首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
数值模拟结果表明: 冬季长江口及其邻近海区温度分布为近岸低, 外海高; 近岸和海底地形变化缓慢区温度呈垂直均匀分布, 海底地形变化显著的陡坡区生成温度锋; 外海深水区的中上层温度低且呈垂直均匀分布, 底层温度高并形成弱的分层。春季, 近岸温度高、外海低; 近岸温度大致呈垂直均匀分布, 外海出现明显分层; 长江口以北温度表层低、底层高; 长江口及其以南表层和底层温度低, 而中层高; 陡坡区至外海生成温度锋, 随着温度锋自陡坡至外海的下移,锋面以上温度逐渐变为垂直均匀分布, 而锋面以下温度却大致呈水平均匀分布。夏季, 海区的温度分布和春季一样, 为近岸高、外海低; 长江口及其以南近岸浅水区温度呈垂直均匀分布; 长江口以北和长江口及其以南的外海温度自表层至底层由高变低且大致呈水平均匀分布, 并在表层至次表层生成强温跃层, 跃层强度随水深增加迅速减弱, 深底层温度几乎呈均匀分布且保持低温特征。秋季, 海区的温度分布与冬季相同, 也为近岸低, 外海高; 在长江口以北, 近岸温度为表层高, 底层低; 外海底层温度低且大致呈水平均匀分布, 而底层以上温度高且大致呈垂直均匀分布; 长江口及其以南, 近岸温度呈垂直均匀分布, 陡坡至外海的表层至底层生成弱的温度锋,随温度锋自陡坡至外海的下移, 锋面以上温度逐渐变为垂直均匀分布, 长江口以南陡坡区的底层温度几乎呈均匀分布。  相似文献   

2.
盐度的数值模拟结果表明: 一年四季长江口及其邻近海区的盐度分布均为近岸低, 外海高,近岸与外海盐差大。冬季近岸和外海的上层盐度呈垂直均匀分布, 陡坡及外海的底层出现层化; 近岸特别是长江口及其以南近岸盐度的水平变化显著, 外海变化缓慢。春季在长江口以北, 近岸至外海的表层至近底层盐度呈垂直均匀分布, 近岸至外海的底层存在一个向北延伸的盐舌; 长江口及其以南近岸和外海的表层至次表层盐度呈垂直均匀分布, 在近岸稍远的表层至次表层形成盐跃层, 其强度自近岸至外海和自表层至底层逐渐减弱; 在陡坡区的底层盐度几乎呈均匀分布, 并保持高盐特征。夏季除长江口及其以南近岸浅水区盐度呈垂直均匀分布外, 其它区域盐度均出现剧烈分层, 在长江冲淡水区形成强盐跃层, 其强度自表层至底层迅速减弱, 陡坡至外海的底层盐度大致呈均匀分布且保持高盐特征。秋季长江口以北近岸浅水区表层盐度低且出现层化, 表层以下盐度高且呈垂直均匀分布; 近岸以远自表层至底层呈垂直均匀分布, 在外海上层盐度低且呈垂直均匀分布, 而底层盐度高并出现分层;长江口及其以南近岸浅水区盐度呈垂直均匀分布, 陡坡区出现层化, 其盐度为表层低, 底层高; 层化自表层至底层逐渐增强, 并随陡坡至外海的减弱, 上层又逐渐变为垂直均匀分布。  相似文献   

3.
盐度的数值模拟结果表明:一年四季长江口及其邻近海区的盐度分布均为近岸低,外海高,近岸与外海盐差大。冬季近岸和外海的上层盐度呈垂直均匀分布,陡坡及外海的底层出现层化;近岸特别是长江口及其以南近岸盐度的水平变化显著,外海变化缓慢。春季在长江口以北,近岸至外海的表层至近底层盐度呈垂直均匀分布,近岸至外海的底层存在一个向北延伸的盐舌;长江口及其以南近岸和外海的表层至次表层盐度呈垂直均匀分布,在近岸稍远的表层至次表层形成盐跃层,其强度自近岸至外海和自表层至底层逐渐减弱;在陡坡区的底层盐度几乎呈均匀分布,并保持高盐特征。夏季除长江口及其以南近岸浅水区盐度呈垂直均匀分布外,其它区域盐度均出现剧烈分层,在长江冲淡水区形成强盐跃层,其强度自表层至底层迅速减弱,陡坡至外海的底层盐度大致呈均匀分布且保持高盐特征。秋季长江口以北近岸浅水区表层盐度低且出现层化,表层以下盐度高且呈垂直均匀分布;近岸以远自表层至底层呈垂直均匀分布,在外海上层盐度低且呈垂直均匀分布,而底层盐度高并出现分层;长江口及其以南近岸浅水区盐度呈垂直均匀分布,陡坡区出现层化,其盐度为表层低,底层高;层化自表层至底层逐渐增强,并随陡坡至外海的减弱,上层又逐渐变为垂直均匀分布。  相似文献   

4.
对于本研究采用的动力学模型及其垂直环流的模拟结果已在第Ⅰ部分论述。作者将对与垂直环流对应的温、盐结构进行分析。温度和盐度模拟结果表明:冬季东海沿岸海区的温、盐分布均为近岸低、外海高;近岸温、盐呈垂直均匀分布,在外海出现分层,其温度为表层高、底层低,而盐度却为表层和底层高,中层偏低,长江口以南的近表层以下形成自近岸伸向外海的弱低盐水舌;长江冲淡水区及长江口以北和其以南外海的近表层有温、盐跃层生成,深底层温、盐呈均匀分布,且保持低温高盐特征;随着海区自北往南纬度的降低,岸坡和水深的增大及沿岸下降流的增强,温度和盐度自近岸至外海的垂直均匀分布跨度逐渐变窄;外海近表层的温、盐跃层强度自北至长江口逐渐增强,而自长江口至南逐渐减弱,其位置自北往南逐渐上移;冬季沿岸下降流使长江冲淡水区的盐跃层变厚。夏季海区的温度分布为近岸和外海高,近岸稍远出现冷水涌升,垂向上呈现显著分层,盐度分布为近岸低、外海高;长江冲淡水区及杭州湾以南外海的次表层存在温、盐跃层,其跃层以上出现混合层,且保持高温低盐特征,跃层以下温、盐大致呈均匀分布,并保持低温高盐特征;随着海区自南往北纬度的增高、岸坡和水深的减小及沿岸上升流自南至长江口和自长江口至北的增强和继而减弱,长江冲淡水区的温、盐跃层强度自南至长江口逐渐增强,而自长江口至北逐渐减弱,外海次表层的温、盐跃层强度却自南至长江口逐渐减弱,自长江口至北又逐渐增强,其温、盐跃层的位置自南往北逐渐上移;夏季沿岸上升流使长江冲淡水区的盐跃层变薄。  相似文献   

5.
刘兴泉 《海洋与湖沼》1998,29(1):97-103
冬季沿岸海区温度和盐度的数值计算结果表明,温度在近岸近表层大致呈垂直均匀分布,外海近表层形成较强的温跃层,近岸至外海的下层保持冷水特征,表层和底层盐度高,中层盐度低,在中层形成自近岸伸向外海且盐度逐渐由低变高的低盐水后,河口冲淡水地区形成较强的盐跃层,随着自南往北海区水深的逐渐变浅,岸界坡度的由大变小和沿岸下降流的由强变弱,近岸温度和盐度的垂直分布越来越均匀,外海近表层的温跃层强度越来越弱,盐度自  相似文献   

6.
刘兴泉 《海洋与湖沼》1998,29(1):97-103
冬季沿岸海区温度和盐度的数值计算结果表明:温度在近岸近表层大致呈垂直均匀分布,外海近表层形成较强的温跃层,近岸至外海的下层保持冷水特征。表层和底层盐度高,中层盐度低,在中层形成自近岸伸向外海且盐度逐渐由低变高的低盐水舌,河口冲淡水区形成较强的盐跃层。随着自南往北海区水深的逐渐变浅、岸界坡度的由大变小和沿岸下降流的由强变弱,近岸温度和盐度的垂直分布越来越均匀,外海近表层的温跃层强度越来越弱。盐度自南至河口区逐渐由高变低,而自河口区至北逐渐由低变高。沿岸下降流使河流冲淡水区的益跃层变厚。  相似文献   

7.
东海PN断面夏季温盐及化学要素的分布特征   总被引:9,自引:2,他引:9  
刘兴泉 《海洋与湖沼》2001,32(2):204-212
由东海PN断面夏季温鼻度及化学要素CTD资料分析表明,东海夏季的温跃层和盐跃层在次表层生成,其强度随着跃层自陆架坡折区至近岸和外海的上移逐渐减弱。陆架区近表层的温度和盐度呈垂直均匀分布,冲绳海槽次表层呈高温、高盐,近表层呈高温,近表层呈高温、低盐,底层呈低温、次高盐特征。溶解氧浓度自近岸到外海由低变高,表层至底层溶解氧浓度在陆架区由高变低,冲绳海槽区则先由低变高然后又由变低。总二氧化碳浓度自表层至底层和自陆架坡折区到近岸和外海由低变高。磷酸盐和硅酸盐浓度自近岸至外海由高变低,而自表层至底层由低变高。陆架区的近表层和陆架坡折区分别有一个高碱度区。温盐及化学要素的分布特征与夏季海区垂直环流的反气旋运动、长江冲淡水及黑潮水入侵和海面强热辐射有关。此外,化学要素分布还与夏季海区的温盐结构、表混合层与大气间二氧化碳气体交换及表混合层中碳和营养盐光合作用的利用有关。  相似文献   

8.
利用POM模型,以研究海区的海面风应力、温度和盐度资料作为海面边界条件,以与外海界面处的温度和盐度资料作为侧向液边界条件,并考虑长江径流、台湾暖流和东海沿岸流的影响,对长江口及其邻近海区各季节的三维斜压环流和温、盐结构进行了数值模拟。环流的数值结果表明,冬季和秋季研究海区的水平环流主要由长江径流、东海沿岸流、台湾暖流、杭州湾环流和沿岸流与台湾暖流之间的气旋和反气旋涡构成;东海沿岸流与长江径流顺岸南下,随着自北往南岸界地形坡度的增大,其流幅变窄,流速增强;台湾暖流沿陡坡及其外缘蜿蜒北上,随着自南往北水深的变浅,其流幅由宽变窄继而又由窄变宽,流速却一直由强变弱。冬季和秋季海区纬度断面垂直环流的总趋势由近岸向外海流动,海底地形变化缓慢区离岸流产生波动,海底地形变化显著的陡坡区离岸流产生剧烈振荡而生成强升降流。春季和夏季研究海区的水平环流主要由长江径流与东海沿岸流汇合流、台湾暖流、杭州湾环流、舟山群岛附近及长江径流和东海沿岸流汇合流与台湾暖流之间的气旋和反气旋涡构成;长江径流和台湾暖流平行北上并在长江口以北产生顺时针偏转。由海区水平环流特征和变化趋势证实,春季长江冲淡水已开始向东北偏转,夏季冲淡水的偏转程度、伸展距离和扩展范围都更甚于春季;春季在长江口近岸存在弱上升流,夏季长江口外的陡坡区出现下降流,而长江口以北和以南的陡坡区出现上升流。  相似文献   

9.
于2007-01-02对黄东海溶解有机碳(DOC)进行采样并用高温催化氧化法进行测定,分析了其质量浓度和平面分布特征。结果表明,DOC的质量浓度范围为0.440~2.491mg/L,平均质量浓度为(0.967±0.284)mg/L;DOC的平面分布呈现近岸高外海低的特征,近岸高值主要集中在长江口以南海域,主要受陆源输入的影响;外海DOC高值区主要集中在28°N以南,126°E以西的海域,来源于浮游植物的初级生产;东海东南部为DOC的低值区,主要受贫营养的黑潮水控制。垂直方向上,DOC由表到底变化较小,表层和10m层受生物活动影响质量浓度相对较高,底层高值主要来自于沉积物再悬浮的作用。  相似文献   

10.
1998年8月台湾海峡表层温、盐度分析   总被引:2,自引:0,他引:2  
根据 1 998年 8月台湾海峡表层温、盐度的观测结果 ,分析了调查期间所出现的几个低温高盐区 ,结果表明 :(1 )东山和南澳近岸海域出现 2个低温高盐区 ,温度低达 2 3 5℃ ,盐度接近 3 4 0 ,而且在此低温高盐区的南侧存在明显的温、盐度锋面 ,其强度分别可达 0 1 8℃·km- 1 和 0 1 4·km- 1 ;(2 )平潭岛以南及其东北部近岸海域存在范围较大的低温高盐区 ,其中平潭岛以南近岸的表层水温比邻近海域约低 1 5— 3 0℃ ;(3 )在泉州外海也出现一个低温高盐区 ,温度低于 2 7 0℃ ,盐度高于 3 4 0。  相似文献   

11.
东海赤潮高发区春季溶解氧和pH分布特征及影响因素探讨   总被引:16,自引:5,他引:16  
根据2002年4月27日-5月2日长江口邻近海域的大面调查,分析了东海溶解氧及pH值的分布特征,并对长江口外溶解氧低值区的成因及其与赤潮发生的关系进行了初步探讨.结果表明,调查海域pH值呈近岸低、外海高的分布趋势,溶解氧整体处于过饱和状态,呈近岸高、外海低的分布趋势.4月下旬在调查海区东南部底层已开始出现溶解氧低值区,面积约为15400km^2,该水域表观耗氧量AOU一般在1.50mg/L以上,并伴随有氧的亏损发生,形成原因主要是水交换较弱和有机物分解耗氧.溶解氧低值区可能是有机碎屑的沉降汇集区,随着夏季温度的升高及长江丰水期的到来,有机碎屑有可能在台湾暖流的影响下产生西、北向的爬升而造成溶解氧低值区扩大和溶解氧含量的进一步降低.  相似文献   

12.
用国家海洋局东海环境监测中心2004年夏初(6月)和秋末(11月)对长江口外海区现场观测资料,用Matlab计算机编程语言对观测资料进行质量控制、插值网格化,绘制研究海区盐度立体分布图,显示夏初、秋末两季的盐度分布特征。将2004年夏、秋两季长江口外海区冲淡水和羽状锋的分布与以往观测研究结果对比,可得:(1)长江口外海区冲淡水的盐度值主要在5—31之间,冲淡水前缘盐度锋面的盐度值为18—28;盐度值20—28的盐度锋面基本体现该海区羽状锋的特征及变化。(2)夏初长江口外海区冲淡水范围明显大于秋末,夏初该海区以冲淡水为主,秋末冲淡水的范围收缩,紧贴沿岸一带。相应地,夏初该海区羽状锋呈倾斜锋面,占据较大的海区;秋末则为垂直锋面,介于122.50°E-122.70°E海区。  相似文献   

13.
本文利用中国东部陆架海不同季节的航次观测数据与HYCOM模式数据,分析了HYCOM模式输出的水体温盐数据在中国东部陆架海的适用性,并探讨了中国东部陆架海表底层温盐锋面的时空变化及其对细颗粒沉积物输运和沉积的影响。研究结果表明,中国东部陆架海表、底层温度锋(盐度锋)的分布趋势基本一致(不考虑冲绳海槽以东的海域),但底层锋面的强度和锋区范围明显大于表层。锋面的位置很好的体现了海区流系的基本格局。表、底层温度锋面基本处于几大水团的交界处,说明表、底层温度锋面的分布与研究区环流和水团配置情况密切相关。而表、底层盐度锋面的分布则与研究区入海径流、沿岸流以及暖流等的分布密切相关。此外,对比锋面与中国东部陆架各泥质沉积区的位置可以发现,研究区温盐锋面的空间分布和季节变化对于泥质沉积区的形成具有重要的控制作用。  相似文献   

14.
基于Delft3D构建了包含利津以下河段的黄河口三维水动力数值模型,通过2011年调水调沙期间的大面站观测资料对模型进行了验证,结果表明模型可以很好地描述研究区的流场特征和盐度分布。通过3个工况,分析调水调沙对切变锋位置、强度、历时的影响,总结出地形成因和径流成因的两类切变锋。表层低盐中心位于入海口东北外海,与径流入海后形成的顺时针环流一致。底层淡水受地形成因切变锋面抑制,主要被限制在口门右侧的河口前缘,并沿岸线向ES—S扩散,形成底层低盐中心。高径流时表层冲淡水向北侧扩散更远且偏转半径更大;低径流时盐水楔位于河道内,外海盐度波动较弱。平流作用与水体净输移有关,提供了绝大部分的淡水通量;潮泵作用在近岸更为强烈,反映了口门两侧不同位置、层位截然相反的盐度-潮流相位关系。  相似文献   

15.
利用三维斜压流体动力学模型 ,通过对东海沿岸海区冬、夏季的斜压环流及其温盐结构的数值研究 ,揭示研究海区垂直环流及其温盐结构的动力过程及其成因。垂直环流的模拟结果表明 :冬季 ,沿岸海区的垂直环流以逆时针流动 ,近表层为向岸流 ,沿岸为下降流 ,近表层以下为离岸流 ,其在外海有明显的上升趋势 ,沿岸下降流自表层至底层逐渐由强变弱 ;夏季 ,沿岸海区的垂直环流以顺时针流动 ,近表层以下为向岸流 ,沿岸为上升流 ,近表层为离岸流 ,其在外海有明显的下降趋势 ,沿岸上升流自底层至表层逐渐由弱变强。就整个沿岸海区而论 ,冬季沿岸下降流和夏季沿岸上升流的强度都随着岸界地形坡度、风速及风向与岸线偏角的变化而变化。沿岸下降流形成的主要原因是由于冬季东北风与岸界地形的耦合效应及海区温盐分布不均匀所致 ,而沿岸上升流形成的主要原因则是由于夏季西南风与岸界地形的耦合效应及海区温盐分布不均匀所致。  相似文献   

16.
利用三维斜压流体动力学模型,通过对东海沿岸海区冬、夏季的斜压环流及其温盐结构的数值研究,揭示研究海区垂直环流及其温盐结构的动力过程及其成因。垂直环流的模拟结果表明:冬季,沿岸海区的垂直环流以逆时针流动,近表层为向岸流,沿岸为下降流,近表层以下为离岸流,其在外海有明显的上升趋势,沿岸下降流自表层至底层逐渐由强变弱;夏季,沿岸海区的垂直环流以顺时针流动,近表层以下为向岸流,沿岸为上升流,近表层为离岸流,其在外海有明显的下降趋势,沿岸上升流自底层至表层逐渐由弱变强。就整个沿岸海区而论,冬季沿岸下降流和夏季沿岸上升流的强度都随着岸界地形坡度、风速及风向与岸线偏角的变化而变化。沿岸下降流形成的主要原因是由于冬季东北风与岸界地形的耦合效应及海区温盐分布不均匀所致,而沿岸上升流形成的主要原因则是由于夏季西南风与岸界地形的耦合效应及海区温盐分布不均匀所致。  相似文献   

17.
刘兴泉 《海洋与湖沼》1997,28(6):632-639
为了揭示沿岸海区冬季垂直环流及其温盐结构的分布特征和变化规律,利用三维斜压流体动力学模型,对具有岸界坡度变化、河流入海、海湾、岛屿和海槽的理想海区冬季的垂直环流及其温盐结构进行了数值模拟。其环流的数值结果表明,冬季沿岸海区的垂直环流普遍呈逆时针流动。在近表层为向岸流,沿岸为下降流,近表层以下为离岸流;近表层以下的离岸流在外海有明显的上升趋势;沿岸下降流自表层至底层逐渐由强变弱;就整个海区而言,随着自南往北海区水深的逐渐变浅和岸界地形坡度的由大变小,其沿岸下降流则由强变弱。  相似文献   

18.
黄海、东海颗粒有机碳的分布特征及其影响因子分析   总被引:16,自引:4,他引:16  
分析研究了2001年春季黄海、东海颗粒有机碳(POC),结果表明POC的浓度为2~3815μg/dm3,其平面分布呈现近岸高、远岸低的特点.海水表层POC浓度与三磷酸腺苷(ATP)呈显著的正相关,这表明2001年真光层POC主要是海洋生物源.对不同海区POC垂直分布的影响因素做了探讨:长江口附近受总悬浮颗粒物浓度的影响,POC呈现表层低、底层高的特征;陆架区POC的垂直分布是生物活动与水文条件(海水混合、层化)等因素共同作用的结果;在离岸较远的深水区,影响POC垂直分布的主要因素是大洋海水的性质.由海区4个周日连续站的观测结果得知黄海区POC的周日变化主要受生物周日活动的影响,而在东海区POC周日变化除了受生物周日活动影响外,还分别受到潮汐作用以及海水水团周日变化等因素的影响.  相似文献   

19.
长江口邻近海域溶解氧分布特征及主要影响因素   总被引:13,自引:0,他引:13  
根据2002年11月5~10日对东海长江口邻近海域(29.0°N~32.0°N,122.0°E~124°E)的现场调查数据,初步分析了调查海域秋季溶解氧分布特征及主要影响因素。结果显示:调查海域秋季溶解氧平面分布整体上呈近岸高、外海低,表层高、底层低的分布趋势,在约20m深度存在溶解氧跃层。调查海域溶解氧饱和度均<100%,表观耗氧量最高达4.0mg/L,氧不饱和状态由表层至底层逐渐加剧,在123°E附近底层仍然存在明显的溶解氧低值区,但其溶解氧含量已较夏季有所回升,含量范围在3.31~8.47mg/L之间,平均为(6.73±1.09)mg/L。该海域秋季溶解氧分布主要受物理过程控制,生物活动仅在底层溶解氧低值区有较大的影响。  相似文献   

20.
海洋锋面是指不同性质的水团之间的交界面,由于水团之间的混合作用,一般是指不同水团之间的混合区。水团之间的混合是通过锋面进行的,浅海海洋锋区还往往出现上升流。观测表明,两种不同性质的水团或水体的交界面处,生物初级生产力较高,常是鱼群聚集的区域,渔获量较高。因此,海洋锋的研究有很高的理论和实践意义。在我国近海,大陆径流入海所形成的海洋锋,是黄海、东海陆架海区的重要锋面类别之一,本文利用“三峡工程对长江河口区生态与环境的影响和对策”专题调查资料(1985年8月-1986年10月)和国家海洋局断面调查资料(1975-1981年),对长江冲淡水锋面的分布和变动特征作一初步分析。 长江口地处黄海和东海的交接处,南有台湾暖流及其延续体北上,并能越过长江口到达32°N以北海区(赵保仁,1982;苏育嵩,1986),北有黄海沿岸流和苏北沿岸流南下,东邻面积宽广的黄海、东海混合水区(苏育嵩等,1983)。 洪水期丰沛的长江径流入海之后,在122°10''E以东海区显著层化,然后在长江冲淡水和外海高盐水之间形成明显的锋面。长江口区的温度平面分布比较均匀,而盐度的差异很大。本文所讨论的锋面,是指因盐度水平分布显著差异而形成的盐度锋。 在长江口附近海区,外海高盐水分属不同的流系,它们的盐度值和水平流速值各不相同,因此,与长江冲淡水之间形成的锋面强度和宽度也各不相同。一般地说,暖流系统盐度比较高,流速较大,因而与长江冲淡水之间形成的锋面较强,锋区宽度也较狭窄;相反,黄海沿岸流系的盐度较低,水平流速较小,从而与冲谈水之间形成的锋面相对较弱,且锋区宽度较大。 依照定义,锋区应是水文要素水平梯度最大的区域。据日本学者(Kanau et al.,1983)的观测,长江口区的锋区宽度只有1-5km左右。有的区域锋区宽度可能不足1km。与三峡工程有关的海上环境调查,在123°E以西海域,观测站距为10-15n mile; 国家海洋局断面观测站距一般为30''经距。基于这些资料确定出的锋区宽度就较大,强度则显著变弱。因此,为了弄清长江口海洋锋的水文结构和变化特征,需要针对海洋锋这种小尺度现象布设高密度观测站,或者用巡航式CTD进行专门调查。然而实际工作中仍然需要根据常规的海洋调查资料来确定锋面的大体位置,了解其水文结构和变化规律。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号