1.4 Ma for HP/UHP metamorphism is given by M2 zircons analysed in the eclogitic matrix and that are encased in the garnet rim. Two garnet‐bearing assemblages from the Puga gneiss (host to the mafic eclogites) were utilized to constrain the subsequent decompression path. A non‐fractionated isochemical phase diagram for the assemblage phengite–garnet–biotite–plagioclase–quartz–melt documents a restricted (M3) P–T stability field centred on 12.5 ± 0.5 kbar and 690 ± 25 °C. A second non‐fractionated isochemical phase diagram calculated for the lower pressure assemblage garnet–cordierite–sillimanite–biotite–plagioclase–quartz–melt (M4) documents a narrow P–T stability field ranging between 7–8.4 kbar and 705–755 °C, which is consistent with independent multiequilibria PT determinations. Th–Pb SHRIMP dating of monazite cores surrounded by allanite rims is interpreted to constrain the timing of the M4 equilibration to 45.3 ± 1.1 Ma. Coherently linking metamorphic conditions with petrographically constrained ages at Tso Morari provides an integrated context within which previously published petrological or geochronological results can be evaluated. The new composite path is similar to those published for the Kaghan UHP locality in northern Pakistan, although the calculated 12‐mm a?1 rate of post‐pressure peak decompression at Tso Morari would appear less extreme.  相似文献   

11.
A Late Palaeozoic accretionary prism, formed at the southwestern margin of Gondwana from Early Carboniferous to Late Triassic, comprises the Coastal Accretionary Complex of central Chile (34–41°S). This fossil accretionary system is made up of two parallel contemporaneous metamorphic belts: a high‐pressure/low temperature belt (HP/LT – Western Series) and a low pressure/high temperature belt (LP/HT – Eastern Series). However, the timing of deformation events associated with the growth of the accretionary prism (successive frontal accretion and basal underplating) and the development of the LP/HT metamorphism in the shallower levels of the wedge are not continuously observed along this paired metamorphic belt, suggesting the former existence of local perturbations in the subduction regime. In the Pichilemu region, a well‐preserved segment of the paired metamorphic belt allows a first order correlation between the metamorphic and deformational evolution of the deep accreted slices of oceanic crust (blueschists and HP greenschists from the Western Series) and deformation at the shallower levels of the wedge (the Eastern Series). LP/HT mineral assemblages grew in response to arc‐related granitic intrusions, and porphyroblasts constitute time markers recording the evolution of deformation within shallow wedge material. Integrated P–T–t–d analysis reveals that the LP/HT belt is formed between the stages of frontal accretion (D1) and basal underplating of basic rocks (D2) forming blueschists at c. 300 Ma. A timeline evolution relating the formation of blueschists and the formation and deformation of LP/HT mineral assemblages at shallower levels, combined with published geochronological/thermobarometric/geochemistry data suggests a cause–effect relation between the basal accretion of basic rocks and the deformation of the shallower LP/HT belt. The S2 foliation that formed during basal accretion initiated near the base of the accretionary wedge at ~30 km depth at c. 308 Ma. Later, the S2 foliation developed at c. 300 Ma and ~15 km depth shortly after the emplacement of the granitoids and formation of the (LP/HT) peak metamorphic mineral assemblages. This shallow deformation may reflect a perturbation in the long‐term subduction dynamics (e.g. entrance of a seamount), which would in turn have contributed to the coeval exhumation of the nearby blueschists at c. 300 Ma. Finally, 40Ar–39Ar cooling ages reveal that foliated LP/HT rocks were already at ~350 °C at c. 292 Ma, indicating a rapid cooling for this metamorphic system.  相似文献   

12.
High‐P (HP) eclogite and associated garnet–omphacite granulite have recently been discovered in the Mulantou area, northeastern Hainan Island, South China. These rocks consist mainly of garnet, omphacite, hornblende, quartz and rutile/ilmenite, with or without zoisite and plagioclase. Textural relationships, mineral compositions and thermobarometric calculations demonstrate that the eclogite and garnet–omphacite granulite share the same three‐stage metamorphic evolution, with prograde, peak and retrograde P?T conditions of 620–680°C and 8.7–11.1 kbar, 820–860°C and 17.0–18.2 kbar, and 700–730°C and 7.1–8.5 kbar respectively. Sensitive high‐resolution ion microprobe U–Pb zircon dating, coupled with the identification of mineral inclusions in zircon, reveals the formation of mafic protoliths before 355 Ma, prograde metamorphism at c. 340–330 Ma, peak to retrograde metamorphism at c. 310–300 Ma, and subsequent pegmatite intrusion at 295 Ma. Trace element geochemistry shows that most of the rocks have a MORB affinity, with initial εNd values of +2.4 to +6.7. As with similar transitional eclogite–HP granulite facies rocks in the thickened root in the European Variscan orogen, the occurrence of relatively high P?T metamorphic rocks of oceanic origin in northeastern Hainan Island suggests Carboniferous oceanic subduction leading to collision of the Hainan continental block, or at least part of it, with the South China Block in the eastern Palaeo‐Tethyan tectonic domain.  相似文献   

13.
New geochronology from Syros in the Cycladic eclogite–blueschist belt, Aegean Sea, Greece, shows that 40Ar/39Ar geochronology consistently dates microstructural events in metamorphic rocks. We demonstrate that the age spectra depend on microstructure in a predictable and systematic way. Ages can be inferred by applying the method of asymptotes and limits to data from the step ‐ heating experiments. The results are consistent with previously published estimates for the timing of a sequence of distinct and discrete episodes of high ‐ P metamorphic mineral growth observed regionally across this belt. Arrhenius plots from these experiments imply that phengitic white mica is highly retentive of argon, and therefore (if these data can be extrapolated to the natural environment) the ages can be interpreted as recording the timing of episodic deformation and metamorphism. Porphyroblastic growth begins: (i) for omphacite – jadeite–eclogite facies parageneses at c. 53 Ma; and (ii) for garnet – glaucophane facies parageneses at c. 47 Ma. The Kini Shear Zone started as an extensional post ‐ epidote–albite‐transitional–blueschist facies shear zone that had completed operation by c. 31 Ma. The scatter in ages is due to the effect of deformation, recrystallization and multiple growth events in shear zones that continued operating for 3 – 6 million years from the start of each episode.  相似文献   

14.
Low‐temperature eclogite and eclogite facies metapelite together with serpentinite and marble occur as blocks within foliated blueschist that was originated from greywacke matrix; they formed a high‐pressure low‐temperature (HPLT) subduction complex (mélange) in the North Qilian oceanic‐type suture zone, NW China. Phengite–eclogite (type I) and epidote–eclogite (type II) were recognized on the basis of mineral assemblage. Relic lawsonite and lawsonite pseudomorphs occur as inclusions in garnet from both types of eclogite. Garnet–omphacite–phengite geothermobarometry yields metamorphic conditions of 460–510 °C and 2.20–2.60 GPa for weakly deformed eclogite, and 475–500 °C and 1.75–1.95 GPa for strongly foliated eclogite. Eclogite facies metasediments include garnet–omphacite–phengite–glaucophane schist and various chloritoid‐bearing schists. Mg‐carpholite was identified in some high‐Mg chloritoid schists. PT estimates yield 2.60–2.15 GPa and 495–540 °C for Grt–Omp–Phn–Gln schist, and 2.45–2.50 GPa and 525–530 °C for the Mg‐carpholite schist. Mineral assemblages and PT estimates, together with isotopic ages, suggest that the oceanic lithosphere as well as pelagic to semi‐pelagic sediments have been subducted to the mantle depths (≥75 km) before 460 Ma. Blueschist facies retrogression occurred at c. 454–446 Ma and led to eclogite deformation and dehydration of lawsonite during exhumation. The peak PTconditions for eclogite and metapelite in the North Qilian suture zone demonstrate the existence of cold subduction‐zone gradients (6–7 °C km?1), and this cold subduction brought a large amount of H2O to the deep mantle in the Early Palaeozoic times.  相似文献   

15.
The Qinling‐Tongbai‐Dabie‐Sulu orogenic belt comprises a Palaeozoic accretion‐dominated system in the north and a Mesozoic collision‐dominated system in the south. A combined petrological and geochronological study of the medium‐to‐high grade metamorphic rocks from the diverse Palaeozoic tectonic units in the Tongbai orogen was undertaken to help elucidate the origins of Triassic ultrahigh‐pressure metamorphism and collision dynamics between the Sino‐Korean and Yangtze cratons. Peak metamorphic conditions are 570–610 °C and 9.3–11.2 kbar for the lower unit of the Kuanping Group, 630–650 °C and 6.6–8.9 kbar for the upper unit of the Kuanping Group, 550–600 °C and 6.3–7.7 kbar for the Erlangping Group, 770–830 °C and 6.9–8.5 kbar for the Qinling Group and 660–720 °C and 9.1–11.5 kbar for the Guishan complex. Reaction textures and garnet compositions indicate clockwise P–T paths for the amphibolite facies rocks of the Kuanping Group and Guishan complex, and an anticlockwise P–T path for the granulite facies rocks of the Qinling Group. Sensitive high‐resolution ion microprobe U–Pb zircon dating on metamorphic rocks and deformed granite/pegmatites revealed two major Palaeozoic tectonometamorphic events. (i) During the Silurian‐Devonian (c. 440–400 Ma), the Qinling continental arc and Erlangping intra‐oceanic arc collided with the Sino‐Korean craton. The emplacement of the Huanggang diorite complex resulted in an inverted thermal gradient in the underlying Kuanping Group and subsequent thermal relaxation during the exhumation. Meanwhile, the oceanic subduction beneath the Qinling continental arc produced magmatic underplating and intrusion, leading to granulite facies metamorphism followed by a near‐isobaric cooling path. (ii) During the Carboniferous (c. 340–310 Ma), the northward subduction of the Palaeo‐Tethyan ocean generated a medium P/T Guishan complex in the hangingwall and a high P/T Xiongdian eclogite belt in the footwall. The Guishan complex and Xiongdian eclogite belt are therefore considered to be paired metamorphic belts. Subsequent separation of the paired belts is inferred to be related to the juxtaposition of the Carboniferous eclogites with the Triassic HP metamorphic complex during continental subduction and exhumation.  相似文献   

16.
Migmatites comprise a minor volume of the high‐grade part of the Damara orogen of Namibia that is dominated by granite complexes and intercalated metasedimentary units. Migmatites of the Southern Central Zone of the Damara orogen consist of melanosomes with garnet+cordierite+biotite+K‐feldspar, and leucosomes, which are sometimes garnet‐ and cordierite‐bearing. Field evidence, petrographic observations, and pseudosection modelling suggest that, in contrast to other areas where intrusion of granitic magmas is more important, in situ partial melting of metasedimentary units was the main migmatite generation processes. Pseudosection modelling and thermobarometric calculations consistently indicate that the peak‐metamorphic grade throughout the area is in the granulite facies (~5 kbar at ~800°C). Cordierite coronas around garnet suggest some decompression from peak‐metamorphic conditions and rare andalusite records late, near‐isobaric cooling to <650°C at low pressures of ~3 kbar. The inferred clockwise P–T path is consistent with minor crustal thickening through continent–continent collision followed by limited post‐collisional exhumation and suggests that the granulite facies terrane of the Southern Central Zone of the Damara orogen formed initially in a metamorphic field gradient of ~35–40°C/km at medium pressures. New high‐precision Lu–Hf garnet‐whole rock dates are 530 ± 13 Ma, 522.0 ± 0.8 Ma, 520.8 ± 3.6 Ma, and 500.3 ± 4.3 Ma for the migmatites that record temperatures of ~800°C. This indicates that high‐grade metamorphism lasted for c. 20–30 Ma, which is compatible with previous estimates using Sm–Nd garnet‐whole rock systematics. In previous studies on Damara orogen migmatites where both Sm–Nd and Lu–Hf chronometers have been applied, the dates (c. 520–510 Ma) agree within their small uncertainties (0.6–0.8% for Sm–Nd and 0.1–0.2% for Lu–Hf). This implies rapid cooling after high‐grade conditions and, by implication, rapid exhumation at that time. The cause of the high geothermal gradient inferred from the metamorphic conditions is unknown but likely requires some extra heat that was probably added by intrusion of magmas from the lithospheric mantle, i.e., syenites that have been recently re‐dated at c. 545 Ma. Some granites derived from the lower crust at c. 545 Ma are the outcome rather than the cause of high‐T metamorphism. In addition, high contents of heat‐producing elements K, Th, and U may have raised peak temperatures by 150–200°C at the base of the crust, resulting in the widespread melting of fertile crustal rocks. The continuous gradation from centimetre‐scale leucosomes to decametre‐scale leucogranite sheets within the high‐grade metamorphic zone suggests that leucosome lenses coalesced to form larger bodies of anatectic leucogranites, thereby documenting a link between high‐grade regional metamorphism and Pan‐African magmatism. In view of the close association of the studied high‐T migmatites with hundreds of synmetamorphic high‐T granites that invaded the terrane as metre‐ to decametre‐wide sills and dykes, we postulate that crystallization of felsic lower crustal magma is, at least partly, responsible for heat supply. Late‐stage isobaric cooling of these granites may explain the occurrence of andalusite in some samples.  相似文献   

17.
The metamorphic history of the Southern Marginal Zone (SMZ) of the Limpopo Belt, South Africa, possibly provides insight into one of the oldest preserved continental collision zones. The SMZ consists of granitoid gneisses (the Baviaanskloof Gneiss) and subordinate, infolded metasedimentary, metamafic and meta‐ultramafic lithologies (the Bandelierkop Formation) and is regarded as the c. 2700 Ma granulite facies reworked equivalent of the Kaapvaal craton basement. The granulite facies metamorphism is proposed to have occurred in response to collision between the Kaapvaal and Zimbabwe cratons. Previous studies have proposed a wide variety of P–T loops for the granulites, with considerable discrepancy in both the shapes of the retrograde paths and the magnitude of the peak P–T conditions. To date, the form of the prograde path and the timing of the onset of metamorphism remain unknown. This study has used a range of different metasedimentary rocks from a large migmatitic quarry outcrop to better constrain the metamorphic history and the timing of metamorphism in the SMZ. Detrital zircon ages reveal that the protoliths to the metasedimentary rocks were deposited subsequent to 2733 ± 13 Ma. Peak metamorphic conditions of 852.5 ± 7.5 °C and 11.1 ± 1.3 kbar were attained at 2713 ± 8 Ma. The clockwise P–T path is characterized by heating in the sillimanite field along a P–T trajectory which approximately parallels the kyanite to sillimanite transition, followed by near‐isothermal decompression at peak temperature and near‐isobaric cooling at ~6.0 kbar. These results support several important conclusions. First, the sedimentary rocks from the Bandelierkop Formation are not the equivalent of any of the greenstone belt sedimentary successions on the Kaapvaal craton, as has been previously proposed. Rather, they post‐date the formation of the Dominion and Witwatersrand successions on the Kaapvaal craton. From the age distribution of detrital zircon, they appear to have received significant input from various origins. Consequently, at c. 2730 Ma, the Baviaanskloof Gneiss most likely acted as basement onto which the sedimentary succession represented by the Bandelierkop Formation metapelites was deposited. Second, the rocks of the SMZ underwent rapid evolution from sediment to granulite facies anatexis, with a burial rate of ~0.17 cm yr?1. Peak metamorphism was followed by an isothermal decompression to 787.5 ± 32.5 °C and 6.7 ± 0.5 kbar and isobaric cooling to amphibolite facies conditions, below 640 °C prior to 2680 ± 6 Ma. This age for the end of the high‐grade metamorphic event is marked by the intrusion of crosscutting, undeformed pegmatites that are within error the same age as the crosscutting Matok intrusion (2686 ± 7 Ma). Collectively, the burial rate of the sedimentary rocks, the shape of the P–T path, the burial of the rocks to in excess of 30 km depth and the post‐peak metamorphic rapid decompression argue strongly that the SMZ contains sediments deposited along an active margin during lateral convergence, and that the SMZ was metamorphosed as a consequence of continental collision along the northern margin of the Kaapvaal craton at c. 2700 Ma.  相似文献   

18.
Major and trace‐element zoning in garnet, in combination with Rb–Sr, Sm–Nd and Lu–Hf geochronology, provide evidence for a protracted garnet growth history for the Zermatt‐Saas Fee (ZSF) ophiolite, western Alps. Four new Lu–Hf ages from Pfulwe (c. 52–46 Ma) and one from Chamois (c. 52 Ma) are very similar to a previously published Lu–Hf age from Lago di Cignana. Overall, the similarity of geochronological and garnet zoning patterns suggests that these three localities had a similar prograde tectonic history, commensurate with their similar structural position near the top of the ZSF. Samples from the lower part of the ZSF at Saas Fee and St. Jacques, however, produced much younger Lu–Hf ages (c. 41–38 Ma). Neither differences in whole‐rock geochemistry, which might produce distinct garnet growth histories, nor rare‐earth‐element zoning in garnet, can account for the age differences in the two suites. This suggests a much later prograde history for the lower part of the ZSF, supporting the idea that it was subducted diachronously. Such a model is consistent with changes in subduction vectors based on plate tectonic reconstructions, where early oblique subduction, which produced long prograde garnet growth, changed to more orthogonal subduction, which corresponds to shorter prograde garnet growth. Six new Rb–Sr phengite ages range from c. 42 to 39 Ma and, in combination with previously published Rb–Sr ages, constrain the timing of the transition from eclogite to upper greenschist facies P–T conditions. The proximity of the ZSF in the Saas Fee region to the underlying continental Monte Rosa unit and the similarity of peak‐metamorphic ages suggest these two units were linked for part of their tectonic history. This in turn indicates that the Monte Rosa may have been partly responsible for rapid exhumation of the ZSF unit.  相似文献   

19.
The Gangdese magmatic arc, southeastern Tibet, was built by mantle‐derived magma accretion and juvenile crustal growth during the Mesozoic to Early Cenozoic northward subduction of the Neo‐Tethyan oceanic slab beneath the Eurasian continent. The petrological and geochronological data reveal that the lower crust of the southeastern Gangdese arc experienced Oligocene reworking by metamorphism, anatexis and magmatism after the India and Asia collision. The post‐collisional metamorphic and migmatitic rocks formed at 34–26 Ma and 28–26 Ma respectively. Meta‐granitoids have protolith ages of 65–38 Ma. Inherited detrital zircon from metasedimentary rocks has highly variable ages ranging from 2708 to 37 Ma. These rocks underwent post‐collisional amphibolite facies metamorphism and coeval anatexis under P–T conditions of ~710–760 °C and ~12 kbar with geothermal gradients of 18–20 °C km ? 1, indicating a distinct crustal thickening process. Crustal shortening, thickening and possible subduction erosion due to the continental collision and ongoing convergence resulted in high‐P metamorphic and anatectic reworking of the magmatic and sedimentary rocks of the deep Gangdese arc. This study provides a typical example of the reworking of juvenile and ancient continental crust during active collisional orogeny.  相似文献   

20.
The South Tien Shan (STS) belt results from the last collision event in the western Central Asian Orogenic Belt (CAOB). Understanding its formation is of prime importance in the general framework of the CAOB. The Atbashi Range preserves high‐P (HP) rocks along the STS suture, but still, its global metamorphic evolution remains poorly constrained. Several HP units have been identified: (a) a HP tectonic mélange including boudins of mafic eclogites in a sedimentary matrix, (b) a large (>100 km long) high‐P metasedimentary unit (HPMU) and (c) a lower blueschist facies accretionary prism. Raman Spectroscopy on carbonaceous material combined with phengite and chlorite multiequilibria and isochemical phase diagram modelling indicates that the HPMU recorded homogeneous P–T conditions of 23–25 kbar and 560–570°C along the whole unit. 40Ar/39Ar dating on phengite from the HPMU ranges between 328 and 319 Ma at regional scale. These ages are interpreted as (re‐) crystallization ages of phengite during Tmax conditions at a pressure range of 20–25 kbar. Thermobarometry on samples from the HP tectonic mélange provides similar metamorphic peak conditions. Thermobarometry on the blueschist to lower greenschist facies accretionary prism indicates that it underwent P–T conditions of 5–6 kbar and 290–340°C, highlighting a 17–20 kbar pressure gap between the HPMU‐tectonic mélange units and the accretionary prism. Comparison with available geochronological data suggests a very short time span between the prograde path (340 Ma), HP metamorphic peak (330 Ma), the Tmax (328–319 Ma) and the final exhumation of the HPMU (303–295 Ma). Extrusion of the HPMU, accommodated by a basal thrust and an upper detachment, was driven by buoyant forces from 70–75 km up to 60 km depth, which directly followed continental subduction and detachment of the HPMU. At crustal depths, extrusion was controlled by collisional tectonics up to shallow levels. Lithological homogeneity of the HPMU and its continental‐derived character from the North Tien Shan suggest this unit corresponds to the hyper‐extended continental margin of the Kazakh continent, subducted southward below the north continental active margin of the Tarim craton. Integration of the available geological data allows us to propose a general geodynamic scenario for Tien Shan during the Carboniferous with a combination of (a) N‐dipping subduction below the Kazakh margin of Middle Tien Shan until 390–340 Ma and (b) S‐dipping subduction of remaining Turkestan marginal basins between 340 and 320 Ma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号