首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intensities of auroral hiss generated by the Cerenkov radiation process by electrons in the lower magnetosphere are calculated with respect to a realistic model of the Earth's magnetosphere. In this calculation, the magnetic field is expressed by the “Mead-Fairfield Model” (1975), and a static model of the iono-magnetospheric plasma distribution is constructed with data accumulated by recent satellites (Alouette-I, -II, ISIS-I, OGO-4, -6 and Explorer 22). The energy range of hiss producing electrons and the frequency range of the calculated VLF are 100–200 keV, and 2–200 kHz, respectively. Intensities with a maximum around 20 kHz, of the order of 10?14 W/m2/Hz1 at the ground seem to be ascribable to the incoherent Cerenkov emission from soft electrons with a differential energy spectrum E?2 having an intensity of the order of 108cm?2/sec/sr/eV at 100 eV. It is shown that the frequency of the maximum hiss spectral density at geomagnetic latitudes 80° on the day-side and 70° on the night-side is around 20 kHz for the soft spectrum (~E?2) electrons, which shifts toward lower frequency (~10 kHz) for a hard spectrum (~E?1·2) electrons. The maximum hiss intensity produced by soft electrons is more than one order higher than that of hard electron produced hiss. The higher rate of hiss occurrence in the daytime side, particularly in the soft electron precipitation zone in the morning sector, and the lesser occurrence of auroral hiss in night-time sectors must be, therefore, due to the local time dependence of the energy spectra of precipiating electrons rather than the difference in the geomagnetic field and in the geoplasma distributions.  相似文献   

2.
The purpose of the paper is to present the statistical characterictics of mid-latitude VLF emissions (both unstructured hiss and structured emissions) based on the VLF data obtained at Moshiri in Japan (geomag. lat. 35°; L = 1.6) during the period January 1974–March 1984. Local time dependence of occurrence rate and the association with geomagnetic disturbances have been studied for both types of emissions. Both types (unstructured and structured) of mid-latitude VLF emissions are found to have definite correlations with geomagnetic disturbances. Then, the time delay of the emission event behind the associated geomagnetic disturbance has enabled us to estimate the resonant electron energy for VLF hiss to be 5 keV at L = 3–4 and that for structured VLF emissions to be considerably larger, such as 20 keV at L 4. Combined considerations of these estimated resonant energies, theoretical electron drift orbits and the local time dependences, allow us to construct the following model to explain the experimental results in a reasonable way. Electrons in a wide energy range are injected during disturbances around the midnight sector, followed by the eastward drift. Lower energy ( 5 keV) electrons tend to drift closer to the Earth, resulting in the dawnside enhancement of VLF hiss within the plasmasphere. Further, these lower energy electrons are allowed to enter the duskside asymmetric plasmaspheric bulge and to generate VLF hiss there. On the other hand, higher energy (20 keV) electrons tend to drift at L shells farther away from the Earth and those substorm electrons are responsible for the generation of structured VLF emissions around dawn due to an increase of plasma density from the sunlit ionosphere. However, such higher energy electrons are forbidden from entering the duskside of the magnetosphere and so we cannot expect a duskside peak in the occurrence of structured VLF emissions, which is in agreement with the experimental result.  相似文献   

3.
Latitudinal distributions of narrow-band 5 kHz hisses have been statistically obtained by using VLF electric field data received from the ISIS-1 and -2 at Syowa station, Antartica and Kashima station, Japan, in order to study an origin of the narrow-band 5 kHz hisses which are often observed on the ground in mid- and low-latitudes. The result shows that the narrow-band 5 kHz hiss occurs most frequently at geomagnetically invariant latitudes from 55° to 63°, that are roughly the plasmapause latitudes at various geomagnetic activities, both in the northern and southern hemispheres.The narrow-band 5 kHz hiss seems to be generated by the cyclotron instabilities of several keV to a few ten keV electrons for the most feasible electron density of 10 cm?3?103 cm?3 in the vicinity of the equatorial plasmapause since the hotter electrons with energy of 10–100 keV are dominant just outside the plasmapause. This will be the origin of the narrow-band 5 kHz hiss observed frequently in mid- and low-latitudes.  相似文献   

4.
Extremely low frequency (ELF)/Very low frequency (VLF) hiss is whistler mode wave that interacts with energetic electrons in the magnetosphere. The characteristics features of ELF/VLF hiss observed at low latitude ground station Jammu (Geomag. lat. 22°16′ N, L=1.17) are reported. It is observed that most of hiss events first propagate in ducted mode along higher L-values (L = 4–5), after reaching lower edge of ionosphere excite the Earth-ionosphere waveguide and propagate towards equator to be received at low-latitude station Jammu. To understand the generation mechanism of ELF/VLF hiss, incoherent Cerenkov radiated power from the low-latitude and mid-latitude plasmasphere are evaluated. Considering this estimated power as an input for wave amplification through wave–particle interaction, the growth rate and amplification factor is evaluated which is too small to explain the observed wave intensity. It is suggested that some non-linear mechanism is responsible for the generation of ELF/VLF hiss.  相似文献   

5.
Latitudinal characteristics of ELF hiss in mid- and low-latitudes have been statistically studied by using ELF/VLF electric field spectra (50 Hz-30 kHz) from ISIS-1 and -2 received at Kashima station, Japan from 1973 to 1977. Most ISIS ELF/VLF data observed in mid- and low-latitude include ELF hiss at frequencies below a few kHz. The ELF hiss has the strongest intensity among VLF phenomena observed by the ISIS electric dipole antenna in mid- and low-latitudes, but the ELF hiss has no rising structure like the chorus in the detailed frequency-time spectrum. The ELF hiss is classified into the steady ELF hiss whose upper frequency limit is approximately constant with latitude and the ELF hiss whose upper frequency limit increases with latitude. These two types of ELF hiss occur often in medium or quiet geomagnetic activities. Sometimes there occurs a partial or complete lack of ELF hiss along an ISIS pass.Spectral shape and bandwidth of ELF hiss in the topside ionosphere are very similar to those of plasmaspheric hiss and of inner zone hiss. The occurrence rate of steady ELF hiss is about 0.3 near the geomagnetic equator and decreases rapidly with latitude around L = 3. Hence it seems likely that ELF hiss is generated by cyclotron resonant instability with electrons of several tens of keV in the equatorial outer plasmasphere beyond L = 3.Thirty-seven per cent of ELF hiss events received at Kashima station occurred during storm times and 63% of them occurred in non-storm or quiet periods. Sixty-seven per cent of 82 ELF hiss events during storm times were observed in the recovery phase of geomagnetic storms. This agrees with the previous satellite observations of ELF hiss by search coil magnetometers. The electric field of ELF hiss becomes very weak every 10 s, which is the satellite spin period, in mid- and low-latitudes, but not near the geomagnetic equator. Ray tracing results suggest that waves of ELF hiss generated in the equatorial outer plasmasphere propagate down in the electrostatic whistler mode towards the equatorial ionosphere, bouncing between the LHR reflection points in both the plasmaspheric hemispheres.  相似文献   

6.
The paper deals with a nonlinear instability of quasi-monochromatic VLF signals and whistlers in the Earth's magnetosphere due to induced scattering. The instability growth rates and the threshold values of the signal amplitude at which the instability occurs have been found. The instability is shown to be more effectively excited when the initial transverse VLF wave transforms into plasma oscillations at the lower hybrid resonance (LHR) frequency and may be responsible for the phenomena such as trigger LHR emission, the amplitude and phase modulation of artificial VLF signals and be the origin of some types of discrete VLF signals.  相似文献   

7.
Plasmaspheric hiss waves have been frequently invoked to explain the slow loss of the radiation belt electrons. However, the effect of hiss waves outside the plasmasphere on the radiation belt electrons remains unclear. Here, on the basis of Van Allen Probes observations and quasilinear simulations, we show that the hiss waves outside the plasmasphere are able to cause the significant precipitation loss of energetic electrons on a timescale of 1 day. In the event of interest, the hiss wave power spectra density reached up to \(10^{-6}~\mbox{nT}^{2}/\mbox{Hz}\), and the obtained pitch-angle diffusion coefficients are found to be \(10^{2}\)\(10^{4}\) times larger than the momentum and cross diffusion coefficients. During a period of 1 day, the modeled hiss waves caused the depletion of 300–500 keV electrons by up to 10 times. These results suggest that the hiss waves outside the plasmasphere should be taken into account in the future radiation belt modeling.  相似文献   

8.
Based on the model calculation of VLF hiss power flux spectrum resulting from convective beam amplification of incoherent Cerenkov whistler radiation by the beam of precipitating auroral electrons, which has been developed by Maggs (1976), we examine the altitude dependence of power flux levels. Their strong altitude dependence leads us to suggest that non-linear processes are important in determining the spectrum of VLF hiss at high altitude. It is also shown that estimated power fluxes inside the electron precipitation region at low altitude might not reach as high levels as observed when the electron beam is weak. In this case, wave propagation outside of the precipitation region will account for the high power flux levels as well as significant magnetic components of VLF hiss observed especially at low altitude. In addition, we show that the transformation of the electron beam in transit to lower altitudes, determined from Liouville's theorem, may influence appreciably VLF hiss power flux spectrum. Finally, it is pointed out that two types of VLF hiss spectrum observed at the ground level can be accounted for by the difference in strength of the electron beam.  相似文献   

9.
Energetic solar electrons in the interplanetary medium   总被引:3,自引:0,他引:3  
R. P. Lin 《Solar physics》1985,100(1-2):537-561
ISEE-3 measurements extending down to 2 keV energy have provided a new perspective on energetic solar electrons in the interplanetary medium. Impulsive solar electron events are observed, on average, several times a day near solar maximum, with 40% detected only below 15 keV. The electron energy spectra have a nearly power-law shape extending smoothly down to 2 keV, indicating that the origin of these events is high in the corona. These coronal flare-like events often produced 3He-rich particle events.In large solar flares which accelerate electrons and ions to relativistic energies, the electron spectrum appears to be modified by a second acceleration which results in a double power-law shape above 10 keV with a break near 100 keV and flattening from 10–100 keV. Large flares result in long-lived (many days) streams of outflowing electrons which dominate the interplanetary fluxes at low energies. Even in the absence of solar activity, significant fluxes of low energy electrons flow out from the Sun.Solar type-III radio bursts are produced by the escaping 2–102 keV electrons through a beam-plasma instability. The detailed ISEE-3 measurements show that electron plasma waves are generated by the bump-on-tail distribution created by the faster electrons running ahead of the slower ones. These plasma waves appear to be converted into radio emission by nonlinear wave-wave interactions.  相似文献   

10.
A highly anisotropic packet of solar electron intensities was observed on 6 April 1971 with a sensitive electrostatic analyzer array on the Earth-orbiting satellite IMP-6. The anisotropies of intensities at electron energies of several keV were factors 10 favoring the expected direction of the interplanetary magnetic lines of force from the Sun. The directional, differential intensities of solar electrons were determined over the energy range 1–40 keV and peak intensities were 102 cm–2 s–1 sr–1 eV–1 at 2–6 keV. This anisotropic packet of solar electrons was detected at the sattelite for a period of 4200 s and was soon followed by isotropic intensities for a relatively prolonged period. This impulsive emission was associated with the onsets of an optical flare, soft X-ray emission and a radio noise storm at centimeter wavelengths on the western limb of the Sun. Simultaneous measurements of a type III radio noise burst at kilometric wavelengths with a plasma wave instrument on the same satellite showed that the onsets for detectable noise levels ranged from 500 s at 178 kHz to 2700 s at 31.1 kHz. The corresponding drift rate requires a speed of 0.15c for the exciting particles if the emission is at the electron plasma frequency. The corresponding electron energy of 6 keV is in excellent agreement with the above direct observations of the anisotropic electron packet. Further supporting evidence that several-keV solar electrons in the anisotropic packet are associated with the emission of type III radio noise beyond 50R is provided by their time-of-arrival at Earth and the relative durations of the radio noise and the solar electron packet. Electron intensities at E 45 keV and the isotropic intensities of lower-energy solar electrons are relatively uncorrelated with the measurements of type III radio noise at these low frequencies. The implications of these observations relative to those at higher frequencies, and heliocentric radial distances 50R , include apparent deceleration of the exciting electron beam with increasing heliocentric radial distance.Research supported in part by the National Aeronautics and Space Administration under contracts NAS5-11039 and NAS5-11074 and grant NGL16-001-002 and by the Office of Naval Research under contract N000-14-68-A-0196-0003.  相似文献   

11.
Ledenev  V.G.  Karlický  M.  Yan  Y.  Fu  Q. 《Solar physics》2001,202(1):71-79
Solar radio emission observations in the microwave frequency range show fine structures consisting of a number of almost parallel narrow-frequency bands. We interpret these bands as plasma emission at cyclotron harmonics. This emission is generated by the anisotropic electron beam, which excites longitudinal waves at a normal Doppler effect resonance. Subsequently, the longitudinal waves convert to radio emission at the second harmonic of the longitudinal wave frequency, and sometimes to the fundamental harmonic. The magnetic field strength is estimated on the basis of such a model in the microwave burst sources at 100–200 G. Estimates of the density variations are also made.  相似文献   

12.
We compare solar X-ray observations from the UCSD experiment aboard OSO-7 with high resolution energetic electron observations from the UCAL experiment on IMP-6 for a small solar flare on 26 February 1972. A proportional counter and NaI scintillator covered the X-ray energy range 5–300 keV, while a semiconductor detector telescope covered electrons from 18 to 400 keV. A series of four non-thermal X-ray spikes were observed from 1805 to 1814 UT with average spectrum dJ/d (hv) (hv)–4.0 over the 14–64 keV range. The energetic electrons were observed at 1 AU beginning 1840 UT with a spectrum dJ/dE E –3.1. If the electrons which produce the X-ray emission and those observed at 1 AU are assumed to originate in a common source, then these observations are consistent with thin target X-ray production at the Sun and inconsistent with thick target production. Under a model consistent with the observed soft X-ray emission, we obtain quantitative estimates of the total energy, total number, escape efficiency, and energy lost in collisions for the energetic electrons.  相似文献   

13.
Using observations from the ISEE-3 spacecraft, we compare the X-ray producing electrons and escaping electrons from a solar flare on 8 November, 1978. The instantaneous 5 to 75 keV electron spectrum in the X-ray producing region is computed from the observed bremsstrahlung X-ray spectrum. Assuming that energy loss by Coulomb collisions (thick target) is the dominant electron loss process, the accelerated electron spectrum is obtained. The energy spectrum of the escaping electrons observed from 2 to 100 keV differs significantly from the spectra of the X-ray producing electrons and of the accelerated electrons, even when the energy loss which the escaping electrons experienced during their travel from the Sun to the Earth is taken into account. The observations are consistent with a model where the escaping electrons come from an extended X-ray producing region which ranges from the chromosphere to high in the corona. In this model the low energy escaping electrons (2–10 keV) come from the higher part of the extended X-ray source where the overlying column density is low, while the high energy electrons (20–100 keV) come from the entire X-ray source.  相似文献   

14.
During the flight of a Petrel rocket, instrumented by the SRC Radio and Space Research Station with Geiger counters and launched westwards from South Uist, Outer Hebrides, Scotland (L=3.38), a transient increase was observed in the intensity of energetic electrons having pitch angles between 60 and 120°. The increase, by a factor of 20 above the quasi-steady intensity observed throughout the remainder of the flight, occurred in 0.8 sec and was simultaneous for both >45 keV and >110 keV electrons. Recorded ~0.5 sec later, on the ground, was a two-hop whistler. During the enhanced electron intensity event, the entire duration of which was ~6 sec, the four-, six- and eight-hop whistlers were also received. From an analysis of the whistlers' spectrogram, it is concluded that the whistlers were ducted through the magnetosphere along the L=3.3 ±0.1 field line; the electron density in the equatorial plane is found to be 330 ±10 cm?3, a value characteristic of conditions within the plasmapause. It is suggested that these temporally and/or spatially associated phenomena, rather than arising by a chance coincidence, were the result of a gyroresonant interaction between energetic electrons and whistler mode waves moving in opposite directions. For gyroresonance on this field line at the equator, the parallel component of energy of the electrons is 25 keV at 3 kHz in the whistler band, or 100 keV at 1 kHz below it. It is suggested that a magnetospheric event occurred, causing both sudden enhanced electron precipitation and favourable conditions for the propagation and/or amplification of whistlers. A possible explanation is that energetic electrons, having a sufficiently anisotropic distribution function and associated with those injected during an earlier auroral substorm, become unstable via the transverse resonance instability when they drift into the plasmasphere, a region of high density thermal plasma.  相似文献   

15.
We present an analysis of spacecraft observations of non-thermal X-rays and escaping electrons for 5 selected small solar flares in 1967. OSO-3 multi-channel energetic X-ray measurements during the non-thermal component of the solar flare X-ray bursts are used to derive the parent electron spectrum and emission measure. IMP-4 and Explorer-35 observations of > 22 keV and > 45 keV electrons in the interplanetary medium after the flares provide a measure of the total number and spectrum of the escaping particles. The ratio of electron energy loss due to collisions with the ambient solar flare gas to the energy loss due to bremsstrahlung is derived. The total energy loss due to collisions is then computed from the integrated bremsstrahlung energy loss during the non-thermal X-ray burst. For > 22 keV flare electrons the total energy loss due to collisions is found to be 104 times greater than the bremsstrahlung energy loss and 102 times greater than the energy loss due to escaping electrons. Therefore the escape of electrons into the interplanetary medium is a negligible energetic electron loss mechanism and cannot be a substantial factor in the observed decay of the non-thermal X-ray burst for these solar flares.We present a picture of electron acceleration, energy loss and escape consistent with previous observations of an inverse relationship between rise and decay times of the non-thermal X-ray burst and X-ray energy. In this picture the acceleration of electrons occurs throughout the 10–100 sec duration of the non-thermal X-ray burst and determines the time profile of the burst. The average energy of the accelerated electrons first rises and then falls through the burst. Collisions with the ambient gas provide the dominant energetic electron loss mechanism with a loss time of 1 sec. This picture is consistent with the ratio of the total number of energetic electrons accelerated in the flare to the maximum instantaneous number of electrons in the flare region. Typical values for the parameters derived from the X-ray and electron observations are: total energy in > 22 keV electrons total energy lost by collisions = 1028–29 erg, total number of electrons accelerated above 22 keV = 1036, total energy lost by non-thermal bremsstrahlung = 1024erg, total energy lost in escaping > 22 keV electrons = 1026erg, total number of > 22 keV electrons escaping = 1033–34.The total energy in electrons accelerated above 22 keV is comparable to the energy in the optical or quasi-thermal flare, implying a flare mechanism with particle acceleration as one of the dominant modes of energy dissipation.The overall efficiency for electron escape into the interplanetary medium is 0.1–1% for these flares, and the spectrum of escaping electrons is found to be substantially harder than the X-ray producing electrons.Currently at Tokyo Astronomical Observatory, Mitaka, Tokyo, Japan.  相似文献   

16.
We analyze particle acceleration processes in large solar flares, using observations of the August, 1972, series of large events. The energetic particle populations are estimated from the hard X-ray and γ-ray emission, and from direct interplanetary particle observations. The collisional energy losses of these particles are computed as a function of height, assuming that the particles are accelerated high in the solar atmosphere and then precipitate down into denser layers. We compare the computed energy input with the flare energy output in radiation, heating, and mass ejection, and find for large proton event flares that:
  1. The ~10–102 keV electrons accelerated during the flash phase constitute the bulk of the total flare energy.
  2. The flare can be divided into two regions depending on whether the electron energy input goes into radiation or explosive heating. The computed energy input to the radiative quasi-equilibrium region agrees with the observed flare energy output in optical, UV, and EUV radiation.
  3. The electron energy input to the explosive heating region can produce evaporation of the upper chromosphere needed to form the soft X-ray flare plasma.
  4. Very intense energetic electron fluxes can provide the energy and mass for interplanetary shock wave by heating the atmospheric gas to energies sufficient to escape the solar gravitational and magnetic fields. The threshold for shock formation appears to be ~1031 ergs total energy in >20 keV electrons, and all of the shock energy can be supplied by electrons if their spectrum extends down to 5–10 keV.
  5. High energy protons are accelerated later than the 10–102 keV electrons and most of them escape to the interplanetary medium. The energetic protons are not a significant contributor to the energization of flare phenomena. The observations are consistent with shock-wave acceleration of the protons and other nuclei, and also of electrons to relativistic energies.
  6. The flare white-light continuum emission is consistent with a model of free-bound transitions in a plasma with strong non-thermal ionization produced in the lower solar chromosphere by energetic electrons. The white-light continuum is inconsistent with models of photospheric heating by the energetic particles. A threshold energy of ~5×1030 ergs in >20 keV electrons is required for detectable white-light emission.
The highly efficient electron energization required in these flares suggests that the flare mechanism consists of rapid dissipation of chromospheric and coronal field-aligned or sheet currents, due to the onset of current-driven Buneman anomalous resistivity. Large proton flares then result when the energy input from accelerated electrons is sufficient to form a shock wave.  相似文献   

17.
18.
Natural VLF emissions received by a single antenna can be characterised at each point in the emissions' frequency-time domain by a power and a phase. Emissions received at a single point by two antennae with a fixed relative orientation in space can be similarly described by the cross-spectral power and relative phase. It is shown that the cross-spectral phase contains information on the propagation characteristics of the waves which is better utilised in wave analysis than the power. In fact, the phase information allows weak signals to be identified more readily than is possible from a power spectrogram. It also allows the recognition of waves propagating with different wave normal directions. Data from the Geos-1 electric and magnetic antennae, pre-processed by the on-board correlator, are used to study the cross-spectral characteristics of VLF hiss and chorus in the Earth's magnetosphere.  相似文献   

19.
The Galileo spacecraft encountered the inner magnetosphere of Jupiter on its way to a flyby of Amalthea on November 5, 2002. During this encounter, the spacecraft observed distinct spin modulation of plasma wave emissions. The modulations occurred in the frequency range from a few hundred hertz to a few hundred kilohertz and probably include at least two distinct wave modes. Assuming transverse EM radiation, we have used the swept-frequency receivers of the electric dipole antenna to determine the direction to the source of these emissions. Additionally, with knowledge of the magnetic field some constraints are placed on the wave mode of the emission based on a comparative analysis of the wave power versus spin phase of the different emissions. The emission appears in several bands separated by attenuation lanes. The analysis indicates that the lanes are probably due to blockage of the freely propagating emission by high density regions of the Io torus near the magnetic equator. Radio emission at lower frequencies (<40 kHz) appears to emanate from sources at high latitude and is not attenuated. Emission at is consistent with O-mode and Z-mode. Lower frequency emissions could be a mixture of O-mode, Z-mode and whistler mode. Emission for shows bands that are similar to upper hybrid resonance bands observed near the terrestrial plasmapause, and also elsewhere in Jovian magnetosphere. Based on the observations and knowledge of similar terrestrial emissions, we hypothesize that radio emission results from mode conversion near the strong density gradient of the inner radius of the cold plasma torus, similar to the generation of nKOM and continuum emission observed in the outer Jovian magnetosphere and in the terrestrial magnetosphere from source regions near the plasmapause.  相似文献   

20.
Rising frequency VLF emissions having unusually high frequency and exhibiting banded structure were recorded between 14.55 and 15.30 U.T. on 28 June 1972 by the VLF goniometer receiver at Halley, Antarctica. The risers were split into two frequency groups, one with frequencies in the range 6.0–7.7 kHz and the other with frequencies between 7.8 and 9.4 kHz, the former being more numerous. The gap between the lower and upper frequency risers is superficially similar to, though at a higher frequency than, the missing bands in emissions observed by satellites. However, it is found to be unlikely that the risers received at Halley can be explained by any of the mechanisms advanced to explain the banded satellite-observed emissions. Several other explanations are considered and it is shown that the most likely is partial suppression by magnetospheric line radiation propagating in the same duct.The risers are interpreted as being generated via cyclotron resonance with counterstreaming electrons. A computer program based on Helliwell's (1967) phenomenological theory is used to determine the generation region and electron energies involved.Both frequency groups of risers display a 4 min periodicity in occurrence. It is shown that this time period is consistent with that required to replenish the flux of resonant electrons, by eastwards drift into the duct, after the emissions have been quenched due to the reduction of the flux by pitch-angle diffusion into the loss cone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号