首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
利用温江观测站边界层塔和探空获取的观测资料,从地表物理量的日变化、边界层的垂直结构及逐日变化这些方面分析该站夏季边界层特征,得到以下结论:(1)地表各物理量都具有明显的日变化特征,呈现一峰一谷的演变状态,其中地表热通量、动量通量、气温以及风速的峰值皆出现在午后,谷值出现在凌晨,湿度与气温日变化是反位相的。(2)近地层低层大气气温在早晚时段,随高度的增加而上升,呈逆温状态;午间时段随高度的增加而下降。9 m以下大气在午后的比湿梯度最大。风速值随着高度的增高而增大,风切变随着高度的增高而减小。(3)探空观测的边界层垂直结构显示:夏季温江站早晚边界层大气层结稳定,而午后表现为典型的混合边界层特征。大气温/湿度差异随高度增长而降低,各个时次温/湿度的差异都主要集中边界层低层,越靠近地面大气温/湿度差异越突出。8:00的温度最低,14:00最高。14:00的大气比湿最小,2:00和20:00较大。近地层风速随高度增长较快,在离地2~300 m左右高度达到一个极值,4个时次的风速差异不大。(4)地表温度、短波辐射、感热通量对边界层的高度和降水都有一定的影响。  相似文献   

2.
This paper evaluates convective boundary layer (CBL) budget methods as a tool for estimating regionally averaged sensible and latent heat fluxes for the study region used in OASIS (Observations at Several Interacting Scales). This is an agricultural region of mixed cropping and grazing extending about 100 km west of the town of Wagga Wagga, NSW, Australia.The analysis proceeds in three stages: first, a simpleone-dimensional model of the well-mixed layer (the CBL slab model), forced with measurements of the surface heat and evaporation fluxes, is evaluated by comparing measured and modelled CBL temperature, humidity and depths. A comparison of several entrainment schemes shows that a simple model, where the entrainment kinetic energy is parameterised as a fraction (3) of the surface sensible heat flux, works well if is set to 0.5. Second, the slab model is coupled to a Penman–Monteith model of surface evaporation to predict regional scale evaporation and thence heat fluxes. Finally, the integral CBL budget approach, which is an inverse method using theone-dimensional slab model, is used to infer regional heat and evaporation fluxes from measured time series of CBL temperature and humidity.We find that the simple CBL slab model works reasonably well for predicting CBL depth and very well for CBL temperature, especially if approximate estimates of subsidence velocity and warming due to advection are included. Regional sensible heat fluxes estimated from the integral CBL method match those measured, although the method is very sensitive to measurement errors. Measurement-model differences were larger for short integration times, because the well-mixed assumptions are violated at particular times of the day. The corollary is that `whole-day' (0530–1530 h) estimates are in reasonable agreement with measured values. Integral methods could not be used to infer the regional evaporation flux directly because CBL humidity profiles were complex and often not well mixed until mid-afternoon. We recommend that regional evaporation fluxes be predicted either from a coupled Penman–Monteith – CBL slab model, or inferred as a residual term from estimates of the regionally averaged available energy and sensible heat flux. Furthermore, we show that inferring fluxes via integral methods will always be difficult when the scalar concentrations have either a large surface source and free atmosphere sink (in the case of water vapour and methane), or a large surface sink and upper level source (in the case of CO2).  相似文献   

3.
Summary The boundary-layer structure of the Elqui Valley is investigated, which is situated in the arid north of Chile and extends from the Pacific Ocean in the west to the Andes in the east. The climate is dominated by the south-eastern Pacific subtropical anticyclone and the cold Humboldt Current. This combination leads to considerable temperature and moisture gradients between the coast and the valley and results in the evolution of sea and valley wind systems. The contribution of these mesoscale wind systems to the heat and moisture budget of the valley atmosphere is estimated, based on radiosoundings performed near the coast and in the valley. Near the coast, a well-mixed cloud-topped boundary layer exists. Both, the temperature and the specific humidity do not change considerably during the day. In the stratus layer the potential temperature increases, while the specific humidity decreases slightly with height. The top of the thin stratus layer, about 300 m in depth, is marked by an inversion. Moderate sea breeze winds of 3–4 m s−1 prevail in the sub-cloud and cloud layer during daytime, but no land breeze develops during the night. The nocturnal valley atmosphere is characterized by a strong and 900 m deep stably stratified boundary layer. During the day, no pronounced well-mixed layer with a capping inversion develops in the valley. Above a super-adiabatic surface layer of about 150 m depth, a stably stratified layer prevails throughout the day. However, heating can be observed within a layer above the surface 800 m deep. Heat and moisture budget estimations show that sensible heat flux convergence exceeds cold air advection in the morning, while both processes compensate each other around noon, such that the temperature evolution stagnates. In the afternoon, cold air advection predominates and leads to net cooling of the boundary layer. Furthermore, the advection of moist air results in the accumulation of moisture during the noon and afternoon period, while latent heat flux convergence is of minor relevance to the moisture budget of the boundary layer. Correspondence: Norbert Kalthoff, Institut für Meteorologie und Klimaforschung, Universit?t Karlsruhe/Forschungszentrum Karlsruhe, Postfach 3640, 76021 Karlsruhe, Germany  相似文献   

4.
涡旋相关法测定湍流通量偏低的研究   总被引:15,自引:3,他引:12  
针对野外实验所发现的不同观测法测定地表能通量不平衡问题,进行了均匀加热大气边界层的大涡模拟实验.用模拟的湍流风、温度和湿度涨落的时间序列证实,对流边界层低频涡普遍存在,并经常以一簇一簇热泡的形式出现.风速较小时,有限时长的取样不足以捕捉低频涡的贡献,可造成涡旋相关法测量的统计量异常偏低.仿照涡旋相关法的步骤进行数据处理发现,经去除平均或趋势计算的温度和湿度通量偏低程度在边界层下部随观测高度的增高而显著,其中尤以湿度通量为甚.其结果在一定程度上可以解释低风速条件下地表能通量测量的不闭合问题,但是尚不能完全解释诸如青藏高原实验出现的严重不闭合.文中对此作了探讨性的讨论.  相似文献   

5.
Numerical Simulation of Roll Vortices in the Convective Boundary Layer   总被引:1,自引:0,他引:1  
Roll vortices,which often appear when cold air outbreaks over warm ocean surfaces,are an important system for energy and substance exchange between the land surface and atmosphere.Numerical simulations were carried out in the study to simulate roll vortices in the convective boundary layer(CBL).The results indicate,that with proper atmospheric conditions,such as thermal instability in the CBL,stable stratification in the overlying layer and suitable wind shear,and a temperature jump between the two layers in a two-layer atmosphere,convective bands appear after adding initial pulses in the atmosphere.The simulated flow and temperature fields presented convective bands in the horizontal and roll vortices in the crosswind section. The structure of the roll vortices were similar to those observed in the cloud streets,as well as those from analytical solutions.Simulations also showed the influence of depth and instability strength of the CBL, as well as the stratification above the top of the CBL,on the orientation spacing and strength of the roll vortices.The fluxes caused by the convective rolls were also investigated,and should perhaps be taken into account when explaining the surface energy closure gap in the CBL.  相似文献   

6.
河西戈壁(化音)小气候和热量平衡特征的初步分析   总被引:52,自引:33,他引:52  
胡隐樵  奇跃进 《高原气象》1990,9(2):113-119
本文分析了1988年9月在甘肃省临泽县城西南侧戈壁获得的近地面层微气象观测资料。结果表明:白天晴空一般都是超绝热不稳定状态,并存在一种逆湿现象,造成向下输送的水气通量。这可能是由于戈壁地表极其干燥,没有蒸发,上层大气湿度反而比近地面层高,致使水汽从上往下输送。这时在地表面热量平衡过程中,潜热可以忽略不计,感热占绝对优势。  相似文献   

7.
Large-eddy simulations of a clear convective boundary layer (CBL)and a stratocumulus-topped boundary layer are studied. Bottom-upand a top-down scalars were included in the simulations, and theprinciple of linear superposition of variables was applied toreconstruct the fields of any arbitrary conserved variable.This approach allows a systematic analysis of countergradient fluxesas a function of the flux ratio, which is defined as the ratio betweenthe entrainment flux and the surface flux of the conserved quantity.In general, the turbulent flux of an arbitrary conserved quantityis counter to the mean vertical gradient if the heights where thevertical flux and the mean vertical gradient change sign do notcoincide. The regime where the flux is countergradient is thereforebounded by the so-called zero-flux and zero-gradient heights. Becausethe vertical flux changes sign only if the entrainment flux has anopposite sign to the surface flux, countergradient fluxes arepredominantly found for negative flux ratios. In the CBL the fluxratio for the virtual potential temperature is, to a good approximation,constant, and equal to -0.2. Only if the moisture contribution to thevirtual potential temperature is negligibly small will the flux ratio forthe potential temperature be equal to this value. Otherwise, theflux ratio for the potential temperature can have any arbitrary(negative) value, and, as a consequence, the fluxes for thepotential temperature and the virtual potential temperature willbe countergradient at different heights. As a practical application ofthe results, vertical profiles of the countergradient correction termfor different entrainment-to-surface-flux ratios are discussed.  相似文献   

8.
张璐  黄倩  张宏昇  张强  田红瑛 《气象学报》2021,79(4):659-673
利用大涡模式模拟了对流边界层结构演变以及深对流触发过程。通过改变鲍恩比的敏感性试验研究不同大气初始状况下湿润和干旱下垫面湍流特征及其对深对流触发过程的影响。结果表明:干旱下垫面的混合层干而暖,厚度较大;湿润下垫面相反。由于地表感热通量对热力湍流形成的作用更大,干旱下垫面上湍流混合和夹卷作用更强,使得水汽和相当位温在边界层内分布更均一,而在边界层顶有较大的负扰动;干旱下垫面上对流强度较湿润下垫面大,但均表现为泡状对流,水平方向上呈网状结构。不同下垫面上深对流的发生与大气初始状况有关,当初始时刻1—3 km的逆温强度较弱时(0.15 K/(100 m)),边界层内湍流迅速发展,深对流首先在干旱下垫面发生,但因对流有效位能较小,云层厚度小于湿润下垫面。当1—3 km的逆温强度增加到0.55 K/(100 m)时,云层形成时间较晚,云层厚度明显减小,仅当边界层顶的比湿较大时,有深对流发生,但仍首先发生在干旱下垫面,考虑贯穿对流在边界层顶引起的较强冷却作用,云层厚度大于湿润下垫面。   相似文献   

9.
蔡旭晖  陈家宜 《大气科学》2000,24(1):95-102
采用大涡模拟所获的数据结果,分析地面热通量沿平均风方向存在 突变的条件下对流边界层的热量平衡和平流输送作用。分析表明边界层内模拟所得结果 可以很好地满足热量平衡关系。除地面热通量项以外,平流项(包括水平平流和垂直平 流)对边界层加热率的作用可达地面热通量不均匀性差值的大小,是影响边界层内热量 平衡的最重要因子,平均速度散度项对热量平衡的作用也不可忽略,但湍流通量散度项 的作用则很小。  相似文献   

10.
2003年渭河流域5次致洪暴雨过程的水汽场诊断分析   总被引:5,自引:0,他引:5       下载免费PDF全文
利用实况高空探测和地面观测资料、NCEP/NCAR再分析资料, 从水汽输送、水汽收支以及水汽含量等方面着手, 对2003年发生在渭河流域的5次致洪暴雨过程进行了对比分析, 结果表明:强降水发生时, 降水区700 hPa上的比湿值均不低于7 g/kg; 在垂直结构上, 强降水地区低层水汽含量在降水前6~12 h出现峰值, 强降水出现在高层比湿的峰值附近; 致洪暴雨过程的水汽通道与西太平洋副热带高压的位置有着明显的相关性; 渭河流域南边界是水汽的主要输入方, 主要的水汽输送层在850~700 hPa, 西边界是水汽的主要输出方。  相似文献   

11.
12.
The maximum height of the convective boundary layer (CBL) over the Taklimakan Desert can exceed 5000 m during summer and plays a crucial role in the regional circulation and weather. We combined the Weather Research and Forecasting Large Eddy Simulation (WRF-LES) with data from Global Positioning System (GPS) radiosondes and from eddy covariance stations to evaluate the performance of the WRF-LES in simulating the characteristics of the deep CBL over the central Taklimakan Desert. The model reproduced the evolution of the CBL processes reasonably well, but the simulations generated warmer and moister conditions than the observation as a result of the over-prediction of surface fluxes and large-scale advection. Further simulations were performed with multiple configurations and sensitivity tests. The sensitivity tests for the lateral boundary conditions (LBCs) showed that the model results are sensitive to changes in the time resolution and domain size of the specified LBCs. A larger domain size varies the distance of the area of interest from the LBCs and reduces the influence of large forecast errors near the LBCs. Comparing the model results using the original parameterization of sensible heat flux with the Noah land surface scheme and those of the sensitivity experiments showed that the desert CBL is sensitive to the sensible heat flux produced by the land surface scheme during daytime in summer. A reduction in the sensible heat flux can correct overestimates of the potential temperature profile. However, increasing the sensible heat flux significantly reduces the total time needed to increase the CBL to a relatively low altitude (< 3 km) in the middle and initial stages of the development of the CBL rather than producing a higher CBL in the later stages.  相似文献   

13.
The maximum height of the convective boundary layer(CBL)over the Taklimakan Desert can exceed 5000 m during summer and plays a crucial role in the regional circulation and weather.We combined the Weather Research and Forecasting Large Eddy Simulation(WRF-LES)with data from Global Positioning System(GPS)radiosondes and from eddy covariance stations to evaluate the performance of the WRF-LES in simulating the characteristics of the deep CBL over the central Taklimakan Desert.The model reproduced the evolution of the CBL processes reasonably well,but the simulations generated warmer and moister conditions than the observation as a result of the over-prediction of surface fluxes and large-scale advection.Further simulations were performed with multiple configurations and sensitivity tests.The sensitivity tests for the lateral boundary conditions(LBCs)showed that the model results are sensitive to changes in the time resolution and domain size of the specified LBCs.A larger domain size varies the distance of the area of interest from the LBCs and reduces the influence of large forecast errors near the LBCs.Comparing the model results using the original parameterization of sensible heat flux with the Noah land surface scheme and those of the sensitivity experiments showed that the desert CBL is sensitive to the sensible heat flux produced by the land surface scheme during daytime in summer.A reduction in the sensible heat flux can correct overestimates of the potential temperature profile.However,increasing the sensible heat flux significantly reduces the total time needed to increase the CBL to a relatively low altitude(3 km)in the middle and initial stages of the development of the CBL rather than producing a higher CBL in the later stages.  相似文献   

14.
边界层对流对示踪物抬升和传输影响的大涡模拟研究   总被引:3,自引:1,他引:2  
利用"西北干旱区陆气相互作用野外观测实验"加密观测期间敦煌站的实测资料以及大涡模式, 通过一系列改变地表热通量和风切变的敏感性数值试验, 分析了地表热通量和风切变对边界层对流的强度、形式, 以及对对流边界层结构和发展的影响。模拟结果显示风切变一定, 增大地表热通量时, 由于近地层湍流运动增强, 向上输送的热量也较多, 使对流边界层变暖增厚, 而且边界层对流的强度明显增强, 对流泡发展的高度也较高。当地表热通量一定, 增大风切变时, 由于风切变使夹卷作用增强, 将逆温层中的暖空气向下卷入混合层中, 使对流边界层增暖增厚, 但是对流泡容易破碎, 对流的强度也较弱。另外通过在模式近地层释放绝对浓度为100的被动示踪物方法, 用最小二乘法定量地分析了地表热通量和风切变分别与示踪物抬升效率和传输高度的关系。分析结果表明, 风切变小于10.5×10-3 s-1时, 增大地表热通量加强了上层动量的下传, 使示踪物的抬升效率也线性增大;地表热通量小于462.5 W m-2时, 增大风切变减弱了边界层对流的强度, 从而使示踪物的抬升效率减弱。当风切变一定时, 示踪物的平均传输高度随地表热通量增加而增大, 而地表热通量一定, 只有风切变大于临界值时, 示踪物平均传输高度才随风切变的增加而增大, 而临界风速的大小由地表热通量决定。  相似文献   

15.
The role of a river of small dimensions in driving the surface exchange of sensible and latent heat fluxes at the bottom of a valley is investigated using large-eddy simulation (LES). Simulations were performed using different valley topographies, river widths and large-scale wind speed and direction. In all cases, the river acted as a sink of both sensible and latent heat during daytime. Despite the general agreement concerning the flux direction above the river surface, specific differences exist between the simulations. The topography enhances the wind divergence caused by the river, and the larger negative surface fluxes above the river occur when there are no slopes, a consequence of larger wind speeds above the river. For large-scale winds aligned with the valley axis, the surface fluxes depend on the large-scale wind speed, but this dependence is reduced if the large-scale wind is perpendicular to the valley axis. There is a minimum of temperature and a maximum of specific humidity above the river surface. The scalar budgets show that sensible heat flux converges above the river, being balanced by the warm air subsidence at the centre of the valley. Latent heat fluxes, on the other hand, converge above the river surface, and they are balanced by the horizontal advection of humidity towards the river margins.  相似文献   

16.
A range of large-eddy simulations, with differing free atmosphere stratification and zero or slightly positive surface heat flux, is investigated to improve understanding of the neutral and near-neutral, inversion-capped, horizontally homogeneous, barotropic atmospheric boundary layer with emphasis on the upper region. We find that an adjustment time of at least 16 h is needed for the simulated flow to reach a quasi-steady state. The boundary layer continues to grow, but at a slow rate that changes little after 8 h of simulation time. A common feature of the neutral simulations is the development of a super-geostrophic jet near the top of the boundary layer. The analytical wind-shear models included do not account for such a jet, and the best agreement with simulated wind shear is seen in cases with weak stratification above the boundary layer. Increasing the surface heat flux decreases the magnitude and vertical extent of the jet and leads to better agreement between analytical and simulated wind-speed profiles. Over a range of different inversion strengths and surface heat fluxes, we also find good agreement between the performed simulations and models of the equilibrium boundary-layer height, and of the budget of turbulent kinetic energy integrated across the boundary layer.  相似文献   

17.
赵昭  周博闻 《气象科学》2021,41(5):631-643
日间对流边界层最显著的结构特征是在热力作用下所形成的组织化对流。与小尺度湍涡不同的是,组织化对流具有边界层尺度的垂直相干性,可实现垂直贯穿边界层的非局地物质和能量传输。本文针对对流边界层中的动量混合,探究组织化对流对动量输送的贡献。以高精度大涡模拟数据为研究资料,通过傅里叶变换、本征正交分解和经验模态分解3种滤波方法,分离组织化对流和背景湍涡,计算与两者相关的非局地和局地动量通量,发现与组织化对流相关的非局地动量通量是总通量的重要组成部分,并主导混合层中的垂直动量输送。而后,基于协谱和相位谱分析,探究组织化对流的空间结构对动量传输的影响,发现在热力主导的不稳定环境中,单体型环流结构对动量的传输效率较低。而在风切较强的近中性环境中,滚涡型组织化结构可使垂直和水平流向扰动速度的相位差减小,从而提升动量传输效率。研究结果表明,边界层方案需要包含非局地动量通量项,其参数化应考虑整体稳定度对传输效率的影响。  相似文献   

18.
本文基于多年连续观测所得的九龙站加密探空资料,通过对比分析,认识到该站的边界层大气在夏季呈现以下特征:大气温度/湿度随高度增长而降低,不同时次温度/湿度的差异主要集中在中低层大气中,越靠近地面大气温度/湿度差异越突出。从不同时次的表现来看,08时的温度最低,14时温度值最高。08时和14时大气的比湿较小,02时和20时的大气比湿较大。位温则是随高度增长,最大差异出现在3320m以下大气层中,14时和20时位温廓线存在明显的绝热及超绝热现象,该2个时次大气边界层表现为明显的混合边界层特征,低层大气层结为静力不稳定。而08时和02时的大气廓线则呈现稳定边界层特征。四个时次风速廓线都是次地转的,边界层内某一高度皆有一个风速极大值出现,20时边界层内风速极大值最大。地表物理量逐日演变情况为:08时温度最低,其次是02时,然后是20时,最高温度出现在14时,这个时次的变动幅度也最为显著。14时、08时比湿均值最小,20时、02时平均比湿较大,20时变幅最大。最低气压出现在20时,其次是14时,然后是08时,最高气压出现在02时,20时变幅最大。02时地面风速最小,其次是08时,再次为20时,14时风速最大,变动幅度最大。   相似文献   

19.
In this study,the development of a convective boundary layer (CBL) in the Badanjilin region was investigated by comparing the observation data of two cases.A deep neutral layer capped a CBL that occurred on 30 August 2009.This case was divided into five sublayers from the surface to higher atmospheric elevations:surface layer,mixed layer,inversion layer,neutral layer,and sub-inversion layer.The development process of the CBL was divided into three stages:S1,S2,and S3.This case was quite different from the development of the three-layer CBL observed on 31 August 2009 because the mixed layer of the five-layer CBL (CBL5) eroded the neutral layer during S2.The specific initial structure of the CBL5 was correlated to the synoptic background of atmosphere during nighttime.The three-stage development process of the CBL5 was confirmed by six simulations using National Center for Atmospheric Research (USA) large-eddy simulation (NCAR-LES),and some of its characteristics are presented in detail.  相似文献   

20.
We investigate the evolution of the early-morning boundary layer in a low-mountain valley in south-western Germany during COPS (convective and orographically induced precipitation study) in summer 2007. The term low-mountain refers to a mountainous region with a relief of gentle slopes and with an absolute altitude that remains under a specified height (usually 1,500 m a.s.l.). A subset of 23 fair weather days from the campaign was selected to study the transition of the boundary-layer flow in the early morning. The typical valley atmosphere in the morning hours was characterized by a stable temperature stratification and a pronounced valley wind system. During the reversal period—called the low wind period—of the valley wind system (duration of 1–2 h), the horizontal flow was very weak and the conditions for free convection were fulfilled close to the ground. Ground-based sodar observations of the vertical wind show enhanced values of upward motion, and the corresponding statistical properties differ from those observed under windless convective conditions over flat terrain. Large-eddy simulations of the boundary-layer transition in the valley were conducted, and statistical properties of the simulated flow agree with the observed quantities. Spatially coherent turbulence structures are present in the temporal as well as in the ensemble mean analysis. Thus, the complex orography induces coherent convective structures at predictable, specific locations during the early-morning low wind situations. These coherent updrafts, found in both the sodar observations and the simulation, lead to a flux counter to the gradient of the stably stratified valley atmosphere and reach up to the heights of the surrounding ridges. Furthermore, the energy balance in the surface layer during the low wind periods is closed. However, it becomes unclosed after the onset of the valley wind. The partition into the sensible and the latent heat fluxes indicates that missing flux components of sensible heat are the main reason for the unclosed energy balance in the considered situations. This result supports previously published investigations on the energy balance closure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号