首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We re-examine observations bearing on the origin of metric type II bursts for six impulsive solar events in November 1997. Previous analyses of these events indicated that the metric type IIs were due to flares (either blast waves or ejecta). Our point of departure was the study of Zhang et al. (2001) based on the Large Angle and Spectrometric Coronagraphs C1 instrument (occulting disk at 1.1 R0) that identified the rapid acceleration phase of coronal mass ejections (CMEs) with the rise phase of soft X-ray light curves of associated flares. We find that the inferred onset of rapid CME acceleration in each of the six cases occurred 1–3 min before the onset of metric type II emission, in contrast to the results of previous studies for certain of these events that obtained CME launch times 25–45 min earlier than type II onset. The removal of the CME-metric type II timing discrepancy in these events and, more generally, the identification of the onset of the rapid acceleration phase of CMEs with the flare impulsive phase undercuts a significant argument against CMEs as metric type II shock drivers. In general, the six events exhibited: (1) ample evidence of dynamic behavior [soft X-ray ejecta, extreme ultra-violet imaging telescope (EIT) dimming onsets, and wave initiation (observed variously in H, EUV, and soft X-rays)] during the inferred fast acceleration phases of the CMEs, consistent with the cataclysmic disruption of the low solar atmosphere one would expect to be associated with a CME; and (2) an organic relationship between EIT dimmings (generally taken to be source regions of CMEs) and EIT waves (which are highly associated with metric type II bursts) indicative of a CME-driver scenario. Our analysis indicates that the broad (90 to halo) CMEs observed in the outer LASCO coronagraphs for these impulsive events began life as relatively small-scale structures, with angular spans of 15 in the low corona. A review of on-going work bearing on other aspects (than timing) of the question of the origin of metric type II bursts (CME association; connectivity of metric and decametric-hectometric type II shocks; spatial relationship between CMEs and metric shocks) leads to the conclusion that CMEs remain a strong candidate to be the principal/sole driver of metric type II shocks vis-à-vis flare blast waves/ejecta.  相似文献   

2.
Murray Dryer 《Solar physics》1996,169(2):421-429
Explicit delineation of the cause (or causes) of coronal mass ejections (CMEs) has eluded our understanding for several decades. More recently, their extension into interplanetary space has also attracted attention, particularly since the faster CMEs have been inferred to be associated with the more severe, non-recurrent, geomagnetic storms. Understanding the linkage of one phenomenon to the other requires improved monitoring of the manifestations of CMEs so that post-launch tracking via remote-sensing (interplanetary scintillations) and/or in situ observations will be meaningful. A critical examination is made here of recent claims that the single cause of CMEs lies in their close connection with large-scale, closed magnetic structures in the corona. Proponents of this position generally disregard or minimize an earlier, proposed suggestion that the cause is to be found in the small-scale, complex activity within eruptive flares with or without eruptive prominences. It is proposed here that equal weight to a bimodal set of causes should be considered. We also revisit a number of comments, pro and con, on the proposed solar flare myth paradigm.Dedicated to Cornelis de Jager  相似文献   

3.
We carry out an analysis of the mass that is evacuated from three coronal dimming regions observed by the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory. The three events are unambiguously identified with white-light coronal mass ejections (CMEs) that are associated in turn with surface activity of diverse nature: an impulsive (M-class) flare, a weak (B-class) flare, and a filament eruption without a flare. The use of three AIA coronal passbands allows applying a differential emission measure technique to define the dimming regions and identify their evacuated mass through the analysis of the electronic density depletion associated with the eruptions. The temporal evolution of the mass loss from the three dimmings can be approximated by an exponential equation followed by a linear fit. We determine the mass of the associated CMEs from COR2 data. The results show that the evacuated masses from the low corona represent a considerable amount of the CME mass. We also find that plasma is still being evacuated from the low corona at the time when the CMEs reach the COR2 field of view. The temporal evolution of the angular width of the CMEs, of the dimming regions in the low corona, and of the flux registered by GOES in soft X-rays are all in close relation with the behavior of mass evacuation from the low corona. We discuss the implications of our findings toward a better understanding of the temporal evolution of several parameters associated with the analyzed dimmings and CMEs.  相似文献   

4.
Coronal mass ejections (CMEs) and other solar eruptive phenomena can be physically linked by combining data from a multitude of ground-based and space-based instruments alongside models; however, this can be challenging for automated operational systems. The EU Framework Package 7 HELCATS project provides catalogues of CME observations and properties from the Heliospheric Imagers on board the two NASA/STEREO spacecraft in order to track the evolution of CMEs in the inner heliosphere. From the main HICAT catalogue of over 2,000 CME detections, an automated algorithm has been developed to connect the CMEs observed by STEREO to any corresponding solar flares and active-region (AR) sources on the solar surface. CME kinematic properties, such as speed and angular width, are compared with AR magnetic field properties, such as magnetic flux, area, and neutral line characteristics. The resulting LOWCAT catalogue is also compared to the extensive AR property database created by the EU Horizon 2020 FLARECAST project, which provides more complex magnetic field parameters derived from vector magnetograms. Initial statistical analysis has been undertaken on the new data to provide insight into the link between flare and CME events, and characteristics of eruptive ARs. Warning thresholds determined from analysis of the evolution of these parameters is shown to be a useful output for operational space weather purposes. Parameters of particular interest for further analysis include total unsigned flux, vertical current, and current helicity. The automated method developed to create the LOWCAT catalogue may also be useful for future efforts to develop operational CME forecasting.  相似文献   

5.
We have observed an eruptive prominence at the east solar limb on 25 January 1991 which started earlier than 0623 UT and was associated with a limb flare (S16 E90) of class 1B/ X10.0. We have recorded a huge mass ejection in the corona by the limb flare associated eruptive prominence. The eruptive prominence ejected a part of the loop in the corona with maximum speed of about 1280 km/sec. The ejected material attain height upto 150,000 km in the corona and finally faded/disappeared in the corona. During the ascending phase of the prominence material in the corona there was a unscrewing of the loop system associated with the eruptive prominence. The type II, III, and IV radio bursts were also reported by a number of Radio Observatories during observation of the eruptive prominence. The high flux of sudden ionospheric disturbances and the solar radio emissions on fixed frequencies (245–80000 MHz) were also recorded. The eruptive prominence associated with limb flare also shows increased proton flux (>10 MeV) during its occurence. The flare was classified as X10.0 flare. In this paper we have analysed the observed data and compared it with the theoretical model of the solar flare.On leave from his original Institute  相似文献   

6.
Coronal mass ejections (CMEs) are thought to be the way by which the solar corona expels accumulated magnetic helicity which is injected into the corona via several methods. DeVore (2000) suggests that a significant quantity is injected by the action of differential rotation, however Démoulin et al. (2002b), based on the study of a simple bipolar active region, show that this may not be the case. This paper studies the magnetic helicity evolution in an active region (NOAA 8100) in which the main photospheric polarities rotate around each other during five Carrington rotations. As a result of this changing orientation of the bipole, the helicity injection by differential rotation is not a monotonic function of time. Instead, it experiences a maximum and even a change of sign. In this particular active region, both differential rotation and localized shearing motions are actually depleting the coronal helicity instead of building it. During this period of five solar rotations, a high number of CMEs (35 observed, 65 estimated) erupted from the active region and the helicity carried away has been calculated, assuming that each can be modeled by a twisted flux rope. It is found that the helicity injected by differential rotation (–7×1042 Mx2) into the active region cannot provide the amount of helicity ejected via CMEs, which is a factor 5 to 46 larger and of the opposite sign. Instead, it is proposed that the ejected helicity is provided by the twist in the sub-photospheric part of the magnetic flux tube forming the active region.  相似文献   

7.
In this paper, the dependence of the intensity of solar bremsstrahlung in the spectral range from 1–60 keV on heliographic longitude is investigated. Considering a flare mechanism, which assumes that the electrons move in a preferred direction in the course of their acceleration (according to the model of Takakura and Kai (1966) the electrons move parallel to the solar surface), we come to the conclusion that the maximum of the bremsstrahlung intensity is shifted with increasing electron velocity towards the direction of motion of electron beams. In the case of the Takakura and Kai flare mechanism, the slow electrons ( ), i.e. with small energies of 1–10 keV, reach the maximum of the bremsstrahlung intensity round the CM; for higher velocities ( ), i.e. for higher energies of 10–60 keV, the direction of the maximum is shifted away from the CM towards the disc limb. These theoretical conclusions were proved by experimental research conducted by means of satellites.  相似文献   

8.
9.
Javaraiah  J.  Komm  R.W. 《Solar physics》1999,184(1):41-60
We have looked for periodicities in solar differential rotation on time scales shorter than the 11-year solar cycle through the power- spectrum analysis of the differential rotation parameters determined from Mt. Wilson velocity data (1969–1994) and Greenwich sunspot group data (1879–1976). We represent the differential rotation by a set of Gegenbauer polynomials (()= + (5sin2–1)+ (21sin4–14sin2+1)). For the Mt. Wilson data, we focus on observations obtained after 1981 due to the reduced instrumental noise and have binned the data into intervals of 19 days. We calculated annual averages for the sunspot data to reduce the uncertainty and corrected for outliers occuring during solar cycle minima. The power spectrum of the photospheric mean rotation , determined from the velocity data during 1982–1994, shows peaks at the periods of 6.7–4.4 yr, 2.2 ± 0.4 yr, 1.2 ± 0.2 yr, and 243 ± 10 day with 99.9% confidence level, which are similar to periods found in other indicators of solar activity suggesting that they are of solar origin. However, this result has to be confirmed with other techniques and longer data sets. The 11-yr periodicity is insignificant or absent in . The power spectra of the differential rotation parameters and , determined from the same subset, show only the solar cycle period with a 99.9% confidence level.The time series of determined from the yearly sunspot group data obtained during 1879–1976 is very similar to the corresponding time series of . After correcting for data with large error bars (occurring during cycle minima), we find periods, which are most likely harmonics of the solar cycle, such as 18.3 ± 3.0 yr and 7.5 ± 0.5 yr in and confirmed these and the 3.0 ± 0.1 yr period in . The original time series show in addition some shorter periods, absent in the corrected data, representing temporal variations during cycle minimum. Given their large error bars, it is uncertain whether they represent a solar variation or not. The results presented here show considerable differences in the periodicities of and determined from the velocity data and the spot group data. These differences may be explained by assuming that the rotation rates determined from velocity and sunspot data represent the rotation rates of the Sun's surface layers and of somewhat deeper layers.  相似文献   

10.
We have re-evaluated the association of type II solar radio bursts with flares and/or coronal mass ejections (CMEs) using the year 2000 solar maximum data. For this, we consider 52 type II events whose associations with flares or CMEs were absent or not clearly identified and reported. These events are classified as follows; group I: 11 type IIs for which there are no reports of GOES X-ray flares and CMEs; group II: 12 type IIs for which there are no reports of GOES X-ray flares; and group III: 29 type IIs for which the flare locations are not reported. By carefully re-examining their association from GOES X-ray and H, Yohkoh SXT and EIT-EUV data, we attempt to answer the following questions: (i) if there really were no X-ray flares associated with the above 23 type IIs of groups I and II; (ii) whether they can be regarded as backside events whose X-ray emission might have been occulted. From this analysis, we have found that two factors, flare background intensity and flare location, play important roles in the complete reports about flare–type II–CME associations. In the above 23 cases, for more than 50% of the cases in total, the X-ray flares were not noticed and reported, because the background intensity of X-ray flux was high. In the remaining cases, the X-ray intensity might be greatly reduced due to occultation. From the H flare data, Yohkoh SXT data and EIT-EUV data, we found that ten cases out of 23 might be frontside events, and the remaining are backside events. While the flare–type II association is found to be nearly 90%, the type II–CME association is roughly around 75%. This analysis might be useful to reduce some ambiguities regarding the association among type IIs, flares and CMEs.  相似文献   

11.
Magnetic pumping in the solar corona is revisited. We derive conditions under which magnetic pumping can be the cause of heating of loops rather than of particle acceleration. Candidate sources for such a process are coronal mass ejections (CMEs). Large loops are susceptible to heating primarily of protons by magnetic compressions with periods between 50 and 5000 s, the observed spectrum of the photospheric driver. Efficient heating by pumping occurs since in these large loops the density is low enough that the proton-proton collision time is comparable to the periods of the external compressions. We suggest that CMEs may be pressure-driven explosions of large-beta loops caused by magnetic pumping, in contrast to current-driven flares in low-beta environments.Dedicated to Cornelis de Jager  相似文献   

12.
We present a study of the complex event consisting of several solar wind transients detected by the Advanced Composition Explorer (ACE) on 4?–?7 August 2011, which caused a geomagnetic storm with \(\mathit{Dst}=-110~\mbox{nT}\). The supposed coronal sources, three flares and coronal mass ejections (CMEs), occurred on 2?–?4 August 2011 in active region (AR) 11261. To investigate the solar origin and formation of these transients, we study the kinematic and thermodynamic properties of the expanding coronal structures using the Solar Dynamics Observatory/Atmospheric Imaging Assembly (SDO/AIA) EUV images and differential emission measure (DEM) diagnostics. The Helioseismic and Magnetic Imager (HMI) magnetic field maps were used as the input data for the 3D magnetohydrodynamic (MHD) model to describe the flux rope ejection (Pagano, Mackay, and Poedts, 2013b). We characterize the early phase of the flux rope ejection in the corona, where the usual three-component CME structure formed. The flux rope was ejected with a speed of about \(200~\mbox{km}\,\mbox{s}^{-1}\) to the height of \(0.25~\mbox{R}_{\odot}\). The kinematics of the modeled CME front agrees well with the Solar Terrestrial Relations Observatory (STEREO) EUV measurements. Using the results of the plasma diagnostics and MHD modeling, we calculate the ion charge ratios of carbon and oxygen as well as the mean charge state of iron ions of the 2 August 2011 CME, taking into account the processes of heating, cooling, expansion, ionization, and recombination of the moving plasma in the corona up to the frozen-in region. We estimate a probable heating rate of the CME plasma in the low corona by matching the calculated ion composition parameters of the CME with those measured in situ for the solar wind transients. We also consider the similarities and discrepancies between the results of the MHD simulation and the observations.  相似文献   

13.
Based on the observations of the Sun and the interplanetary medium, a series of solar activities in late October 2003 and their consequences are studied comprehensively. Thirteen X-ray flares with importance greater than M-class, six frontside halo coronal mass ejections (CMEs) with span angle larger than 100 and three associated eruptions of filament materials are identified by examining lots of solar observations from October 26 to 29. All these flares were associated with type III radio bursts, all the frontside halo CMEs were accompanied by type II or type II-like radio bursts. Particularly, among these activities, two major solar events caused two extraordinary enhancements (exceeding 1000 particles/(cm2s–1sterMev–1) of solar energetic particle (SEP) flux intensity near the Earth, two large ejecta with fast shocks preceding, and two great geomagnetic storms with Dst peak value of –363 and –401 nT, respectively. By using a cross correlation technique and a force-free cylindrical flux rope model, the October 29 magnetic cloud associated with the largest CME are analyzed, including its orientation and the sign of its helicity. It is found that the helicity of the cloud is negative, contrary to the regular statistical pattern that negative- and positive-helical interplanetary magnetic clouds would be expected to come from northern and southern solar hemisphere. Moreover, the relationship between the orientation of magnetic cloud and associated filament is discussed. In addition, some discussion concerning multiple-magnetic-cloud structures and SEP events is also given.  相似文献   

14.
We present a study of the origin of coronal mass ejections (CMEs) that were not accompanied by obvious low coronal signatures (LCSs) and yet were responsible for appreciable disturbances at 1 AU. These CMEs characteristically start slowly. In several examples, extreme ultraviolet (EUV) images taken by the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory reveal coronal dimming and a post-eruption arcade when we make difference images with long enough temporal separations, which are commensurate with the slow initial development of the CME. Data from the EUV imager and COR coronagraphs of the Sun Earth Connection Coronal and Heliospheric Investigation onboard the Solar Terrestrial Relations Observatory, which provide limb views of Earth-bound CMEs, greatly help us limit the time interval in which the CME forms and undergoes initial acceleration. For other CMEs, we find similar dimming, although only with lower confidence as to its link to the CME. It is noted that even these unclear events result in unambiguous flux rope signatures in in situ data at 1 AU. There is a tendency that the CME source regions are located near coronal holes or open field regions. This may have implications for both the initiation of the stealthy CME in the corona and its outcome in the heliosphere.  相似文献   

15.
Clayton  E.G.  Guzik  T.G.  Wefel  J.P. 《Solar physics》2000,195(1):175-194
During the 1990–1991 solar maximum, the CRRES satellite measured helium from 38 to 110 MeV n–1, with isotopic resolution, during both solar quiet periods and a number of large solar flares, the largest of which were seen during March and June 1991. Helium differential energy spectra and isotopic ratios are analyzed and indicate that (1) the series of large solar energetic particle (SEP) events of 2–22 June display characteristics consistent with CME-driven interplanetary shock acceleration; (2) the SEP events of 23–28 March exhibit signatures of both CME-driven shock acceleration and impulsive SEP acceleration; (3) below about 60 MeV n–1, the helium flux measured by CRRES is dominated by solar helium even during periods of least solar activity; (4) the solar helium below 60 MeV n–1 is enriched in 3He, with a mean 3He/4He ratio of about 0.18 throughout most of the CRRES mission `quiet' periods; and (5) an association of this solar component with small CMEs occurring during the periods selected as solar `quiet' times.  相似文献   

16.
The data on optical, X-ray and gamma emission from proton flares, as well as direct observations of flare-associated phenomena, show energetic proton acceleration in the corona rather than in the flare region. In the present paper, the acceleration of protons and accompanying relativistic electrons is accounted for by a shock wave arising during the development of a large flare. We deal with a regular acceleration mechanism due to multiple reflection of resonance protons and fast electrons from a collisionless shock wave front which serves as a moving mirror. The height of the most effective acceleration in the solar corona is determined. The accelerated particle energy and density are estimated. It is shown in particular that a transverse collisionless shock wave may produce the required flux of protons with energy of 10 MeV and of relativistic electrons of 1–10 MeV.The proposed scheme may also serve as an injection mechanism when the protons are accelerated up to relativistic energies by other methods.  相似文献   

17.
It is well established that solar Type-II radio bursts are signatures of magnetohydrodynamical (MHD) shock waves propagating outward through the solar corona. Nevertheless, there are long-standing controversies about how these shocks are formed; solar flares and the coronal mass ejections (CMEs) are considered to be the most likely drivers. We present the results of the analysis of four solar Type-II bursts recorded between 20 January 2010 and 17 November 2011 by the Compound Astronomical Low-frequency Low-cost Instrument for Spectroscopy in Transportable Observatories (CALLISTO-BR) (in Brazil), which operates in the frequency range of 45?–?870 MHz. For all four solar Type-II radio bursts, which consisted of one event without band splitting and three split-band variants, the outcomes are consistent with those reported in the literature. All four Type-II radio bursts were accompanied by both solar flares and CMEs, which are associated with the impulsive phase of the flares and, very likely, with the acceleration phase of the CMEs.  相似文献   

18.
The SMall Explorer for Solar Eruptions (SMESE) is a small satellite being developed jointly by China and France. It is planed to launch around the next solar maximum year (∼ 2011) for observing simultaneously the two most violent types of eruptive events on the sun (the coronal mass ejection (CME) and the solar flare) and investigating their relationship. As one of the 3 main payloads of the small satellite, the high energy burst spectrometer (HEBS) adopts the upto- date high-resolution LaBr3 scintillation detector to observe the high-energy solar radiation in the range 10 keV—600 MeV. Its energy resolution is better than 3.0% at 662 keV, 2-fold higher than that of current scintillation detectors, promising a breakthrough in the studies of energy release in solar flares and CMEs, particle acceleration and the relationship between solar flares and CMEs.  相似文献   

19.
Prominences, in contrast to other solar activity features, may appear at all heliographic latitudes. The position of zones where prominences are mainly concentrated depends on the cycle phase of solar activity. It is shown, for prominence observations made at Lomnický tít over the period 1967–1996, how the position of prominence zones changes over a solar cycle, and how these zones could be connected with other solar activity features. Our results obtained could be an additional source to do a better prediction of solar activity. Time-latitudinal distribution is also shown for the green corona (Fexiv, 530.3 nm). Distribution of the green coronal maxima shows that there are equator-migrating zones in the solar corona that migrate from latitudes of 45° (starting approximately 2–3 years after the cycle start) to higher latitudes 70°, and then turn (around the cycle maximum) towards the equator, reaching the equator in the next minimum (this duration lasts 18–19 years). Polar branches separate from these zones at the cycle minimum (2–3 years before above-mentioned zones) at latitudes of 50°, reaching the poles at the maximum of the present cycle. The picture becomes dim when more polar prominence zones are observed. Prominences show both the poleward and equatorward migration. Comparison between both solar activity features is also discussed.  相似文献   

20.
We present a statistical analysis of the relationship between the kinematics of the leading edge and the eruptive prominence in coronal mass ejections (CMEs). We study the acceleration phase of 18 CMEs in which kinematics was measured from the pre-eruption stage up to the post-acceleration phase. In all CMEs, the three part structure (the leading edge, the cavity, and the prominence) was clearly recognizable from early stages of the eruption. The data show a distinct correlation between the duration of the leading edge (LE) acceleration and eruptive prominence (EP) acceleration. In the majority of events (78%) the acceleration phase onset of the LE is very closely synchronized (within ± 20 min) with the acceleration of EP. However, in two events the LE acceleration started significantly earlier than the EP acceleration (> 50 min), and in two events the EP acceleration started earlier than the LE acceleration (> 40 min). The average peak acceleration of LEs (281 m s−2) is about two times larger than the average peak acceleration of EPs (136 m s−2). For the first time, our results quantitatively demonstrate the level of synchronization of the acceleration phase of LE and EP in a rather large sample of events, i.e., we quantify how often the eruption develops in a “self-similar” manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号