首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To develop uniform and seismic environment-dependent design spectrum, common acceleration response spectral characteristics need to be identified. In this paper, a bi-normalized response spectrum (BNRS) is proposed, which is defined as a spectrum of peak response acceleration normalized with respect to peak acceleration of the excitation plotted vs. the natural period of the system normalized with respect to the spectrum predominant period, Tp. Based on a statistical analysis of records from the 1999 Chi-Chi earthquake, the conventionally normalized response spectrum(NRS) and the BNRS are examined to account for the effects of soil conditions, epicentral distance, hanging wall and damping. It is found that compared to the NRS, the BNRS is much less dependent on these factors. Finally, some simple relationships between the BNRS for a specified damping ratio and that for a damping ratio of 5%, and between the spectra predominant period and epicentral distance for different soil types are provided.  相似文献   

2.
Consecutive combined response spectrum   总被引:1,自引:1,他引:0  
Appropriate estimates of earthquake response spectrum are essential for design of new structures, or seismic safety evaluation of existing structures. This paper presents an alternative procedure to construct design spectrum from a combined normalized response spectrum(NRSC) which is obtained from pseudo-velocity spectrum with the ordinate scaled by different peak ground amplitudes(PGA, PGV, PGD) in different period regions. And a consecutive function f(T) used to normalize the ordinates is defined. Based on a comprehensive study of 220 strong ground motions recorded during recent eleven large worldwide earthquakes, the features of the NRSC are discussed and compared with the traditional normalized acceleration, velocity and displacement response spectra(NRSA, NRSV, NRSD). And the relationships between ground amplitudes are evaluated by using a weighted mean method instead of the arithmetic mean. Then the NRSC is used to define the design spectrum with given peak ground amplitudes. At last, the smooth spectrum is compared with those derived by the former approaches, and the accuracy of the proposed spectrum is tested through an analysis of the dispersion of ground motion response spectra.  相似文献   

3.
Current practice uses predictive models to extrapolate long-period response spectra based on far-field recordings in moderate and weak earthquakes. However, the spectra are not long enough and the data are often not reliable, which means that the seismic design code cannot accurately define seismic design requirements for long-period structures. The near-field recordings in the main-shock of the Chi-Chi earthquake have a large signal-to-noise ratio (SNR), which makes them suitable for studying the long-period acceleration response spectrum up to 20 sec. The acceleration response spectra from 246 stations within 120 km of the causative fault are statistically analyzed in this paper. The influence of distance and site conditions on long-period response spectrum is discussed, and the shapes of the amplification spectra are compared with the standard spectra specified in the seismic design code of China. Finally, suggestions for future revisions to the code are proposed.  相似文献   

4.
强震近场加速度峰值比和反应谱统计分析   总被引:12,自引:3,他引:12  
本文对国内外数十次强地震的近场加速度记录进行了统计分析,给出了近场加速度峰值比及反应谱的统计结果,并将统计反应谱与设计反应谱进行了比较。  相似文献   

5.
Evaluation of reduction factors for high-damping design response spectra   总被引:1,自引:0,他引:1  
High-damping response spectra are essential tools for the assessment and design methods based on the equivalent elastic structure concept. They are also often used for the analysis and design of structures with seismic isolation or energy dissipation systems. Many formulations of the reduction factors have been proposed and included in seismic codes to estimate high-damping response spectra from their 5% damping representation. They are reviewed in the present paper. The accuracy of each of them in estimating the maximum elastic response of structures with viscous damping ratios greater than 5% is assessed by comparing exact and approximate displacement response spectra for three different damping levels, namely 10, 20 and 30%, respectively. The comparison is referred to more than 120 ground motion records, relevant to earthquakes with magnitude between 6 and 8, epicentral distance ranging from 1 to 100 km and Peak Ground Accelerations (PGA’s) greater than 0.1 g. The comparison between exact and approximate response spectra is carried out for both single earthquakes and groups of earthquakes with similar magnitude and epicentral distance. The drawbacks of using the same damping reduction factor to estimate both maximum displacement response and design seismic forces are also addressed.  相似文献   

6.
设计反应谱长周期区段的研究   总被引:24,自引:7,他引:17  
本文利用近20年国内外大地震时获得的数字强震仪记录分析强震动的长周期分量特性,给出了不同场地上的平均加速度反应谱及其拟合曲线。结果表明,现行抗震设计规范中设计谱的特征周期和长周期谱值明显偏小。在此基础上提出了长周期设计反应谱的修正建议。文中还根据统计分析提出了不同阻尼比的反应谱修正公式。  相似文献   

7.
复阻尼地震反应谱计算的再研究   总被引:5,自引:2,他引:5  
本文订正了前文[1]公式中的符号差错,重新计算了犁阻尼加速度反应谱,另外又计算了速度谱和位移谱,并与相应的粘性阻尼谱作了比较,取得了一定的认识。现有计算结果显示,复阻尼速度谱和位移谱有一定特点,在中长周期和长周期部分可比相应的粘性阻尼谱高出10%左右。  相似文献   

8.
A regression analysis was made on 277 acceleration response spectra computed from Japanese accelerograms by subdividing the data into discrete categories. Five magnitude and distance categories, and four ground condition categories were used. The maximum absolute acceleration amplitude is predicted as a product of three factors, each representing a weighting factor for magnitude, distance and ground condition category at each of the 18 response spectrum periods from 0·1 s to 4 s at a damping value of 5 per cent of critical. A method was then developed to evaluate seismic hazard in terms of acceleration response spectrum by using the prediction model and the seismicity data, and it was applied to obtain seismic macro-zoning maps of Japan which are dependent on the natural period of a structure. The results of the analysis indicated that a single seismic zoning map may not be sufficient to cover a variety of structures with a wide range of periods because the expected spectral shape differs according to the seismicity of the area.  相似文献   

9.
High force‐to‐volume extrusion damping devices can offer significant energy dissipation directly in structural connections and significantly reduce seismic response. Realistic force levels up to 400 kN have been obtained experimentally validating this overall concept. This paper develops spectral‐based design equations for their application. Response spectra analysis for multiple, probabilistically scaled earthquake suites are used to delineate the response reductions due to added extrusion damping. Representative statistics and damping reduction factors are utilized to characterize the modified response in a form suitable for current performance‐based design methods. Multiple equation regression analysis is used to characterize reduction factors in the constant acceleration, constant velocity, and constant displacement regions of the response spectra. With peak device forces of 10% of structural weight, peak damping reduction factors in the constant displacement region of the spectra are approximately 6.5 ×, 4.0 ×, and 2.8 × for the low, medium, and high suites, respectively. At T = 1 s, these values are approximately 3.6 ×, 1.8 ×, and 1.4 ×, respectively. The maximum systematic bias introduced by using empirical equations to approximate damping reduction factors in design analyses is within the range of +10 to ?20%. The seismic demand spectrum approach is shown to be conservative across a majority of the spectrum, except for large added damping between T = 0.8 and 3.5 s, where it slightly underestimates the demand up to a maximum of approximately 10%. Overall, the analysis shows that these devices have significant potential to reduce seismic response and damage at validated prototype device force levels. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
The achievement of adequate performance objectives for buildings under increasing seismic intensities is not only related to the performance of structural members but also to the behavior of nonstructural elements. The need to properly design nonstructural elements for earthquakes has been largely demonstrated in the last few years and has become an important objective within the earthquake engineering community. A crucial aspect in the proper design of nonstructural elements is the definition of the seismic demand in terms of both absolute acceleration and relative displacement floor response spectra. In the first part of this study, relative displacement and absolute acceleration floor response spectra were computed for four reinforced concrete moment-resisting archetype frames via dynamic time-history analyses and were compared with floor response spectra predicted by means of two recent simplified methodologies available in the literature. It was observed that one of the existing methodologies is generally unable to predict consistent absolute acceleration and relative displacement floor response spectra. An improved procedure is developed for estimating consistent floor response spectra for building structures subjected to low and medium-high seismic intensities. This new procedure improves the predictions of a relative displacement floor response spectrum by constraining its ordinates at long nonstructural periods to the expected peak absolute displacement of the floor. The resulting acceleration and relative displacement response spectra are then consistently related by the well-known pseudo-spectral relationship over the entire nonstructural period range. The effectiveness of the proposed methodology was appraised against floor response spectra computed from nonlinear time-history analyses.  相似文献   

11.
ntroductionThestudyachievementsoncharacteristicsofresponsespectrumfromstronggroundmotionrecordshavebenwidelyappliedtoseismicd...  相似文献   

12.
The estimation of peak linear response via elastic design (response) spectra continues to form the basis of earthquake‐resistant design of structural systems in various codes of practice all over the world. Many response spectrum‐based formulations of peak linear response require an additional input of the spectral velocity (SV) ordinates consistent with the specified seismic hazard. SV ordinates have been conventionally approximated by pseudo spectral velocity (PSV) ordinates, which are close to the SV ordinates only over the intermediate frequency range coinciding with the velocity‐sensitive region. At long periods, PSV ordinates underestimate the SV ordinates, and this study proposes a formulation of a correction factor (>1) that needs to be multiplied by the PSV ordinates in order to close the gap between the two sets of ordinates. A simple model is proposed in the form of a power function in oscillator period to estimate this factor in terms of two governing parameters which are in turn estimated from two single‐parameter scaling equations. The parameters considered for the scaling equations are (1) the period at which the PSV spectrum is maximized and (2) the rate of decay of the pseudo spectral acceleration (PSA) amplitudes at long periods. For a given damping ratio, four regression coefficients are determined for the scaling equations with the help of 205 ground motions recorded in western USA. A numerical study undertaken with the help of several design PSA spectra and ensembles of spectrum‐compatible ground motions illustrates the effectiveness of the proposed correction factor, together with the proposed scaling models, in comparison with the PSV approximation in a variety of design situations. Both the input parameters mentioned above can be easily obtained from the specified design spectrum, and thus the proposed model is convenient to use.  相似文献   

13.
几条地震波的归一化时-频反应谱分析   总被引:2,自引:0,他引:2       下载免费PDF全文
时-频反应谱是地震动幅值、频谱和持时三要素构成的空间三维谱.基于此,本文提出归一化时-频反应谱定义与计算方法,计算三条典型地震波的归一化时-频反应谱,对比分析表明:不同地震记录的时-频反应谱的幅值在时间和周期两个轴上的分布差别很大,具有不同时-频反应谱的地震波可能对结构地震响应产生不同影响;对12层钢筋混凝土框架结构模型进行弹塑性时程分析,通过结构地震反应、结构损伤曲线与输入地震动的归一化时-频反应谱对比,发现结构最大反应并不一定是造成结构倒塌的直接原因,用结构弹性阶段反应最大值进行抗震设计存在一定局限性,从而证明归一化时-频反应谱可有效用来分析地震动特性和结构破坏机理.  相似文献   

14.
Centrifuge modeling of seismic response of layered soft clay   总被引:1,自引:0,他引:1  
Centrifuge modeling is a valuable tool used to study the response of geotechnical structures to infrequent or extreme events such as earthquakes. A series of centrifuge model tests was conducted at 80g using an electro-hydraulic earthquake simulator mounted on the C-CORE geotechnical centrifuge to study the dynamic response of soft soils and seismic soil–structure interaction (SSI). The acceleration records at different locations within the soil bed and at its surface along with the settlement records at the surface were used to analyze the soft soil seismic response. In addition, the records of acceleration at the surface of a foundation model partially embedded in the soil were used to investigate the seismic SSI. Centrifuge data was used to evaluate the variation of shear modulus and damping ratio with shear strain amplitude and confining pressure, and to assess their effects on site response. Site response analysis using the measured shear wave velocity, estimated modulus reduction and damping ratio as input parameters produced good agreement with the measured site response. A spectral analysis of the results showed that the stiffness of the soil deposits had a significant effect on the characteristics of the input motions and the overall behavior of the structure. The peak surface acceleration measured in the centrifuge was significantly amplified, especially for low amplitude base acceleration. The amplification of the earthquake shaking as well as the frequency of the response spectra decreased with increasing earthquake intensity. The results clearly demonstrate that the layering system has to be considered, and not just the average shear wave velocity, when evaluating the local site effects.  相似文献   

15.
抗震结构的阻尼减振效果分析   总被引:4,自引:0,他引:4  
研究了抗震结构的阻尼减振效果。首先,考虑了单自由度体系在不同频率简谐干扰作用下阻尼比对结构反应的减小效果;然后,考虑了阻尼比对结构地震反应谱的影响,分析了我国现行建筑抗震设计规范反应谱,并讨论了不同阻尼比对水平地震影响系数的修正公式。  相似文献   

16.
与规范反应谱相对应的Clough-Penzien模型参数研究   总被引:5,自引:0,他引:5  
根据我国现行抗震规范(GB50011—2001)的反应谱曲线,对Clough—Penzien模型的参数取值进行了具体研究。采用时间包络函数考虑地震动的非平稳性,根据加速度峰值等效原则确定了谱强度因子S0的表达式,表明谱强因子不仅与地面加速度特性、场地类别有关,而且与结构的动力特性(阻尼比、自振周期)有关。最后对谱强度因子计算做了简化处理,为随机抗震计算分析提供了参考依据。  相似文献   

17.
竖向地震动加速度反应谱特性   总被引:3,自引:0,他引:3  
以33次地震中的地表地震动记录为数据基础,考虑场地条件、震级和距离的影响,分别对竖向地震动的加速度规准化反应谱和双规准化反应谱进行了研究。结果表明,规准反应谱明显受到场地条件、震级和震中距的影响,不同场地、距离和震级的平均规准反应谱之间差别显著;相比较而言,不依赖于场地、距离和震级的平均双规准反应谱之间却表现出良好的规律性和一致性。双规准反应谱的统一特性可以为竖向地震动设计谱的预测提供参考依据。  相似文献   

18.
考虑耦联影响的二次结构体系减震分析   总被引:1,自引:2,他引:1  
建立了基础隔震的主次结构体系耦联运动方程,开发了动力分析程序PS—BASE.FOR,对一典型结构的二次结构绝对加速度反应谱与相对位移反应谱计算分析表明,主体结构隔震或同时增大二次结构阻尼,是取得二次结构较好抗震性能的有效途径,增大主体结构的隔震阻尼对二次结构略有不利影响。  相似文献   

19.
利用区域数字强震动台网加速度记录合成场地设计地震波   总被引:1,自引:1,他引:0  
利用福建数字强震动台网历年各类典型加速度记录的相位谱拟合所在场地设计反应谱,获得具有本地区不同场地、不同分向天然地震记录的非平稳性特征又满足抗震设防要求的场地设计地震波,同时提供了具体的应用算例及可供福建地区建筑结构时程分析时选用的输入地震波。  相似文献   

20.
工程结构等延性地震抗力谱研究   总被引:28,自引:7,他引:21  
研究结构的非弹性反应谱对改进现有的结构抗震设计、发展基于性态的抗震设计以及了解复杂地面运动特性与结构动力特性之间的关系具有重要的意义。利用大量的单自由度在强震记录作用下的弹塑性动力时程分析,对等延性地震抗力谱这一重要的非弹性反应谱进行了较为详尽的研究,给出了四类场地条件(基岩、硬土、一般土和软土)下的平均等延性地震抗力谱,总结了对工程结构的抗震设计和研究具有实际意义的规律和特征,并分析了场地条件、结构的延性系数以及周期等对等延性地震抗力谱的影响,提出了新的拟合公式,其成果可供抗震研究和设计直接应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号