首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
双向地震动作用的拟等延性系数谱   总被引:1,自引:0,他引:1  
首先建立了以强度折减系数表述的恢复力特性满足二维屈服面模型的理想弹塑性单质点系统(它在2个相互垂直的主轴方向上分别具有水平平动自由度)在双向地震动作用下的归一化运动方程。然后引入单向地震动作用下等延性系数的强度折减系数谱,给出了双向地震动作用的拟等延性系数谱(定义为系统分别承受双向和单向地震动作用,在同一主轴方向上的最大位移反应之比)最后通过硬土场地10组双向地震动记录拟等延性系数谱的统计平均结果,分析了结构周期、位移延性系数和阻尼等因素对谱值及结构双向地震反应的影响。结果表明,双向地震动作用与单向地震动作用相比主要增加结构较长周期方向的最大位移反应。若在基于位移的抗震设计中降低结构较短周期方向的设计位移延性系数,可在一定程度上降低双向地震动的不利影响。因定义的谱为比值形式,阻尼对其影响不大。  相似文献   

2.
A numerical approach to the earthquake ground motion analysis is proposed for regions where no accelerograms are available. Using Haskell matrix techniques, the response spectra of a layered substratum for SV waves were calculated and then multiplied by the spectra corresponding to Brune's type pulses. The ground acceleration spectra were obtained for different angles of pulse incidence at the substratum base. The spectrum shape depends upon the substratum response and the pulse shape, while its level was related to the maximum ground acceleration corresponding to the expected maximum intensity. Transformation of the ground spectra into the time domain produced numerical accelerograms for horizontal and vertical components and for different angles of pulse incidence. Finally, a standard statistical procedure was applied to obtain the design response spectra used in engineering applications.  相似文献   

3.
Conversion factors are useful for attenuation and damage estimation relationships. These factors among different definitions of peaks (i.e. larger, average and resultant) for peak ground motion indices and acceleration response spectrum were investigated. A large number of horizontal acceleration records recorded at 76 free-field sites of the Japan Meteorological Agency were used in this study. Two orthogonal horizontal components were combined in the time domain to get the maximum resultant peak ground motion indices and acceleration response spectrum in the horizontal plane. From the analysis, the means of the larger/resultant ratio were found to be 0·934 for acceleration, 0·926 for velocity, and 0·913 for displacement. A similar decreasing trend was observed for the means of the average/resultant ratio of the ground motion indices and acceleration response spectrum. The directivity of peak ground motion indices was also examined. It was found that the peak ground motion is more likely to occur in the transverse direction than in other directions. This trend is more prominent in the long-period contents of ground motion.  相似文献   

4.
地震动记录的合理选取对预测结构响应有着重要的作用。本文通过对风雨操场建筑混合结构的抗震性能分析,提出了一种对水平及竖向地震动频谱特性均进行控制的改进选波方法。为了评价不同选波方法的可靠性和有效性,根据初选条件选取55组三向地震动记录,并以55组地震动的统计反应谱作为目标反应谱,以55组记录计算的结构响应均值作为"预测值",通过与单周期点和双频段选波方法的计算结果对比,分析表明:改进选波方法计算的结构基底剪力、柱顶位移、支座位移和网架竖向位移的相对误差和变异系数均小于前两种选波方法,其计算结果更加可靠有效。  相似文献   

5.
The existence of the principal directions of the ground motion based on Arias intensity is well-known. These principal directions do not necessarily coincide with the orientations of recording sensors or with the orientations along which the ground motion parameters such as the peak ground acceleration and the pseudo-spectral acceleration (PSA) are maximum. This is evidenced by the fact that the maximum PSA at different natural vibration periods for horizontal excitations do not correspond to the same orientation. A recent analysis carried out for California earthquake records suggests that an orientation-dependent ground motion measurement for horizontal excitations can be developed. The main objective of this study is to investigate and provide seismic ground motion measurements in the horizontal plane, including bidirectional horizontal ground motions, for Mexican interplate and inslab earthquake records. Extensive statistical analyses of PSA are conducted for the assessment, The analysis results suggest that similar to the case of California records, the average behavior of the ratio of the PSA to the maximum resulting PSA can be approximated by a quarter of an ellipse in one quadrant; and that the ratio can be considered to be independent of the value of the maximum resulting PSA, earthquake magnitude, earthquake distance and the focal depth. Sets of response ratios and attenuation relationships that can be used to represent a bidirectional horizontal ground motion measurement for Mexican interplate and inslab earthquakes were also developed.  相似文献   

6.
A procedure for the determination of inelastic design spectra (for strength, displacement, hysteretic and input energy) for systems with a prescribed ductility factor has been developed. All the spectra are consistent (interrelated and based on the same assumptions). This is the first of two companion papers which deals with the ‘classical’ structural parameters: strength and displacement. The input data are the characteristics of the expected ground motion in terms of a smooth elastic pseudo-acceleration spectrum. Simple, approximate expressions for the strength reduction factor R are proposed. The value of R depends on the natural period of the system, the prescribed ductility factor, the hysteretic behaviour, damping and ground motion. Fairly accurate approximations to the inelastic spectra for strength and displacement can be derived from the elastic spectrum using the proposed values for R.  相似文献   

7.
Over 700 accelerograms recorded from 12 earthquakes in northeast Taiwan have been analysed for investigating the behaviour of the vertical and horizontal peak and spectral ground motion in the near-source region. Pseudo-relative spectral velocities (PSV), at 5 per cent critical damping for 23 frequencies in the range of engineering interest have been subjected to non-linear regression procedures in terms of magnitude and hypocentral distance. Predicted response spectra for several discrete distances and magnitudes are presented. The results show that the shape of response spectra for both vertical and horizontal components of ground motion is magnitude- as well as distance-dependent. The 2/3 ratio of vertical to horizontal ground motion, commonly used in engineering applications, appears unconservative in the very near field for high frequency ground motion. However, it falls below 1/2 at distances greater than 50 km. The same ratio for peak ground velocity (PGV) and peak ground displacement (PGD) tends to increase with distance—the latter at a faster rate.  相似文献   

8.
The validity of the response spectrum concept for determining loads in structures excited by differential earthquake ground motion is examined. It is shown that the common definition of response spectrum for synchronous ground motion can be reconciled to remain valid in cases when the columns of extended structures experience different motions. Then, a relative displacement response spectrum for design of first-storey columns, SDC(T, δ, ζ, τ), is defined. In addition to natural period, T, and fraction of critical damping, ζ, this spectrum depends also on the ‘travel time’, τ (of the waves in the soil over distances about one half width, or length of the structure), and on a factor, δ, specifying the relative displacement of the first floor. It is shown how this spectrum can be determined using existing empirical scaling equations for relative displacement spectra SD(T, ζ) and for peak velocity and peak acceleration of strong ground motion. These new spectra are illustrated for a horizontal component of a record in the near field of the 1994 Northridge earthquake. The results show that differential motions are more important for short period (stiff) than for longer period (flexible) structures, and for structures founded on softer ground (small shear wave velocity). © 1997 by John Wiley & Sons, Ltd.  相似文献   

9.
地震波散射问题的解析解是研究局部场地、地形、盆地等不规则地层结构对地震动参数放大效应影响的重要理论工具。现有解析解大部分在频域内给出,无法直接用于研究不规则地层结构对地震动峰值、反应谱等参数的放大效应。本文基于平面SH波入射下圆弧状沉积盆地动力响应宽频带稳态解析解,通过Fourier变换,获取瞬态响应解析解。基于此,研究El Centro波入射下,沉积盆地对地震动峰值加速度、峰值速度、峰值位移及不同周期反应谱的放大效应。研究结果表明,盆地宽度和深度、沉积介质波速、入射波角度等对盆地放大效应具有显著影响,地震动反应谱谱比最大值超过2.0,且宽度达10 km的较大型盆地对长周期地震动参数具有显著放大效应,对于位于该类盆地的超高层建筑、大型储液罐、大跨度桥梁等长周期结构,应充分考虑盆地对抗震设防参数的影响。  相似文献   

10.
Rotation-invariant mean duration of strong ground motion   总被引:1,自引:1,他引:0  
Strong-motion duration is usually computed separately for three components of recorded ground-motion time series. This results in different values of duration for the three components. Furthermore, the computed duration values are dependent on the sensor orientation. Physically, such dependence is not desirable. In this work, computing duration based on resultant recorded motion instead of individual components is proposed. Such a measure of duration is shown to be rotation-invariant and hence independent of the sensor axes. Furthermore, it is demonstrated that the duration of resultant motion represents the mean duration for all possible arbitrary sensor orientations in three-dimensional space. The results indicate that the apparent difference between duration of horizontal and vertical motion reported in the literature is not universal to all definitions of duration. A set of 462 three-component accelerograms from Europe and the Middle East is used to demonstrate and support the presented findings and arguments.  相似文献   

11.
Due to the inherent difficulty in directly recording the rotational ground motions, torsional ground motions have to be estimated from the recorded spatially varying translational motions. In this paper, an empirical coherency function, which is based on the recorded motions at the SMART-1 array, is suggested to model the spatial variation of translational motions. Then, the torsional ground motion power spectral density function is derived. It depends on the translational motion power spectral density function and the coherency function. Both the empirical coherency function and the torsional motion power spectral density function are verified by the recorded motions at the SMART-1 array. The response spectra of the torsional motions are also estimated. Discussion on the relations between the torsional motion response spectrum and the corresponding translational motion response spectrum is made. Numerical results presented can be used to estimate the torsional ground motion power spectral density function and response spectrum.  相似文献   

12.
An approximate‐simple method for nonlinear response estimates of reinforced concrete frames subjected to near‐field and far‐field records is presented in this paper. The approximate method is based on equivalent single‐degree‐of‐freedom and linear multi‐degree‐of‐freedom models. In this procedure, the nonlinear maximum roof displacement is estimated using an effective period factor and elastic response spectrum with an equivalent damping. The effective period factor was proposed for far‐field and near‐field ground motion records. For regions of high seismicity, the maximum roof displacement can be estimated by applying an effective period factor of 2.3 and 2.1 for near‐field and far‐field records, respectively, and 9% damped displacement response spectrum. For regions of moderate seismicity, a lower effective period factor of 1.9 and 1.8, for near‐field and far‐field records, respectively, can be applied to estimate the maximum roof displacement. A relationship between linear and nonlinear response of multi‐degree‐of‐freedom systems was also proposed to obtain estimates of the maximum inter‐story drift of nonlinear responding reinforced concrete frames. In addition, the effects of number of ground motion records used in the analyses on the scatters of results were investigated. The required number of ground motions to produce a reliable response was proposed. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
A simple calculation procedure for estimating absolute maximum slip displacement of a freestanding rigid body placed on the ground or floor of linear/nonlinear multi‐storey building during an earthquake is developed. The proposed procedure uses the displacement induced by the horizontal sinusoidal acceleration to approximate the absolute maximum slip displacement, i.e. the basic slip displacement. The amplitude of this horizontal sinusoidal acceleration is identical to either the peak horizontal ground acceleration or peak horizontal floor response acceleration. Its period meets the predominant period of the horizontal acceleration employed. The effects of vertical acceleration are considered to reduce the friction force monotonously. The root mean square value of the vertical acceleration at the peak horizontal acceleration is used. A mathematical solution of the basic slip displacement is presented. Employing over one hundred accelerograms, the absolute maximum slip displacements are computed and compared with the corresponding basic slip displacements. Their discrepancies are modelled by the logarithmic normal distribution regardless of the analytical conditions. The modification factor to the basic slip displacement is quantified based on the probability of the non‐exceedence of a certain threshold. Therefore, the product of the modification factor and the basic slip displacement gives the design slip displacement of the body as the maximum expected value. Since the place of the body and linear/nonlinear state of building make the modification factor slightly vary, ensuring it to suit the problem is essential to secure prediction accuracy. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
Consecutive combined response spectrum   总被引:1,自引:1,他引:0  
Appropriate estimates of earthquake response spectrum are essential for design of new structures, or seismic safety evaluation of existing structures. This paper presents an alternative procedure to construct design spectrum from a combined normalized response spectrum(NRSC) which is obtained from pseudo-velocity spectrum with the ordinate scaled by different peak ground amplitudes(PGA, PGV, PGD) in different period regions. And a consecutive function f(T) used to normalize the ordinates is defined. Based on a comprehensive study of 220 strong ground motions recorded during recent eleven large worldwide earthquakes, the features of the NRSC are discussed and compared with the traditional normalized acceleration, velocity and displacement response spectra(NRSA, NRSV, NRSD). And the relationships between ground amplitudes are evaluated by using a weighted mean method instead of the arithmetic mean. Then the NRSC is used to define the design spectrum with given peak ground amplitudes. At last, the smooth spectrum is compared with those derived by the former approaches, and the accuracy of the proposed spectrum is tested through an analysis of the dispersion of ground motion response spectra.  相似文献   

15.
A new response-spectrum mode superposition method, entirely in real value form, is developed to analyze the maximum structural response under earthquake ground motion for generally damped linear systems with repeated eigenvalues and defective eigenvectors. This algorithm has clear physical concepts and is similar to the complex complete quadratic combination (CCQC) method previously established. Since it can consider the effect of repeated eigenvalues, it is called the CCQC-R method, in which the correlation coefficients of high-order modal responses are enclosed in addition to the correlation coefficients in the normal CCQC method. As a result, the formulas for calculating the correlation coefficients of high-order modal responses are deduced in this study, including displacement, velocity and velocity-displacement correlation coefficients. Furthermore, the relationship between high-order displacement and velocity covariance is derived to make the CCQC-R algorithm only relevant to the high-order displacement response spectrum. Finally, a practical step-by-step integration procedure for calculating high-order displacement response spectrum is obtained by changing the earthquake ground motion input, which is evaluated by comparing it to the theory solution under the sine-wave input. The method derived here is suitable for generally linear systems with classical or non-classical damping.  相似文献   

16.
The calculation of design spectra for building sites threatened by seismic ground motion is approached by considering the maximum responses of linearly elastic oscillators as indicators of ground motion intensity. Attenuation functions describing the distribution of response as a function of earthquake magnitude and distance are derived using 68 components of recorded ground motion as data. With a seismic hazard analysis for several hypothetical building sites, the distributions of maximum oscillator responses to earthquakes of random magnitude and location are calculated, and spectra are drawn to indicate the maximum responses associated with specified probability levels. These spectra are compared to design spectra calculated from published methods of amplifying peak ground motion parameters. The latter spectra are found to be inconsistent in terms of risk for building sites very close and very far from faults. A ground motion parameter defined to be proportional to the maximum response of a 1 Hz, 2 per cent damped linearly elastic oscillator is investigated; this parameter, in conjunction with peak ground acceleration, is found to lead to risk-consistent design spectra. Through these two parameters, a design earthquake magnitude and design hypocentral distance are defined, for a specified building site and risk level. The use of these parameters in the seismic hazard mapping of a region is illustrated.  相似文献   

17.
This paper aims to develop an improved understanding of the critical response of structures to multicomponent seismic motion characterized by three uncorrelated components that are defined along its principal axes: two horizontal and the vertical component. An explicit formula, convenient for code applications, has been derived to calculate the critical value of structural response to the two principal horizontal components acting along any incident angle with respect to the structural axes, and the vertical component of ground motion. The critical response is defined as the largest value of response for all possible incident angles. The ratio rcr/rsrss between the critical value of response and the SRSS response—corresponding to the principal components of ground acceleration applied along the structure axes—is shown to depend on three dimensionless parameters: the spectrum intensity ratio γ between the two principal components of horizontal ground motion characterized by design spectra A(Tn) and γA(Tn); the correlation coefficient α of responses rx and ry due to design spectrum A(Tn) applied in the x‐ and y‐directions, respectively; and β = ry/rx. It is demonstrated that the ratio rcr/rsrss is bounded by 1 and . Thus the largest value of the ratio is , 1.26, 1.13 and 1.08 for γ = 0, 0.5, 0.75 and 0.85, respectively. This implies that the critical response never exceeds times the result of the SRSS analysis, and this ratio is about 1.13 for typical values of γ, say 0.75. The correlation coefficient α depends on the structural properties but is always bounded between −1 and 1. For a fixed value of γ, the ratio rcr/rsrss is largest if β = 1 and α = ±1. The parametric variations presented for one‐storey buildings indicate that this condition can be satisfied by axial forces in columns of symmetric‐plan buildings or can be approximated by lateral displacements in resisting elements of unsymmetrical‐plan buildings. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

18.
A recently developed earthquake ground motion model non-stationary in both intensity and frequency content is validated at the inelastic Single-Degree-Of-Freedom (SDOF) structural response level. For the purpose of this study, the earthquake model is calibrated for two actual earthquake records. The objective of a constant (or target) displacement ductility used in conventional earthquake-resistant design is examined from the statistical viewpoint using this non-stationary earthquake model. The non-linear hysteretic structural behaviour is modelled using several idealized hysteretic SDOF structural models. Ensemble-average inelastic response spectra corresponding to various inelastic SDOF response (or damage) parameters and conditioned on a constant displacement ductility response are derived from the two identified stochastic ground motion models. The effects of the type of hysteretic behaviour, the structural parameters, the target displacement ductility factor, and the ground motion model on the statistics of the inelastic response parameters are thoroughly investigated. The results of this parametric study shed further light on the proper interpretation and use of inelastic response or damage parameters in earthquake-resistant design in order to achieve the desirable objective of ‘constant-damage design’. © 1997 by John Wiley & Sons, Ltd.  相似文献   

19.
基于欧美规范确定了坐落在深厚覆盖层上KH抽水蓄能电站上、下库场地基本运行和最大设计地震动峰值加速度、反应谱和时程等动参数。首先依据场地区域地震烈度区划图、特征周期区划图和依据场地地质地震条件选取的5条种子实测地震动确定场地基岩输入加速度时程、峰值加速度和设计反应谱,进而基于各土层地质参数和一维弹性波传播模拟程序确定覆盖层表面的平均峰值加速度、平均反应谱和5条地震动时程,对所得到的平均反应谱和峰值加速度进行光滑处理后确定可用于各建筑物结构抗震设计的地震动参数,包括覆盖层表面水平向动力响应加速度时程、峰值加速度和设计反应谱。该方法可较好地保留输入地震动的真实动力特性,如持时、相位和频率等,为我国规范中建议的确定场地地震动参数的方法提供有益的补充。  相似文献   

20.
近断层竖向与水平向加速度反应谱比值特征   总被引:4,自引:2,他引:2       下载免费PDF全文
显著的竖向地震动是近断层地震动区别于远场地震动的重要特征之一,为更合理地确定竖向地震动作用,研究了近断层区域竖向地震动的反应谱特征及其与水平向反应谱比值的影响因素.首先,选取1952—1999年世界范围内震级在M5.4—7.6之间的18次地震的地震动记录,研究竖向地震加速度反应谱及其与水平向加速度反应谱比值特征;然后统计分析了断层距、场地条件、震级以及断层机制对竖向与水平向加速度反应谱比的影响.结果表明,一般情况下竖向加速度具有更丰富的短周期分量,并且竖向加速度反应谱衰减较慢;断层距在20km以内的近断层区域、软弱土层场地、中等震级地震和逆断层大震级中长周期范围等条件下,具有较大的竖向与水平向加速度反应谱比值;在近断层区域的结构抗震设计中应充分考虑竖向地震动的影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号