首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
胡新丽  殷坤龙 《山地学报》2001,19(2):175-179
采用数值模拟方法,以:重庆钢铁公司古滑坡为例,提出了大型水平顺层滑坡形成机制数值研究的思路,定量地再现了滑坡从夷平面一斜坡形成一滑坡产生的全过程,并利用不同模拟组合方案分析了作者首次引入的膨胀力以及水压力、地震力等等因素对滑坡形成的作用,分析出该大型水平顺层滑坡的形成机制为牵引-平推式滑坡。  相似文献   

2.
贵州关岭"6.28"特大滑坡特征和成因   总被引:1,自引:0,他引:1  
贵州关岭2010-06-28特大滑坡(简称"6.28"特大滑坡)造成99人死亡,其形成受到当地气候条件、地质条件和地貌等因素影响,发生机制和滑动具有一定的独特性.通过对滑坡的形成条件、发育特点和成因分析,揭示了此次滑坡的形成特征.研究表明:降雨是此次滑坡的诱发因素;滑坡具有分块滑动的特点,即坡积层和基岩先后发生滑坡;滑坡堆积体具有明显的"二元结构"特征,即滑坡堆积体前缘以及中下部为碎石土堆积,而上部为碎块石堆积,与一般滑坡堆积不同,是坡积层与基岩先后发生分块滑动的典型证据.研究成果对认识和研究此类滑坡具有重要的科学意义,也可为今后指导防灾和减灾提供参考.  相似文献   

3.
2016年7月6日凌晨新疆喀什地区叶城县柯克亚乡玉赛斯(六村)发生滑坡堰塞坝溃决泥石流灾害,造成36人死亡、6人失踪、7户民房被完全毁坏,其余数十间房屋和大量基础设施不同程度受损。现场调查研究表明:(1)此次灾害性泥石流形成过程为:降雨→土质滑坡→滑坡堰塞坝→堰塞湖→堰塞坝溃决→泥石流;(2)9#土质滑坡堰塞坝在持续强降雨作用下发生溃决,溃口洪峰流量达977.8 m~3/s,形成堰塞坝溃决型泥石流,致使1#土质滑坡堰塞坝发生串联溃决,其溃决洪峰流量为459.2 m~3/s;(3)泥石流断面流速为4.51-6.51 m/s,断面流量为443.2-524.7 m~3/s,泥石流堆积扇最大长度283.9 m,最大宽度234.3 m。  相似文献   

4.
2010-07-27凌晨,四川省汉源县万工集镇后山因持续暴雨而突发高位高速远程滑坡-碎屑流,最大滑程约1.4 km,启动时滑坡体约48×104m3,沿线裹挟和铲刮沟谷及其两侧边坡松散体,到达坡脚部位滑坡碎屑流体积增大至100×104m3,最终导致沿沟的双合村一组5户20名村民失踪及下游万工集镇部分房屋被掩埋而倾倒破坏。滑坡启动区发育于万工集镇后侧二蛮山大沟内,沟左侧为二叠系灰岩(P1y),顺坡倾向沟内;右侧为强风化的二叠系峨眉山玄武岩(P2β),节理极发育;沟内早期堆积物丰富,特别是沟上游还存在一大型古滑坡体;这些不稳定物源在有利地形条件及降雨诱发下极易形成滑坡。原始沟谷上游高位陡峭地形导致山体具备高位潜在势能,具备形成高位高速远程滑坡-碎屑流的地形条件。2010-07-24—26的降雨是触发此起特大灾害的主要原因,累计降雨量达163 mm,在水的作用下启程剧动并高速下滑。采用将今论古的地质方法,从地质构造、地层序列、岩体坡体结构及坡体变形等角度研究了二蛮山滑坡孕育的地质演化史,再现了滑坡区域历史时期中重要的地质活动过程。  相似文献   

5.
四川省绵竹市清平乡地处绵远河上游,位于龙门山腹心地带,属2008-05-12汶川8级地震的极重灾区,地震烈度达Ⅹ度,由地震引起的次生山地灾害极为发育。受地震激发,在绵远河左侧支流文家沟内形成了一个巨型滑坡——文家沟滑坡,其堆积物体积约达5×107m3,成为形成泥石流的松散固体物质来源。此后,在2008—2010年的汛期,受暴雨作用,文家沟先后暴发了5次大规模和特大规模的泥石流灾害,其中以  相似文献   

6.
1998-7-11由于石油调查需要,江汉油田在湖南省张家界市永定区教子垭镇黄官塔村唐家坡组与蔡家坡组 进行了地震物探,同年12月唐家坡组发生坡体蠕滑拉裂,造成21间房屋被毁,幸无人员身亡。本文从滑坡的机理对 唐家坡滑坡进行了分析,确定了该滑坡的形成机制与成因。  相似文献   

7.
朱渊  余斌  陈源井  王涛  亓星 《山地学报》2012,(5):599-606
2011-06-06贵州省望谟县北部普降百年一遇暴雨,引发大规模群发性泥石流灾害,给当地居民生活及交通造成严重损害。其中以打蒿沟泥石流灾害尤为突出,该流域内支沟发育,沟床比降相对较缓,但陡峻的岸坡和较大的汇水面积为泥石流的发生提供了良好的水动力条件。打蒿沟地处碎屑岩发育地区,松散堆积体较厚,并受岸坡坡度影响浅层滑坡发育,现场调查共19处。另外流域内人为破坏严重,村民沿沟垒筑大量梯田也为泥石流活动提供了特殊的人工物源。通过对其4条支沟的研究发现,泥石流形成特征并不一致,其中坡度较缓的2#支沟浅层滑坡发育,为浅层滑坡型泥石流;而坡度较陡的其他3条支沟浅层滑坡发育较少,以沟床物源为主,为沟床启动型泥石流。通过对沟道两侧斜坡坡度的调查统计和分级得出流域内25°~40°的岸坡最易形成浅层滑坡,且当山坡呈上缓下陡时,更利于滑坡的形成。打蒿沟在强降雨条件下依然可暴发泥石流,规模会有所减小,但在类似2011-06-06这类稀遇暴雨作用下仍可造成较大危害。  相似文献   

8.
汶川地震区绵远河流域泥石流形成区的崩塌滑坡特征   总被引:1,自引:0,他引:1  
2008年汶川地震以后,四川省绵竹市清平乡表面覆盖了大量松散堆积物,这些物源在震后的几年中易受到暴雨激发,导致大量浅层崩塌、滑坡的形成,尤其在泥石流形成区。研究泥石流形成区崩塌、滑坡特征,有助于分析滑坡向泥石流转化的特点。2010-08-13绵远河流域发生强降雨致使数十条沟暴发泥石流,在统计了研究区内20条沟泥石流形成区内的386个崩塌、滑坡后,利用野外调查及高精度遥感影像,将386个崩塌、滑坡全部解译,并利用GIS分析统计出崩塌、滑坡在坡度、坡向、高程、沟道纵坡降、地层岩性、沟壑密度因子上的分布特征,得出在海拔1 700~2 400 m范围内崩塌、滑坡密度最大;坡度是影响崩塌、滑坡分布的重要因素,随着坡度的增加密度也越来越大,>70°时极易失稳;滑坡的方向垂直于发震断层明显多于平行于发震断层;纵坡降在500‰~600‰的区间内崩塌、滑坡大量分布;石炭系灰岩出露的地层容易产生大量崩塌、滑坡,尤其在下硬上软的岩层上面;在微度水土流失的区域,崩塌、滑坡分布集中,因此要加强该区域的监测预警。  相似文献   

9.
为查明2004年和2005年夏季在中印边界附近发生的滑坡堰塞湖溃坝灾害,采用高分辨率为主的多时相卫星图像和“数字滑坡”技术对帕里河中段从形成堰寒湖到溃坝的整个过程进行了监测。监测结果表明位于喜马拉雅山脉西段的帕里湖为高原山地萎缩湖盆,滑坡筑坝形成堰塞湖至溃坝可分为4个阶段,估算溃坝前湖面的最大高程、最大面积和最大水繁分别达3907m、1.75km^2和6144×10^4 m^3,2005-06-26溃坝的下泄洪水量为3738×10^4 m^3。预测未来汛期帕里湖下游仍然存在崩塌滑坡活动及短暂堵江形成堰塞湖的可能性,但其规模将大多小于2004-2005年的灾害。在本次遥感监测的基础上,定期进行遥感监测,当帕里湖水面面积≥1.6km^2时,即通知下游作好撤离等避灾准备,是目前最经济有效的预警防灾措施。  相似文献   

10.
这是一个厚层岩质顺层高速滑坡,主滑体长1300m,宽550m,平均厚度28m,总方量2000万m~3。滑坡物质堆积在沟道中,形成三个临时性堰塞湖,其中最下游方的堰塞堤局部溃决,形成流量约540m~3/s的大规模泥石流。这次滑坡泥石流造成了严重灾害。  相似文献   

11.
Chun-Hung Wu  Su-Chin Chen   《Geomorphology》2009,112(3-4):190-204
This work provides a landslide susceptibility assessment model for rainfall-induced landslides in Central Taiwan based on the analytical hierarchy process method. The model considers rainfall and six site factors, including slope, geology, vegetation, soil moisture, road development and historical landslides. The rainfall factor consists of 10-day antecedent rainfall and total rainfall during a rainfall event. Landslide susceptibility values are calculated for both before and after the beginning of a rainfall event. The 175 landslide cases with detailed field surveys are used to determine a landslide-susceptibility threshold value of 9.0. When a landslide susceptibility assessment value exceeds the threshold value, slope failure is likely to occur. Three zones with different landslide susceptibility levels (below, slightly above, and far above the threshold) are identified. The 9149 landslides caused by Typhoon Toraji in Central Taiwan are utilized to validate the study's result. Approximately, 0.2%, 0.4% and 15.3% of the typhoon-caused landslides are located in the three landslide susceptibility zones, respectively. Three villages with 6.6%, 0.4% and 4.9% of the landslides respectively are used to validate the accuracy of the landslide susceptibility map and analyze the main causes of landslides. The landslide susceptibility assessment model can be used to evaluate susceptibility relative to accumulated rainfall, and is useful as an early warning and landslide monitoring tool.  相似文献   

12.
Landslides triggered by rainfall are the cause of thousands of deaths worldwide every year. One possible approach to limit the socioeconomic consequences of such events is the development of climatic thresholds for landslide initiation. In this paper, we propose a method that incorporates antecedent rainfall and streamflow data to develop a landslide initiation threshold for the North Shore Mountains of Vancouver, British Columbia. Hydroclimatic data were gathered for 18 storms that triggered landslides and 18 storms that did not. Discriminant function analysis separated the landslide-triggering storms from those storms that did not trigger landslides and selected the most meaningful variables that allow this separation. Discriminant functions were also developed for the landslide-triggering and nonlandslide-triggering storms. The difference of the discriminant scores, ΔCS, for both groups is a measure of landslide susceptibility during a storm. The variables identified that optimize the separation of the two storm groups are 4-week rainfall prior to a significant storm, 6-h rainfall during a storm, and the number of hours 1 m3/s discharge was exceeded at Mackay Creek during a storm. Three thresholds were identified. The Landslide Warning Threshold (LWT) is reached when ΔCS is −1. The Conditional Landslide Initiation Threshold (CTLI) is reached when ΔCS is zero, and it implies that landslides are likely if 4 mm/h rainfall intensity is exceeded at which point the Imminent Landslide Initiation Threshold (ITLI) is reached. The LWT allows time for the issuance of a landslide advisory and to move personnel out of hazardous areas. The methodology proposed in this paper can be transferred to other regions worldwide where type and quality of data are appropriate for this type of analysis.  相似文献   

13.
降雨型滑坡预报中计算前期有效降雨量的一种新方法   总被引:2,自引:0,他引:2  
在许多地区,前期降雨条件对滑坡的发生有重大影响,前期有效降雨量是滑坡预报的一个重要参数。基于累积滑坡频度-降雨量分形关系导出了一种新的计算前期有效降雨量的方法。在这个方法中,降雨衰减系数是由给定区域内引发滑坡的累积降雨阀值随观测时段天数变化的标度指数所决定,滑坡前每天降雨对总有效雨量的贡献并非是独立的,前i天降雨的衰减过程与前i-1天的降雨相关联。  相似文献   

14.
The purpose of this paper is to describe and evaluate the nature of the European historical archives which are suitable for the assessment of the temporal occurrence and forecasting within landslides studies, using the British south coast as an example. The paper is based upon the British contribution to the Environment programme EPOCH, 1991–1993.A primary requirement of a research programme on process occurrence is to determine the event frequencies on as many time and space scales as possible. Thus, the analysis of archives is, potentially, an essential preliminary to the study of the temporal occurrence of landslide events. The range of such data sources extends from isolated, fortuitously dated sites from the Quaternary assemblage, through inferred event impacts using dendrochronology or lichenometric time series to historical records of causal factors such as rainfall data and more recently, deliberately recorded packages of cumulative or continuous data.Most countries have extensive historical sources which may be of considerable value in establishing the characteristics of geomorphological processes. These include narrative in literature, prints and other artwork, terrestrial and aerial photographs, remote sensing series, newspapers, incidental statements and scientific journals and reports.These are numerous difficulties in accessing, extracting, organising, databasing and analysing such data because they are not usually collated for scientific use. Problems involve such incalculable errors as: the experience, training and conscientiousness of the observer; the editing and recording process; judging the validity of the data used and the haphazard nature of recorded events in time and space.Despite these difficulties, such data do yield a record which adds to the representative temporal sample as a level above some threshold reporting position. It therefore has potential for specific statistical analysis. An example of a reasonable temporal landslide record is the data base of the Ventnor complex on the Isle of Wight initially established in 1991 by Geomorphological Services Limited (GSL), now of Rendel Geotechnics, and supplemented by the collections of the first author. The record displays an increase in landslide events over the present century, due probably to increasing technology and awareness of hazard and the development of process geomorphology. However, the landslide record was subsequently correlated with the Ventnor precipitation series. This indicated that wet year sequences usually gave rise to significant landslide events. The increasing variability and number of rainfall events predicted by various climatic units, e.g. the Hadley Centre, may therefore indicate a fundamental increase in landslide events in the future.  相似文献   

15.
The paper describes a methodology to detect landslide triggering scenarios in geological homogeneous areas and for some specific landslide categories. In these scenarios, the rainfall–landslide relationship as well as the pluviometric load conditions influencing slope instability have to be investigated.The methodology is applied to an area located in northern Calabria (Italy) and affected by widespread and different slope instability phenomena. Outcropped, fractured, and deeply weathered crystalline rock masses, determining geologic homogeneous conditions, are present. In the same area, suitable and homogeneous climatic features have also been found.According to the methodology adopted, the hydrologic analysis of rainfall time-series is initially carried out notwithstanding historical data concerning landslide mobilization, but using simple models to determine critical pluviometric scenarios for the three landslide categories: shallow, medium-deep, and deep. Landslide-triggering scenarios individualized according to this procedure are less significant as compared to the landslide mobilization detected in the study area by means of historical research and ascribed to the three landslide categories according to geomorphologic analysis.Subsequently, the possible landslide triggering scenarios are outlined by carefully investigating the hydrologic analysis limited to the periods identified according to the historical data.In the study area and approximately for all the areas characterized by the outcrop of fractured and deeply weathered crystalline rocks, significant triggering scenarios can be outlined. In particular, shallow landslide triggers could be activated by rainfall events with intensities exceeding 90 mm/day and/or with amounts exceeding 160 mm. As for medium-deep and deep landslides, triggering mechanisms are more complicated; and effective rainfall contribution must be taken into account compared to groundwater storage. Moreover, a more complex link between deep landslides and precipitation is confirmed.The results obtained to date highlight the potential of this methodology, which enables us to define and progressively improve the knowledge framework by means of a work sequence integrating different disciplinary tools and results.  相似文献   

16.
To determine for how long a landslide affects sediment discharge, the sediment yields of 15 check-dam basins were compared with the time series of landslide distributions in a mountain basin in the Tanzawa region, central Japan. The distribution of sediment yield was quantitatively estimated from deposition in the sediment pools of check dams. The relationship between the landslide history and sediment discharge in the Nakagawa River basin was examined for an approximately 80-year period. Two major landslide events occurred during this period: the 1923 Kanto Earthquake and the 1972 disaster caused by heavy rainfall. The resulting trend in sediment discharge of the whole basin, estimated using reservoir sedimentation in the Miho Dam at its base, was nearly constant, with high sediment discharge (2897 m3 km− 2 yr− 1) in the intervening quarter-century, despite the recovery of vegetation on landslide areas in this period. Comparisons of the landslide distributions resulting from the two disasters, the sediment yields of check-dam basins, and the sediment discharge of the whole basin indicate that recent sediment discharge contains landslide debris that was originated by the Kanto Earthquake that occurred over 80 years ago. Thus, to understand high sediment discharge, it is essential to investigate not only the current basin condition and recent events, but also the landslide history of the basin for at least the previous 100 years.  相似文献   

17.
The purpose of the present study is the analysis of landslide risk for roads and buildings in a small test site (20 km2) in the area north of Lisbon (Portugal). For this purpose, an evaluation is performed integrating into a GIS information obtained from multiple sources: (i) landslide hazard; (ii) elements at risk; and (iii) vulnerability. Landslide hazard is assessed on a probabilistic basis for three different types of slope movement (shallow translational slides, translational slides and rotational slides), based on some assumptions such as: (i) the likelihood of future landslide occurrence can be measured through statistical relationships between past landslide distribution and specified spatial data sets considered as landslide predisposing factors; and (ii) the rainfall combination (amount–duration) responsible for past slope instability within the test site will produce the same effects (i.e. same type of landslides and similar total affected area), each time they occur in the future. When the return period of rainfall triggering events is known, different scenarios can be modelled, each one ascribed to a specific return period. Therefore, landslide hazard is quantitatively assessed on a raster basis, and is expressed as the probability for each pixel (25 m2) to be affected by a future landslide, considering a rainfall triggering scenario with a specific return period. Elements at risk within the test site include 2561 buildings and roads amounting to 169 km. Values attributed to elements at risk were defined considering reconstruction costs, following the guidelines of the Portuguese Insurance Institute. Vulnerability is considered as the degree of loss to a given element resulting from the occurrence of a landslide of a given magnitude. Vulnerability depends not only on structural properties of exposed elements, but also on the type of process, and its magnitude; i.e., vulnerability cannot be defined in absolute terms, but only with respect to a specific process (e.g. vulnerability to shallow translational slides). Therefore, vulnerability was classified for the three landslide groups considered on hazard assessment, taking into account: (i) landslide magnitude (mean depth, volume, velocity); (ii) damage levels produced by past landslide events in the study area; and (iii) literature. Finally, a landslide risk analysis considering direct costs was made in an automatic way crossing the following three layers: (i) Probabilistic hazard map for a landslide type Z, considering a particular rainfall triggering scenario whose return period is known; (ii) Vulnerability map (values from 0 to 1) of the exposed elements to landslide type Z; and (iii) Value map of the exposed elements, considering reconstruction costs.  相似文献   

18.
Landslide hazard mapping is a fundamental tool for disaster management activities in mountainous terrains. The main purpose of this study is to evaluate the predictive power of weights-of-evidence modelling in landslide hazard assessment in the Lesser Himalaya of Nepal. The modelling was performed within a geographical information system (GIS), to derive a landslide hazard map of the south-western marginal hills of the Kathmandu Valley. Thematic maps representing various factors (e.g., slope, aspect, relief, flow accumulation, distance to drainage, soil depth, engineering soil type, landuse, geology, distance to road and extreme one-day rainfall) that are related to landslide activity were generated, using field data and GIS techniques, at a scale of 1:10,000. Landslide events of the 1970s, 1980s, and 1990s were used to assess the Bayesian probability of landslides in each cell unit with respect to the causative factors. To assess the accuracy of the resulting landslide hazard map, it was correlated with a map of landslides triggered by the 2002 extreme rainfall events. The accuracy of the map was evaluated by various techniques, including the area under the curve, success rate and prediction rate. The resulting landslide hazard value calculated from the old landslide data showed a prediction accuracy of > 80%. The analysis suggests that geomorphological and human-related factors play significant roles in determining the probability value, while geological factors play only minor roles. Finally, after the rectification of the landslide hazard values of the new landslides using those of the old landslides, a landslide hazard map with > 88% prediction accuracy was prepared. The methodology appears to have extensive applicability to the Lesser Himalaya of Nepal, with the limitation that the model's performance is contingent on the availability of data from past landslides.  相似文献   

19.
Landsat series multispectral remote sensing imagery has gained increasing attention in providing solutions to environmental problems such as land degradation which exacerbate soil erosion and landslide disasters in the case of rainfall events. Multispectral data has facilitated the mapping of soils, land-cover and structural geology, all of which are factors affecting landslide occurrence. The main aim of this research was to develop a methodology to visualize and map past landslides as well as identify land degradation effects through soil erosion and land-use using remote sensing techniques in the central region of Kenya. The study area has rugged terrain and rainfall has been the main source of landslide trigger. The methodology comprised visualizing landslide scars using a False Colour Composite (FCC) and mapping soil erodibility using FCC components applying expert based classification. The components of the FCC were: the first independent component (IC1), Principal Component (PC) with most geological information, and a Normalised Difference Index (NDI) involving Landsat TM/ETM+ band 7 and 3.The FCC components formed the inputs for knowledge-based classification with the following 13 classes: runoff, extreme erosions, other erosions, landslide areas, highly erodible, stable, exposed volcanic rocks, agriculture, green forest, new forest regrowth areas, clear, turbid and salty water. Validation of the mapped landslide areas with field GPS locations of landslide affected areas showed that 66% of the points coincided well with landslide areas mapped in the year 2000. The classification maps showed landslide areas on the steep ridge faces, other erosions in agricultural areas, highly erodible zones being already weathered rocks, while runoff were mainly fluvial deposits. Thus, landuse and rainfall processes play a major role in inducing landslides in the study area.  相似文献   

20.
Abstract: A new landslide event inventory based on a literature search has been compiled for the West Coast of New Zealand. Rainfall has been identified as the most frequent reported landslide generating mechanism by far, followed by other/unknown means, then earthquakes. Small‐magnitude, high‐frequency, rainfall‐induced events have historically caused the most damage to property and infrastructure, with many of the region's highways and settlements being repeatedly affected by landslides. Since 1874, landslides have caused at least 36 fatalities in the region. More historical research is needed to fill chronological and geographical gaps in the record, and to complement scientific research. Such information is useful for hazard planning purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号