首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
In this study we experimentally determine phlogopite/melt partition coefficients of Ra and other trace elements in a lamproitic system. This work was achieved using an analytical technique (LA-ICP-MS) with low detection limits (~ 0.01 fg) permitting the measurement of the very low Ra concentrations feasible in experiments (~ 1 ppb). DRaphlogopite/melt was determined to 2.28 ± 0.44 and 2.84 ± 0.47 in two experiments, the ratio DRa/DBa is around 1.6. The compatibility of Ra in phlogopite results from an ionic radius being close to the apex of the lattice strain parabola for earth alkalis in the large XII-coordinated interlayer site of phlogopite. A re-evaluation of DRa and DRa/DBa for magmatic minerals containing appreciable Ra, yields DRamineral/melt ranging from ~ 2.6 for phlogopite down to 2–3 ? 10? 5 for pyroxenes, and DRa/DBamineral/melt from ~ 4 for leucite to 2 ? 10? 2 for orthopyroxene. The influence of melt composition on DRa/DBa is less than 10%. All investigated minerals have different DRa/DBa, strongly fractionating Ra from Ba. Thus, for magmatic systems, (226Ra)/Ba in the various minerals is not constant, these minerals do not form a straight line in the (226Ra)/Ba–(230Th)/Ba system at the time of crystallization and thus, there is no (226Ra)/Ba–(230Th)/Ba isochron at t0. 226Ra–230Th–Ba mineral dating is thus applicable only to model ages calculated from mineral–glass pairs with known DRa.  相似文献   

2.
The geochemistry of Ca, Sr, Ba and Ra sulfates in some deep brines from the Palo Duro Basin of north Texas, was studied to define geochemical controls on radionuclides such as 90Sr and 226Ra. Published solubility data for gypsum, anhydrite, celestite, barite and RaSO4 were first reevaluated, in most cases using the ion interaction approach of Pitzer, to determine solubility products of the sulfates as a function of temperature and pressure. Ionic strengths of the brines were from 2.9 to 4.8 m, their temperatures and pressures up to 40°C and 130 bars. Saturation indices of the sulfates were computed with the ion-interaction approach in one brine from the arkosic granite wash fades and four from the carbonate Wolfcamp Formation. All five brines are saturated with respect to gypsum, anhydrite and celestite, and three of the five with respect to barite. All are undersaturated by from 5 to 6 orders of magnitude with respect to pure RaSO4. 226Ra concentrations in the brines, which ranged from 10?11.3 to 10?12.7 m, are not controlled by RaSO4 solubility or adsorption, but possibly by the solubility of trace Ra solid solutions in sulfates including celestite and barite.  相似文献   

3.
High-purity synthetic barite powder was added to pure water or aqueous solutions of soluble salts (BaCl2, Na2SO4, NaCl and NaHCO3) at 23 ± 2 °C and atmospheric pressure. After a short pre-equilibration time (4 h) the suspensions were spiked either with 133Ba or 226Ra and reacted under constant agitation during 120-406 days. The pH values ranged from 4 to 8 and solid to liquid (S/L) ratios varied from 0.01 to 5 g/l. The uptake of the radiotracers by barite was monitored through repeated sampling of the aqueous solutions and radiometric analysis. For both 133Ba and 226Ra, our data consistently showed a continuous, slow decrease of radioactivity in the aqueous phase.Mass balance calculations indicated that the removal of 133Ba activity from aqueous solution cannot be explained by surface adsorption only, as it largely exceeded the 100% monolayer coverage limit. This result was a strong argument in favor of recrystallization (driven by a dissolution-precipitation mechanism) as the main uptake mechanism. Because complete isotopic equilibration between aqueous solution and barite was approached or even reached in some experiments, we concluded that during the reaction all or substantial fractions of the initial solid had been replaced by newly formed barite.The 133Ba data could be successfully fitted assuming constant recrystallization rates and homogeneous distribution of the tracer into the newly formed barite. An alternative model based on partial equilibrium of 133Ba with the mineral surface (without internal isotopic equilibration of the solid) could not reproduce the measured activity data, unless multistage recrystallization kinetics was assumed. Calculated recrystallization rates in the salt solutions ranged from 2.8 × 10−11 to 1.9 × 10−10 mol m−2 s−1 (2.4-16 μmol m−2 d−1), with no specific trend related to solution composition. For the suspensions prepared in pure water, significantly higher rates (∼5.7 × 10−10 mol m−2 s−1 or ∼49 μmol m−2 d−1) were determined.Radium uptake by barite was determined by monitoring the decrease of 226Ra activity in the aqueous solution with alpha spectrometry, after filtration of the suspensions and sintering. The evaluation of the Ra uptake experiments, in conjunction with the recrystallization data, consistently indicated formation of non-ideal solid solutions, with moderately high Margules parameters (WAB = 3720-6200 J/mol, a0 = 1.5-2.5). These parameters are significantly larger than an estimated value from the literature (WAB = 1240 J/mol, a0 = 0.5).In conclusion, our results confirm that radium forms solid solutions with barite at fast kinetic rates and in complete thermodynamic equilibrium with the aqueous solutions. Moreover, this study provides quantitative thermodynamic data that can be used for the calculation of radium concentration limits in environmentally relevant systems, such as radioactive waste repositories and uranium mill tailings.  相似文献   

4.
Precise measurements of 238U-230Th-226Ra disequilibria in lavas erupted within the last 100 yr on Mt. Cameroon are presented, together with major and trace elements, and Sr-Nd-Pb isotope ratios, to unravel the source and processes of basaltic magmatism at intraplate tectonic settings. All samples possess 238U-230Th-226Ra disequilibria with 230Th (18-24%) and 226Ra (9-21%) excesses, and there exists a positive correlation in a (226Ra/230Th)-(230Th/238U) diagram. The extent of 238U-230Th-226Ra disequilibria is markedly different in lavas of individual eruption ages, although the (230Th/232Th) ratio is constant irrespective of eruption age. When U-series results are combined with Pb isotope ratios, negative correlations are observed in the (230Th/238U)-(206Pb/204Pb) and (226Ra/230Th)-(206Pb/204Pb) diagrams. Shallow magma chamber processes like magma mixing, fractional crystallization and wall rock assimilation do not account for the correlations. Crustal contamination is not the cause of the observed isotopic variations because continental crust is considered to have extremely different Pb isotope compositions and U/Th ratios. Melting of a chemically heterogeneous mantle might explain the Mt. Cameroon data, but dynamic melting under conditions of high DU and DU/DTh, long magma ascent time, or disequilibrium mineral/melt partitioning, is required. The most plausible scenario to produce the geochemical characteristics of Mt. Cameroon samples is the interaction of melt derived from the asthenospheric mantle with overlying sub-continental lithospheric mantle which has elevated U/Pb (>0.75) and Pb isotope ratios (206Pb/204Pb > 20.47) due to late Mesozoic metasomatism.  相似文献   

5.
Soil n-alkane δD vs. altitude gradients along Mount Gongga, China   总被引:1,自引:0,他引:1  
The altitude effect on the isotopic composition of precipitation and its application to paleoelevation reconstruction using authigenic or pedogenic minerals have been intensively studied. However, there are still no studies on variations in biomarker δD along altitude transects to investigate its potential as a paleoelevation indicator, although it has been observed that δD of higher plant lipid may record changes in precipitation δD (δDp). Here, we present δD values of higher plant-derived C27, C29, and C31n-alkanes from surface soil along the eastern slope of Mount Gongga, China with great changes in physical variables and vegetation over a range from 1000 to 4000 m above sea level. The weighted-mean δD values of these n-alkanes (δDwax) show significant linear correlations with predicted δDp values (R2 = 0.76) with an apparent isotopic enrichment (εwax-p) of −137 ± 9‰, indicating that soil δDwax values track overall δDp variation along the entire altitudinal transect. Leaf δDwax is also highly correlated with mountain altitude by a significant quadratic relationship (R2 = 0.80). Evapotranspiration is found declining with altitude, potentially lowering δDwax values at higher elevations. However, this evapotranspiration effect is believed to be largely compensated by the opposing effect of vegetation changes, resulting in less varied εwax-p values over the slope transect. This study therefore confirms the potential of using leaf δDwax to infer paleoelevations, and more generally, to infer the δD of precipitation.  相似文献   

6.
Gold in the Sahinli and Tespih Dere intermediate sulfidation gold-base metal deposits in Western Turkey occurs in relatively deep epithermal quartz veins along with base metal minerals which have epithermal textures, including plumose quartz, vug infills, comb and cockade textures and matrix-supported milled breccias. The total sulfide content of the veins in the area is variable ranging from < 1% to 60% and is dominated by pyrite, galena, sphalerite and chalcopyrite. Sphalerite is Fe-poor (0.6 to 1.4 mol% FeS). Minor amounts of Ag-rich tetrahedrite are present. Primary hydrothermal alteration minerals include illite/muscovite, mixed-layer illite/smectite (11.6 Å) and clinochlore towards the east and, alunite, dickite/nacrite and pyrophyllite towards the west at Sahinli; major illite/muscovite and dickite occur at Tespih Dere and Sarioluk, respectively.Fluid inclusions in main-stage quartz at Sahinli are only liquid-rich, with homogenization temperatures ranging from 220 to 322 °C and the majority of Th values between 250 and 300 °C. Salinity ranges from 4.3 to 6.9 wt.% NaCl equiv. First ice-melting temperatures (Tmf) between ?24.5 and ?19.0 °C indicate that the fluids were dominated by NaCl  H2O during mineralization. The relatively higher average Th at the Tespih Dere deposit (295 °C) is attributed to a relatively deeper level of exposure.Calculated δ18O values indicate that ore-forming hydrothermal fluids in the study area had δ18OH2O ranging from + 1.1 to + 9.7‰ (average = 3.8‰), strongly 18O-enriched compared with present-day hydrothermal meteoric water in the area (δ18O = ?8.5‰). δD values of fluid inclusions in quartz range from ?58 to ?93‰ and δD values of clay minerals and alunite from ?40 to ?119‰. δD values from intermediate argillic alteration (average = ?68‰) in the study area are very similar to δD values of the present-day local geothermal system (average δD = ?54‰) whereas δD values from advanced-argillic alteration (average δD = ?33‰) are very different from the present-day local geothermal system.The δ34S values in samples from the Sahinli and Tespih Dere deposits average ?2.9‰ for pyrite; ?3.3‰ for chalcopyrite; ?5.4‰ for sphalerite and ?7.6‰ for galena. These data are consistent with derivation of the sulfur from either igneous rocks or possibly from local wallrock.  相似文献   

7.
Two strains of moderately halophilic bacteria were grown in aerobic culture experiments containing gel medium to determine the Sr partition coefficient between dolomite and the medium from which it precipitates at 15 to 45 °C. The results demonstrate that Sr incorporation in dolomite does occur not by the substitution of Ca, but rather by Mg. They also suggest that Sr partitioning between the culture medium and the minerals is better described by the Nernst equation (DSrdol = Srdol/Srbmi), instead of the Henderson and Kracek equation (DSrdol = (Sr/Ca)dol/(Sr/Ca)solution. The maximum value for DSrdol occurs at 15 °C in cultures with and without sulfate, while the minimum values occur at 35 °C, where the bacteria exhibit optimal growth. For experiments at 25, 35 and 45 °C, we observed that DSrdol values are greater in cultures with sulfate than in cultures without sulfate, whereas DSrdol values are smaller in cultures with sulfate than in cultures without sulfate at 15 °C.Together, our observations suggest that DSrdol is apparently related to microbial activity, temperature and sulfate concentration, regardless of the convention used to assess the DSrdol. These results have implications for the interpretation of depositional environments of ancient dolomite. The results of our culture experiments show that higher Sr concentrations in ancient dolomite could reflect microbial mediated primary precipitation. In contrast, previous interpretations concluded that high Sr concentrations in ancient dolomites are an indication of secondary replacement of aragonite, which incorporates high Sr concentrations in its crystal lattice, reflecting a diagenetic process.  相似文献   

8.
Radiometric measurements were carried out for the beach sands from East Rosetta estuary to determine the activity concentrations of 238 U, 226 Ra, 232 Th, and 40 K, using a Hyper Pure Germanium spectrometer, to estimate the dose rates and radiation hazard indices. The average specific activities are 778.20 Bq/kg for 238 U; 646.89 Bq/kg for 226 Ra; 621.92 and 627.85 Bq/kg for the 222 Rn daughters 214 Pb and 214 Bi respectively. The average specific activity of 232 Th is 1510.25 Bq/kg, while the calculated specific activity for 40 K has an average of 8.41 Bq/kg. The average specific activity of 235 U is 38.61 Bq/kg. The average absorbed dose rate is 1211.36 nGy/h, 20 times higher than the estimated average global primordial radiation of 60 nGy/h and 6 times higher than that of the world range (10-200 nGy/h). The radium equivalent (Ra eq ) values are from 6 to 9 times the recommended value. The internal and external hazard indices (H int , H ex ) indicate that their values are from 6 to 11 times the permissible values of these indices. These higher values may be due to the presence of economic heavy minerals containing radionuclides as zircon and monazite as well as some trace minerals, thorite and uranothorite. The mineralogical study indicates the beach sands contain heavy minerals, zircon, monazite, rutile, ilmenite, leucoxene, magnetite and garnet. The average abundance of zircon is 0.175 wt% ranging from 0.125 wt% to 0.239 wt%, while it is 0.004wt% ranging from 0.001 wt% to 0.007 wt% for monazite. The average abundance is 0.087 wt% for rutile; 2.029 wt% for ilmenite; 1.084 wt% for magnetite; 0.384 wt% for leucoxene and 0.295 wt% for garnet.  相似文献   

9.
The natural radiological characteristics and their respective annual effective dose (AED) rates, produced by 226Ra, 232Th and 40K in coal, fly ash and bottom ash from two large coal-fired power plants (CFPPs) of Xi’an were determined by means of γ-ray spectrometry. The average activity concentrations of 226Ra, 232Th and 40K in all ash samples (fly ash and bottom ash samples) from the two CFPPs were 67.6, 74.3 and 225.3 Bq kg−1, respectively. The results are compared with data from other locations. To evaluate the radiological hazards of the natural radioactivity, the radium equivalent activity (Raeq), air absorbed dose rate (D), AED and external hazard index (H ex) are compared with internationally accepted values. Raeq and H ex of all samples except three fly ash samples were less than the limits of 370 Bq kg−1 and unity, respectively. The average D and AED for ash samples were 86.8 nGy h−1 and 0.11 mSv y−1, respectively, which exceed the world average and Xi’an average values.  相似文献   

10.
Due to the widespread use of granites as building and ornamental materials, measurements of natural radioactivity for a total 27 selected samples of commercial granites used in Egypt were carried out by using a high pure germanium detector. The activity concentrations of 226Ra, 232Th and 40K of commercial granites ranged from 25 to 356, 5 to 161, and 100 to 1,796?(Bq?kg?1), respectively. The concentrations of these radionuclides are compared with the international recommended values. To evaluate the radiological hazard of the natural radioactivity, the radium equivalent activity, the absorbed dose rate, the effective dose rate, and the hazard index have been calculated. The radium equivalent activity Raeq varied from 41 to 669?(Bq?kg?1) which exceeds the permitted value (370?Bq?kg?1) and the internal hazard index H in varied from 0.2 to 2.8 which is higher than 1. The absorbed dose rate due to the natural radioactivity in the samples under investigation ranged from 19 to 310?(nGy?h?1). The total effective dose rates per person indoors were determined to be 0.09 to 1.5?(mSv?year?1).  相似文献   

11.
A 187Re-187Os isochron including data for all twelve IVB irons gives an age of 4579 ± 34 Ma with an initial 187Os/188Os of 0.09531 ± 0.00022, consistent with early solar system crystallization. This result, along with the chemical systematics of the highly siderophile elements (HSE) are indicative of closed-system behavior for all of the HSE in the IVB system since crystallization.Abundances of HSE measured in different chunks of individual bulk samples, and in spot analyses of different portions of individual chunks, are homogeneous at the ±10% level or better. Modeling of HSE in the IVB system, therefore, is not impacted by sample heterogeneities. Concentrations of some other elements determined by spot analysis, such as P, Cr and Mn, however, vary by as much as two orders of magnitude and reflect the presence of trace phases.Assuming initial S in the range of 0 to 2 wt.%, the abundances of the HSE Re, Os, Ir, Ru, Pt, Rh, Pd and Au in bulk IVB irons are successfully accounted for via a fractional crystallization model. For these elements, all IVB irons can be interpreted as being representative of equilibrium solids, liquids, or mixtures of equilibrium solids and liquids.Our model includes changes in bulk D values (ratio of concentration in the solid to liquid) for each element in response to expected increases in S and P in the evolving liquid. For this system, the relative D values are as follow: Os > Re > Ir > Ru > Pt > Rh > Pd > Au. Osmium, Re, Ir and Ru were compatible elements (favor the solid) throughout the IVB crystallization sequence; Rh, Pd and Au were incompatible (favor the liquid). Extremely limited variation in Pt concentrations throughout the IVB crystallization sequence requires that D(Pt) remained at unity.In general, D values derived from the slopes of logarithmic plots, compared with those calculated from recent parameterizations of D values for metal systems are similar, but not identical. Application of D values obtained by the parameterization method is problematic for comparisons of the compatible elements with similar partitioning characteristics. The slope-based approach works well for these elements. In contrast, the slope-based approach does not provide viable D values for the incompatible elements Pd and Au, whereas the parameterization method appears to work well. Modeling results suggest that initial S for this system may have been closer to 2% than 0, but the elements modeled do not tightly constrain initial S.Consistent with previous studies, our calculated initial concentrations of HSE in the IVB parent body indicate assembly from materials that were fractionated via high temperature condensation processes. As with some previous studies, depletions in redox sensitive elements and corresponding high concentrations of Re, Os and Ir present in all IVB irons are interpreted as meaning that the IVB core formed in an oxidized parent body. The projected initial composition of the IVB system was characterized by sub-chondritic Re/Os and Pt/Os ratios. The cause of this fractionation remains a mystery. Because of the refractory nature of these elements, it is difficult to envision fractionation of these elements (especially Re-Os) resulting from the volatility effects that evidently affected other elements.  相似文献   

12.
An Early Permian volcanic assemblage is well exposed in the central-western part of the Apuseni Mountains (Romania). The rocks are represented by rhyolites, basalts and subordinate andesites suggesting a bimodal volcanic activity that is intimately associated with a post-orogenic (Variscan) syn-sedimentary intra-basinal continental molasse sequences. The mafic and mafic-intermediate rocks belong to sub-alkaline tholeiitic series were separated in three groups (I–III) showing a high Th and Pb abundances, depletion in Nb, Ta and Sr, and slightly enriched in LREE patterns (LaN/YbN = 1.4–4.4). Isotopically, the rocks of Group I have the initial ratios 87Sr/86Sr(i) = 0.709351–0.707112, 143Nd/144Nd(i) = 0.512490–0.512588 and high positive ?Nd270 values from 3.9 to 5.80; the rocks of Group II present for the initial ratios values 87Sr/86Sr(i) = 0.709434–0.710092, 143Nd/144Nd(i) = 0.512231–0.512210 and for ?Nd270 the negative values from −1.17 to −1.56; the rocks of Group III display for the initial ratios the values 87Sr/86Sr(i) = 0.710751–0.709448, 143Nd/144Nd(i) = 0.512347–0.512411 and for ?Nd270 the positive values from 1.64 to 2.35. The rocks resembling continental tholeiites, suggest a mantle origin and were further affected by fractionation and crustal contamination. In addition, the REE geochemistry (1 > SmN/YbN < 2.5; 0.9 > LaN/SmN < 2.5) suggests that these rocks were generated by high percentage partial melting of a metasomatized mantle in the garnet peridotite facies. The felsic rocks are enriched in Cs, Rb Th and U and depleted in Nb, Ta, Sr, Eu, and Ti. The REE fractionation patterns show a strong negative Eu anomaly (Eu/Eu* = 0.23–0.40). The felsic rocks show the initial ratios the values: 87Sr/86Sr(i) = 0.704096–0.707805, 143Nd/144Nd(i) = 0.512012–0.512021 and for ?Nd270 the negative values from −5.27 to −5.44. They suggest to be generated within the lower crust during the emplacement of mantle-derived magmas that provided necessary heat to crustal partial melting.  相似文献   

13.
The Aral Sea has been shrinking since 1963 due to extensive irrigation and the corresponding decline in the river water inflow. Understanding of the current hydrological situation demands an improved understanding of the surface water/groundwater dynamics in the region. 222Rn and 226Ra measurements can be used to trace groundwater discharge into surface waters. Data of these radiometric parameters were not previously available for the study region. We determined 222Rn activities after liquid phase extraction using Liquid Scintillation Counting (LSC) with peak-length discrimination and analyzed 226Ra concentrations in different water compartments of the Amu Darya Delta (surface waters, unconfined groundwater, artesian water, and water profiles from the closed Large Aral Sea (western basin).The water samples comprise a salinity range between 1 and 263 g/l. The seasonal dynamics of solid/water interaction under an arid climate regime force the hydrochemical evolution of the unconfined groundwater in the Amu Darya Delta to high-salinity Na(Mg)Cl(SO4) water types. The dissolved radium concentrations in the waters were mostly very low due to mineral over-saturation, extensive co-precipitation of radium and adsorption of radium on coexisting solid substrates.The analysis of very low 226Ra concentrations (<10 ppq) at remote study sites is a challenge. We used the water samples to test and improve different analytical methods. In particular, we modified a procedure developed for the α-spectrometric determination of 226Ra after solid phase extraction of radium using 3M Empore™ High Performance Extraction Disks (Purkl, 2002) for the analysis of the radionuclide using an ICP sector field mass spectrometer. The 226Ra concentration of 17 unconfined groundwater samples ranged between 0.2 and 5 ppq, and that of 28 artesian waters between <0.2 and 13 ppq. The ICP-MS results conformed satisfactorily to analytical results based on γ-measurements of the 222Rn ingrowth after purging and trapping on super-cooled charcoal. The 226Ra concentrations were positively correlated with the salinity and the dissolved NaCl concentrations. The occurrence of unusually high 226Ra activities is explained by radium release from adsorption sites with increasing salinity. The inferred spatial variability of 222Rn in the Aral Sea and of 222Rn and 226Ra in the groundwater of the Amu Darya Delta is discussed in the context of our own previous hydrochemical studies in the study sites. Relatively low 222Rn activities in the unconfined GW (1–9.5 Bq/l) indicate the alluvial sediments hosting the GW to be a low-238U(226Ra) substrate. Positive correlations between U and 226Ra, and U and 222Rn are likely related to locally deposited Fe(Mn)OOH precipitates. The 222Rn activity of the GW, however, distinctly exceeds the 222Rn concentration in the Aral Sea (10 mBq/l), in principle, making 222Rn a sensitive tracer for the inflow of GW. The high water volume of the Large Aral Sea and wind induced mixing of its water body, however, hamper the detection of local groundwater inflow.  相似文献   

14.
Analyses of 230 Franciscan rock and mineral samples, including the San Luis Obispo ophiolite, show that metamorphism produces no change in the δ18O of the graywackes (+11 to +14), but that igneous rocks become enriched in 18O by 2–6% and the cherts depleted by 5–10%. The shales are of two types, a high-18O type (+16 to +20) associated with chert and a low-18O type isotopically and mineralogically similar to the graywackes. The vein quartz (δ = + 15 to + 20) is invariably richer in 18O than the host rock quartz and in most of the rocks the δ18O of the clastic quartz is similar to the δ18O of the whole rock. Mineral assemblages are typically not in isotopic equilibrium. Although the δ18O values are very uniform (+13 to +16). the δ13C of vein aragonite and calcite is widely variable (0 to ? 14), implying that a major source of the carbon is oxidized organic material. The δD values of 83 igneous and sedimentary rocks are -45 to -80, exceptions are the Fe-rich minerals howieite and deerite, which have δD = ?100. All of these samples could have equilibrated with H2O having δD ≈ +10 to ?20 and δ18O ≈ ?3 to +8. assuming temperatures of 100–300°C. However, the serpentines (δD ≈ ?85 to ?110) and the vein minerals (δD = ?23 to ?55) are exceptions. The vein minerals are 10–20%, richer in deuterium than the adjacent wall rocks; they formed from a relatively D-rich metamorphic water, typically at lower temperatures than did their host rocks. The isotopic compositions of the other Franciscan rocks were affected by three distinct events: (1) hydrothermal alteration of the ophiolite complexes and volcanic rocks as a result of submarine igneous activity at a spreading center or in an island-arc environment; (2) low-temperature, high-pressure regional metamorphism and diagenesis; and (3) a late-stage, very low temperature (<100°C) alteration of the ultramafic bodies by meteoric ground waters, producing lizardite-chrysotile serpentine. In the first two cases, the pore fluid involved in the alteration of the Franciscan rocks was sea water. However, this water became somewhat depleted in D and enriched in 18O during blueschist metamorphism, evolving to values of δD ≈ ? 20 and δ18O ≈ + 6 to + 8 at the highest grades. Except for one graywacke sample, the meteoric waters that affected the serpentinites did not significantly change the DH ratios of the OH-bearing minerals in any other Franciscan rock.The δ18O values of orogenic andesites are too low for such magmas to have formed by direct partial melting of Franciscan-type materials in a subduction zone. Andesites either form in some other fashion, or the melts must undergo thorough isotopic exchange with the upper mantle. The great Cordilleran granodiorite-tonalite batholiths, however, are much richer in 18O and may well have formed by large-scale melting or assimilation of Franciscan-type rocks. The range of δD values of Franciscantype rocks is identical to the ?50 to ?80 range shown by most igneous rocks. This suggests that ‘primary magmatic H2O’ throughout the world may be derived mainly by partial melting of Franciscantype materials, or by dehydration of such rocks in the deeper parts of a Benioff zone.  相似文献   

15.
D/H ratios of leaf waxes (δDwax) derived from terrestrial plants and preserved in lake sediments can provide important information on past continental hydrology. Ideally, δDwax can be used to reconstruct precipitation D/H ratios (δDP) which is a well-established paleoclimate proxy. However, many other factors, such as vegetation and relative humidity (RH), also affect δDwax variation. How the combination of these factors affects sedimentary δDwax is unclear. Here, we use a transect of 32 lake surface sediments across large gradients of precipitation, relative humidity, and vegetation composition in the southwestern United States to study the natural factors affecting sedimentary δDwax. δD values of C28n-alkanoic acids show significant correlation with δDP values (R2 = 0.76) with an apparent isotopic enrichment of ∼99 ± 8‰, indicating that sedimentary δDwax values track overall δDP variation along the entire transect. Leaf waxes produced by plants grown under controlled conditions (RH = 80%, 60%, 40%) show a small increase in D/H ratios as RH decreases, consistent with prediction from the Craig-Gordon model. However, the isotopic effect of RH on δDwax along the natural transect is partially countered by the opposing influence of vegetation changes. The correlation between δDwax and δDP values is significantly higher (R2 = 0.84) in the drier portions of the transect than in the wetter regions (R2 = 0.64). This study suggests that D/H ratios of sedimentary leaf waxes can be used as a proxy for precipitation δD variations, with particularly high fidelity in dry regions, although more studies in other regions will be important to further test this proxy.  相似文献   

16.
We experimentally determined F and Cl partition coefficients together with that of 19 trace elements (including REE, U-Th, HFSE and LILE) between basaltic melt and lherzolite minerals: olivine, orthopyroxene, clinopyroxene, plagioclase and garnet. Under conditions from 8 to 25 kbars and from 1,265 to 1,430°C, compatibilities of F and Cl are globally ordered as D Cpx/melt > D Opx/melt > D Grt/melt > D Ol/melt > D Plag/melt, and D F mineral/melt is larger than D Clmineral/melt. Four other major results were brought to light. (1) Chlorine partition coefficients positively correlate with the jadeite component in orthopyroxene, and increase of the CaTs component promotes Cl incorporation in clinopyroxene. (2) Variations of fluorine partition coefficients correlate strongly with melt viscosity. (3) F and Cl partition coefficients correlate with the Young’s modulus (E 0) of pyroxene octahedral sites (M sites) and with Raman vibrational modes of pyroxenes. This demonstrates a fundamental interaction between the M site of pyroxenes and the incorporation of F and Cl. (4) We also determined the parameters of the lattice-strain model applied to 3+ cation trace elements for the two M sites in orthopyroxene and clinopyroxene: D 0M1, D 0M2, r 0M1r 0M2E 0M1 and E 0M2.  相似文献   

17.
In this study, activity concentrations of 40K, 226Ra and 232Th in fertilized soil samples and different organic and inorganic fertilizers used in agricultural soil were analysed using gamma-ray spectrometry NaI (Tl) detector in order to access the implications of extended use of fertilizers in 2–3 years. The concentrations of radionuclides in some granular fertilizer brands were discovered to be higher for 40K, 226Ra and 232Th than those obtained in leafy fertilizer, animal fertilizer and fertilized soil samples. From the results, the highest overall mean concentrations of the specific activities of 40K, 226Ra and 232Th were 2301.8 (granular fertilizer), 42.5 (leafy fertilizer) and 327.1 (animal fertilizer) in Bq kg?1, while the lowest values observed in the specific activities of the same radionuclides were 357.7 (leafy fertilizer), 28.1 (animal fertilizer) and 36.5 (animal fertilizer). The radiological hazards of the radium equivalent (Raeq), normative value (NRN), outdoor radium equivalent (Raeq-out), external hazard index (H ext), internal hazard index (H in), dose rate, annual effective dose rate, activity utilization index and concentration accumulation index (CAI) and RaFZ due to the presence of these radionuclides in the investigated samples were calculated. Nevertheless, some of the fertilizer brands have higher concentration values than the recommended limit, and the values of hazard indices of fertilizer brands used in the selected teaching and research farms were within acceptable limit. Therefore, the fertilized soil samples in the studied farms are safe.  相似文献   

18.
Kaolinite, gibbsite and quartz are the dominant minerals in samples collected from two outcrops of a Cenomanian (∼95 Ma) laterite in southwestern Minnesota. A combination of measured yields and isotope ratios permitted mass balance calculations of the δD and δ18O values of the kaolinite in these samples. These calculations yielded kaolinite δD values of about −73‰ and δ18O values of about +18.7‰. The δD and δ18O values appear to preserve information on the ancient weathering system.If formed in hydrogen and oxygen isotope equilibrium with water characterized by the global meteoric water line (GMWL), the kaolinite δD and δ18O values indicate a crystallization temperature of 22 (±5) °C. A nominal paleotemperature of 22 °C implies a δ18O value for the corresponding water of −6.3‰. The combination of temperature and meteoric water δ18O values is consistent with relatively intense rainfall at that mid-paleolatitude location (∼40°N) on the eastern shore of the North American Western Interior Seaway. The inferred Cenomanian paleosol temperature of ∼22 °C is in general accord with published mid-Cretaceous continental mean annual temperatures (MAT) estimated from leaf margin analyses of fossil plants.When compared with results from a published GCM-based Cenomanian climate simulation which specifies a latitudinal sea surface temperature (SST) gradient that was either near modern or smaller-than-modern, the kaolinite paleotemperature of 22 °C is closer to the GCM-predicted MAT for a smaller equator-to-pole temperature difference in the mid-Cretaceous. Moreover, the warm, kaolinite-derived, mid-paleolatitude temperature of 22 °C is associated with proxy estimates of high concentrations of atmospheric CO2 in the Cenomanian. The overall similarity of proxy and model results suggests that the general features of Cenomanian continental climate in that North American locale are probably being revealed.  相似文献   

19.
《Applied Geochemistry》2001,16(4):437-450
Partitioning of 41 elements between solids and water was studied by filtration and dialysis in situ in Czech freshwaters. Field-based distribution (partition) coefficients, KD, between suspended particulate matter (SPM) and filtrate (‘dissolved’ fraction) differed by 4 orders of magnitude. The highest KD values (log KD>2.0 l/g) were exhibited by Zr, Al, Ce, Pb, La, Ti, Fe, Sm, Th and Cr which are extremely insoluble in near-neutral water or generally poorly soluble (Zr,Ti). The KDs decrease with element and DOC loading due to the relative increase of the element in the low molecular fraction. Log KD mostly increased linearly with pH within a range from 3.5 to 9. KDU decreased at pH >6 due to carbonate complexation. The colloidal fraction (>1 kDa <0.4 μm) in a reservoir with a pH of 6.8 was mainly preferred by Fe, Pb, Be, Nb, Y, Al, Ni, U and Zr. When the colloidal fraction is not differentiated from true solution, then incorrect information about partitioning may be obtained and the highest KD may decrease.  相似文献   

20.
Groundwater of the unconfined aquifer (1,100 sq. km) of a two-tier coastal aquifer located in the Amol–Ghaemshahr plain, Mazandaran Province, Northern Iran, is classified into fresh and brackish water types. Fresh groundwater (FGW) samples (n = 36) are characterized by Ca2+ > Na> Mg2+ > K+ and HCO3 ? > Cl? > SO4 2? > NO3 ?. Spearman’s rank correlation coefficient matrices, factor analysis data, values of the C-ratio (av. = 0.89) and CAI and values of the molar ratios of Ca2+/HCO3 ?, Ca2+/SO4 2?, Mg2+/HCO3 ? and Mg2+/SO4 2? indicate that the ionic load in the FGW is derived essentially from carbonic acid-aided weathering of carbonates and aluminosilicates, saline/sea water trapped in the aquifer sediments (now admixed with the groundwater) and ion exchange reactions. Values of the CAI and Na+/Cl? molar ratio suggest that the part of the Ca2+ (±Mg2+) content in 23 FGW samples is derived from clay minerals of the aquifer matrix, and part of the Na+ content in 20, 12, and 3 FGW samples is derived, respectively, from alkali feldspar weathering, clay minerals of the aquifer matrix and rain water and/or halite. Brackish groundwater (BGW) samples (n = 4) contain Cl? as the dominant anion and their average total ionic concentration (38.65 meq/L) is 1.79 times higher than that of the FGW samples (21.50 meq/L). BGW pockets were generated by non-conservative mixing of FGW with the upconed saline water from the underlying saline groundwater zone of the semi-confined aquifer along bore wells involved in excessive extraction of groundwater from the unconfined aquifer. Groundwater belongs essentially to “high salinity, low sodium” irrigation water class.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号