首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了研究土层地震反应中软弱夹层对加速度反应谱的影响,本文构造了多种包含不同厚度、不同位置软夹层的土层结构,通过国内地震安评通用的ESE软件进行计算、分析。研究结果表明,软夹层的厚度、位置、输入地震动的幅值等对加速度反应谱均有不同程度的影响,上部含有软夹层的土层结构能造成反应谱出现双峰现象,引起加速度反应谱特征周期变大。本文研究结果对软土地区工程抗震设计有一定参考价值。  相似文献   

2.
几条地震波的归一化时-频反应谱分析   总被引:2,自引:0,他引:2       下载免费PDF全文
时-频反应谱是地震动幅值、频谱和持时三要素构成的空间三维谱.基于此,本文提出归一化时-频反应谱定义与计算方法,计算三条典型地震波的归一化时-频反应谱,对比分析表明:不同地震记录的时-频反应谱的幅值在时间和周期两个轴上的分布差别很大,具有不同时-频反应谱的地震波可能对结构地震响应产生不同影响;对12层钢筋混凝土框架结构模型进行弹塑性时程分析,通过结构地震反应、结构损伤曲线与输入地震动的归一化时-频反应谱对比,发现结构最大反应并不一定是造成结构倒塌的直接原因,用结构弹性阶段反应最大值进行抗震设计存在一定局限性,从而证明归一化时-频反应谱可有效用来分析地震动特性和结构破坏机理.  相似文献   

3.
竖向地震动加速度反应谱特性   总被引:3,自引:0,他引:3  
以33次地震中的地表地震动记录为数据基础,考虑场地条件、震级和距离的影响,分别对竖向地震动的加速度规准化反应谱和双规准化反应谱进行了研究。结果表明,规准反应谱明显受到场地条件、震级和震中距的影响,不同场地、距离和震级的平均规准反应谱之间差别显著;相比较而言,不依赖于场地、距离和震级的平均双规准反应谱之间却表现出良好的规律性和一致性。双规准反应谱的统一特性可以为竖向地震动设计谱的预测提供参考依据。  相似文献   

4.
To develop uniform and seismic environment-dependent design spectrum, common acceleration response spectral characteristics need to be identified. In this paper, a bi-normalized response spectrum (BNRS) is proposed, which is defined as a spectrum of peak response acceleration normalized with respect to peak acceleration of the excitation plotted vs. the natural period of the system normalized with respect to the spectrum predominant period, Tp. Based on a statistical analysis of records from the 1999 Chi-Chi earthquake, the conventionally normalized response spectrum(NRS) and the BNRS are examined to account for the effects of soil conditions, epicentral distance, hanging wall and damping. It is found that compared to the NRS, the BNRS is much less dependent on these factors. Finally, some simple relationships between the BNRS for a specified damping ratio and that for a damping ratio of 5%, and between the spectra predominant period and epicentral distance for different soil types are provided.  相似文献   

5.
In the seismic analysis and design of structures, the true velocity and absolute acceleration are usually approximated by their corresponding pseudo-values. This approach is simple and works well for structures with small damping (say, less than 15%). When the damping of a structure is enhanced for the purpose of response reduction, it may result in large analysis and design errors. Based on theory of random vibration and the established mechanism of seismic response spectra analysis, a method is developed (1) to predict the relative velocity spectra with any damping ratio level directly from the 5% standard pseudo-acceleration spectrum; and (2) to estimate the peak absolute acceleration. The accuracy of both is validated by using two selected ensembles of ground motion records.  相似文献   

6.
The statistical characteristics of strong ground motion specified by response spectrum and power spectral density function are studied using 190 strong-motion records of the Haicheng and Tangshan earthquakes in China and 138 earthquakes in the western United States.The response spectrum is normalized by the peak ground acceleration(i.e.,represented as spectral magnification factor),and the power spectral density function is described by the Kanai-Tajimi spectrum.The statistics and dependence of parameters are evaluated,and correlations between the spectral magnification factor or Kanai-Tajimi spectral parameters and the site condition,epicentral distance,or local magnitude are investigated.The statistical characteristics of spectra China and the U.S.A.are compared.Based on the results obtained the values of the statistics on spectral parameters for earthquake engineering applications in China are suggested.  相似文献   

7.
Most acceleration diagrams show high levels of unpredictability, as a result, it is the best to avoid using diagrams of earthquake acceleration spectra, even if the diagrams recorded at the site in question. In order to design earthquake resistant structures, we, instead, suggest constructing a design spectrum using a set of spectra that have common characteristics to the recorded acceleration diagrams at a particular site and smoothing the associated data. In this study, we conducted a time history analysis and determined a design spectrum for the region near the Lali tunnel in Southwestern Iran. We selected 13 specific ground motion records from the rock site to construct the design spectrum. To process the data, we first applied a base-line correction and then calculated the signal-to-noise ratio (RSN) for each record. Next, we calculated the Fourier amplitude spectra of the acceleration pertaining to the signal window (1), and the Fourier amplitude spectra of the associated noise (2). After dividing each spectra by the square root of the selected window interval, they were divided by each other (1 divided by 2), in order to obtain the RSN ratio (filtering was also applied). In addition, all data were normalized to the peak ground acceleration (PGA). Next, the normalized vertical and horizontal responses and mean response spectrum (50%) and the mean plus-one standard deviation (84%) were calculated for all the selected ground motion records at 5% damping. Finally, the mean design spectrum and the mean plus-one standard deviation were plotted for the spectrums. The equation of the mean and the above-mean design spectrum at the Lali tunnel site are also provided, along with our observed conclusions.  相似文献   

8.
Representation of near-fault pulse-type ground motions   总被引:7,自引:3,他引:4  
Near-fault ground motions with long-period pulses have been identified as critical in the design of structures. To aid in the representation of this special type of motion, eight simple pulses that characterize the effects of either the fling-step or forward-directivity are considered. Relationships between pulse amplitudes and velocity pulse period for different pulses are discussed. Representative ratios and peak acceleration amplification can exhibit distinctive features depending on variations in pulse duration, amplitude and the selected acceleration pulse shape. Additionally, response spectral characteristics for the equivalent pulses are identified and compared in terms of fixed PGA and PGV, respectively. Response spectra are strongly affected by the duration of pulses and the shape of the basic pulses. Finally, dynamic time history response features of a damped SDOF system subjected to pulse excitations are examined. These special aspects of pulse waveforms and their response spectra should be taken into account in the estimation of ground motions for a project site close to a fault.  相似文献   

9.
加速度反应谱平台值表征地震动的强度特性,场地条件是影响反应谱平台值的一个重要因素.本文选取6组同一地区断层距相近而场地条件不同的强震记录,对其标准化的加速度反应谱形状及平台值进行分析;并以汶川地震中173个有详细地勘场地上的强震记录为基础,统计分析了不同场地类别和断层距区间内的加速度反应谱平台值.本文研究结果显示,场地条件对加速度反应谱平台值有较大影响,随着场地变软,加速度反应谱平台值增大.本文定义了场地影响系数,计算并给出了不同地面峰值加速度对应的场地影响系数.  相似文献   

10.
抗震设计谱的发展及相关问题综述   总被引:4,自引:0,他引:4  
抗震设计谱是地震荷载的表征和工程抗震设计的基础。首先对国内外抗震设计反应谱的发展、演变进行了阐述,指出现今反应谱理论以及在此基础上建立的抗震设计谱所取得的进展;总结了被广泛使用的各种抗震设计谱所存在的问题,指出了解决问题的可能途径,简要介绍了双规准反应谱的概念和统一设计谱的思想;探讨了抗震设计谱的发展趋势以及所涉及的新课题。  相似文献   

11.
Displacement response spectrum (DRS), as the input, is of great significance to the displacement-based design just like the acceleration response spectrum to the traditional force-based design. Although the procedure of performance-based, in particular the displacement-based design has achieved considerable development, there is not a general DRS covering an enough long period range for common seismic design yet. This paper develops a systematic ground motion data processing procedure for the purpose of correcting the noise in the earthquake records and generating consistent DRS for seismic design. An adaptive algorithm is proposed to determine the cutoff frequency of the high-pass digital filter. The DRS of more than 500 recorded earthquake ground motions are generated and they are classified into three groups according to the ratio of the peak ground acceleration to the peak ground velocity (A/V) and/or the ratio of the peak ground velocity to the peak ground displacement (V/D). In each group, all the ground motions are normalized with respect to a selected scaling factor. Their corresponding DRS are obtained and then averaged to get the mean and standard deviation DRS, which can be used for both deterministic and probabilistic displacement-based design.  相似文献   

12.
以反应谱和功率谱密度函数表征的强震运动的统计特性   总被引:1,自引:0,他引:1  
江近仁  孙景江 《中国地震》1994,10(4):327-340
文中利用我国海城和唐山地震190条强震记录和美国西部138条强震记录研究了以反应谱和功率谱密度函数表征的强震运动的统计特性。反应谱用最大地面加速度归一化,即表为谱放大系数,功率谱密度函数用金井清谱描述。文中研究了参数的统计值和依赖性,以及谱放大系数和金井清谱参数与场地条件、震源和震中距等之间的相关性,分析比较了中美两国强震运动谱的统计特性,并对我国地震工程应用的强震运动谱的统计参数值的选取提出了建议。  相似文献   

13.
对2013年7月22日甘肃岷县—漳县地震获取的273条主余震加速度记录进行格式转换、基线校正和滤波等常规处理,分析该地震主震(M_S6.6)和余震(M_S5.6)两次地震记录的幅值、持时以及反应谱特征,发现M_S6.6主震记录的PGA范围在0.728~177.5 gal间,M_S5.6余震记录的PGA范围在0.732~69.3 gal间;将观测数据与霍俊荣和第五代《中国地震动参数区划图》地震动衰减关系进行对比,发现霍俊荣衰减关系更吻合于此次地震的主余震加速度衰减;绘制主余震5%~95%重要持时分布图,并针对主震62MXT反应谱和本地设计谱以及近些年国内主要强震震中反应谱开展比较分析;最后研究土层台、基岩台、相同台站各个震级反应谱的特征。  相似文献   

14.
This paper presents three approaches to defining the stationary power spectrum density function (PSDF) of strong ground acceleration, for prediction of structural response corresponding to the strong-motion stationary part of the input excitation. The first approach defines the PSDF in terms of the Fourier amplitude spectrum and a stationary duration of ground acceleration. The PSDF obtained by this approach predicts accurately the response of structures with low to intermediate natural periods. In the second approach, we introduce the concept of stationary duration of response, which is defined as a function of the natural period and damping ratio of the oscillator. Using this approach, it is possible to get accurate estimates of response amplitudes for the broad range of natural periods. However, it is not convenient in practical applications to deal with several stationary durations for a given input excitation. Further, to evaluate these durations it is necessary to specify both the Fourier and the response spectra of ground accelerations; whereas the common engineering practice is to specify the response spectrum only. Therefore, the third approach suggests the use of the response ‘spectrum compatible’ PSDF. The paper presents several improvements in the general methodology used for this purpose. The improvements mainly relate to using more accurate peak factors and to using the transient nature of response. The spectrum compatible PSDFs, as evaluated in the present study, provide realistic specification of strong ground motion for stochastic seismic response analyses of structures.  相似文献   

15.
Seismic risk analysis and mitigation of spatially extended structures require the synthesis of spatially varying ground motions in the response history analysis of these structures. These synthetic motions are usually desired to be spatially correlated, site reflected, nonstationary, and compatible with target design response spectra. In this paper, a method is presented for simulating spatially varying ground motions considering the nonstationarity, local site effects, and compatibility of response spectra. The scheme for generating spatially varying and response spectra compatible ground motions is first established for spatial locations on the ground surface with varying site conditions. The design response spectrum is introduced as the “power” spectrum at the base rock. The site amplification approach is then derived based on the deterministic wave propagation theory, by assuming that the base rock motions consist of out-of-plane SH wave or in-plane combined P and SV waves propagating into the site with assumed incident angles, from which tri-directional spatial ground motions can be generated. The phase difference spectrum is employed to model ground motions exhibiting nonstationarity in both frequency and time domains with different site conditions. The proposed scheme is demonstrated with numerical examples.  相似文献   

16.
The estimation of peak linear response via elastic design (response) spectra continues to form the basis of earthquake‐resistant design of structural systems in various codes of practice all over the world. Many response spectrum‐based formulations of peak linear response require an additional input of the spectral velocity (SV) ordinates consistent with the specified seismic hazard. SV ordinates have been conventionally approximated by pseudo spectral velocity (PSV) ordinates, which are close to the SV ordinates only over the intermediate frequency range coinciding with the velocity‐sensitive region. At long periods, PSV ordinates underestimate the SV ordinates, and this study proposes a formulation of a correction factor (>1) that needs to be multiplied by the PSV ordinates in order to close the gap between the two sets of ordinates. A simple model is proposed in the form of a power function in oscillator period to estimate this factor in terms of two governing parameters which are in turn estimated from two single‐parameter scaling equations. The parameters considered for the scaling equations are (1) the period at which the PSV spectrum is maximized and (2) the rate of decay of the pseudo spectral acceleration (PSA) amplitudes at long periods. For a given damping ratio, four regression coefficients are determined for the scaling equations with the help of 205 ground motions recorded in western USA. A numerical study undertaken with the help of several design PSA spectra and ensembles of spectrum‐compatible ground motions illustrates the effectiveness of the proposed correction factor, together with the proposed scaling models, in comparison with the PSV approximation in a variety of design situations. Both the input parameters mentioned above can be easily obtained from the specified design spectrum, and thus the proposed model is convenient to use.  相似文献   

17.
The conditional spectrum (CS, with mean and variability) is a target response spectrum that links nonlinear dynamic analysis back to probabilistic seismic hazard analysis for ground motion selection. The CS is computed on the basis of a specified conditioning period, whereas structures under consideration may be sensitive to response spectral amplitudes at multiple periods of excitation. Questions remain regarding the appropriate choice of conditioning period when utilizing the CS as the target spectrum. This paper focuses on risk‐based assessments, which estimate the annual rate of exceeding a specified structural response amplitude. Seismic hazard analysis, ground motion selection, and nonlinear dynamic analysis are performed, using the conditional spectra with varying conditioning periods, to assess the performance of a 20‐story reinforced concrete frame structure. It is shown here that risk‐based assessments are relatively insensitive to the choice of conditioning period when the ground motions are carefully selected to ensure hazard consistency. This observed insensitivity to the conditioning period comes from the fact that, when CS‐based ground motion selection is used, the distributions of response spectra of the selected ground motions are consistent with the site ground motion hazard curves at all relevant periods; this consistency with the site hazard curves is independent of the conditioning period. The importance of an exact CS (which incorporates multiple causal earthquakes and ground motion prediction models) to achieve the appropriate spectral variability at periods away from the conditioning period is also highlighted. The findings of this paper are expected theoretically but have not been empirically demonstrated previously. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
土动力学参数对设计反应谱的影响   总被引:4,自引:0,他引:4  
本文选取3种单一均质土层剖面,在3条强度不同的地震动输入下,运用一维土层地震反应分析技术,研究土的动剪切模量比、阻尼比及其对设计反应谱的影响。为了使结果能够直观地反映抗震设防所需要的地震动参数的变化,本文分析了这两个参数在一定范围内变化时,对设计反应谱的特征周期Tg和平台高度αm ax的影响,得到了一些有价值的结论。  相似文献   

19.
多点激励下结构随机地震反应分析的反应谱方法   总被引:9,自引:3,他引:6  
基于随机振动理论,提出了多点激励作用下线性系统随机地震反应分析的均值反应谱方法,给出了结构峰值反应的均值、标准差以及反应平均频率的反应谱组合公式。这可以将反应谱方法推广应用到多点激励结构的抗震可靠度分析中。鉴于组合公式中谱参数和相关系数需要由烦琐的数值积分得到,本文进一步针对它们给出合理的简化计算式,从而使得建议的反应谱方法的计算效率大大增加。最后,以一个双塔斜拉桥为例,对本文方法进行了验证。基于建议方法的计算结果与Monte Carlo模拟结果吻合较好。与经典的多点激励反应谱方法(MSRS法)比较,本文方法具有其无法比拟的计算效率。  相似文献   

20.
基于欧美规范确定了坐落在深厚覆盖层上KH抽水蓄能电站上、下库场地基本运行和最大设计地震动峰值加速度、反应谱和时程等动参数。首先依据场地区域地震烈度区划图、特征周期区划图和依据场地地质地震条件选取的5条种子实测地震动确定场地基岩输入加速度时程、峰值加速度和设计反应谱,进而基于各土层地质参数和一维弹性波传播模拟程序确定覆盖层表面的平均峰值加速度、平均反应谱和5条地震动时程,对所得到的平均反应谱和峰值加速度进行光滑处理后确定可用于各建筑物结构抗震设计的地震动参数,包括覆盖层表面水平向动力响应加速度时程、峰值加速度和设计反应谱。该方法可较好地保留输入地震动的真实动力特性,如持时、相位和频率等,为我国规范中建议的确定场地地震动参数的方法提供有益的补充。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号