首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
Response spectrum methods in earthquake‐resistant design sometimes require information on the spectral velocity (SV) for a given single‐degree‐of‐freedom oscillator and specified seismic hazard. SV has been conventionally approximated as pseudo spectral velocity (PSV) in the case of lightly damped structures that are not too flexible. This study shows that the PSV approximation may lead to large overestimation errors when the structure is stiffer to the ground motion and the ground motion is a long‐period motion. It is also shown that a new approximation requiring the use of peak ground acceleration of the motion may significantly reduce these errors. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
Empirical equations are presented for the prediction of displacement response ordinates for damping ratios of 2, 5, 10, 20 and 30% of critical and for response periods up to 4s, using 532 accelerograms from the strong‐motion databank from Europe and the Middle East. The records were all re‐processed and only employed for regressions at periods within the usable range, defined as a fraction of the filter cut‐off and depending on the instrument type (digital or analogue), earthquake magnitude and site class. The equations can be applied to predict the geometric mean displacement and pseudo‐acceleration spectra for earthquakes with moment magnitudes ( M ) between 5 and 7.6, and for distances up to 100km. The equations also include style‐of‐faulting and site class as explanatory variables. The predictions obtained from these new equations suggest that earlier European equations for spectral displacements underestimate the ordinates at longer periods as a result of severe filtering and the use of the spectral ordinates at periods too close to the filter cut‐off. The results also confirm that the period defining the start of the constant displacement plateau in the Eurocode 8 (EC8) spectrum is excessively short at 2s. The results not only show that the scaling factor defined in EC8 for estimating the spectral ordinates at damping ratios different from 5% of critical are a good general approximation, but also that this scaling varies with magnitude and distance (reflecting the influence of duration) and also displays a mild dependence on response period. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
Aftershocks have the potential to cause collapse of a structure that has been already damaged by the preceding main shock. Seismic safety of a structure should therefore be ascertained through a damage analysis using the anticipated main shock and few larger-aftershock motions. Simulation of aftershock motions needs characterization of the seismic hazard due to aftershocks, and therefore it will be useful to develop a conditional scaling model that can predict the response spectrum of an anticipated aftershock motion consistent with the design spectrum of the main shock motion anticipated at the same station. In this study an attempt is made to develop a conditional scaling model for the pseudo spectral velocity spectrum via linear regression analysis on the aftershock and main shock recordings for the 1999 Chi–Chi earthquake. It is shown that it may be possible to obtain a simpler and approximate version of the conditional model from an unconditional model. Damage-causing potential of a ground motion also depends on its strong motion duration (SMD) and therefore a conditional scaling model is developed for SMD of the aftershock motion in several narrow frequency-bands. The model is developed for the larger-aftershock motions and it is shown that a reasonable replacement of such a model may be obtainable directly from an unconditional model. Finally, a simple weighted averaging scheme is proposed to obtain the composite SMD from the SMDs for different frequency bands by using the pseudo spectral acceleration spectrum of the motion.  相似文献   

4.
The next generation of seismic design codes, especially those adopting the framework of performance‐based design, will include the option of design based on displacements rather than forces. For direct displacement‐based design using the substitute structure approach, the spectral ordinates of displacement need to be specified for a wide range of response periods and for several levels of damping. The code displacement spectra for damping values higher than the nominal value of 5% of critical will generally be obtained, as is the case in Eurocode 8 and other design codes, by applying scaling factors to the 5% damped ordinates. These scaling factors are defined as functions of the damping ratio and, in some cases, the response period, but are independent of the nature of the expected ground shaking. Using both predictive equations for spectral ordinates at several damping levels and stochastic simulations, it is shown that the scaling factors for different damping levels vary with magnitude and distance, reflecting a dependence of the scaling on the duration of shaking that increases with the damping ratio. The options for incorporating the influence of this factor into design code specifications of displacement response spectra are discussed. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

5.
6.
Simple procedures are proposed for computing response spectra for torsional and rocking input ground motions assuming horizontally travelling waves of constant shape. It is shown that harmonic relationships exist between the rotational spectra and the corresponding translational spectra, and that SV rather than PSV is the correct basis for deriving the angular displacement, velocity and acceleration response spectra. An approximation enabling the use of the standard tripartite logarithmic response spectra is discussed. Simple expressions for ‘accidental’ eccentricity and rocking input effects are presented. Also proposed are multipliers to spectral ordinates to account for the filtering effects of rigid base mats resting on Winkler type foundations. For wave transit times shorter than half the natural period of the structure, these multipliers can be approximated by the frequency dependent averaging coefficients given in the literature, which are dependent, however, on the response, rather than the input, frequency.  相似文献   

7.
Estimation of design forces in ductility‐based earthquake‐resistant design continues to be carried out with the application of response modification factors on elastic design spectra, and it remains interesting to explore how best to estimate strength reduction factors (SRFs) for a design situation. This paper considers the relatively less explored alternative of modelling SRF spectrum via a given response spectrum. A new model is proposed to estimate the SRF spectrum in terms of a pseudo‐spectral acceleration (PSA) spectrum and ductility demand ratio with the help of two coefficients. The proposed model is illustrated for an elasto‐plastic oscillator, in case of 10 recorded accelerograms and three ductility ratios. The proposed model is convenient and is able to predict SRF spectrum reasonably well, particularly at periods up to 1.0 s. Coefficients of the proposed model may also be determined in case of a given design spectrum when there is uncertainty in SRF spectrum due to uncertainty in temporal characteristics of the ground motion. This is illustrated with the help of 474 accelerograms recorded in western U.S.A. and different scaled PSA spectra. It is shown that probabilistic estimates may be obtained in this situation for SRF spectrum by assuming the error residuals to be log normally distributed with period‐dependent parameters. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

8.
Consecutive combined response spectrum   总被引:1,自引:1,他引:0  
Appropriate estimates of earthquake response spectrum are essential for design of new structures, or seismic safety evaluation of existing structures. This paper presents an alternative procedure to construct design spectrum from a combined normalized response spectrum(NRSC) which is obtained from pseudo-velocity spectrum with the ordinate scaled by different peak ground amplitudes(PGA, PGV, PGD) in different period regions. And a consecutive function f(T) used to normalize the ordinates is defined. Based on a comprehensive study of 220 strong ground motions recorded during recent eleven large worldwide earthquakes, the features of the NRSC are discussed and compared with the traditional normalized acceleration, velocity and displacement response spectra(NRSA, NRSV, NRSD). And the relationships between ground amplitudes are evaluated by using a weighted mean method instead of the arithmetic mean. Then the NRSC is used to define the design spectrum with given peak ground amplitudes. At last, the smooth spectrum is compared with those derived by the former approaches, and the accuracy of the proposed spectrum is tested through an analysis of the dispersion of ground motion response spectra.  相似文献   

9.
This paper analyses the processes which govern structural response, and uses observations of strong earthquake ground motion to propose quantitative extrapolation of pseudo relative velocity spectral amplitudes to long (100 > T > 1 s) periods. This will eliminate the current difficulties with rough estimation of long period spectral amplitudes and will open new possibilities by enabling the strong motion hazard calculations to be extended to the same long period band. So far, the scaling equations of response spectrum amplitudes have been valid only up to periods less than several seconds. The design of long structures and of structures on multiple distant supports requires knowledge and specification of design ground motions well beyond 1–10 s periods. With the results presented in this paper it will be possible to compute site-specific uniform hazard spectra and associated synthetic accelograms for essentially all long period response problems.  相似文献   

10.
A suite of reinforced‐concrete frame buildings located on hill sides, with 2 different structural configurations, viz step‐back and split‐foundation, are analyzed to study their floor response. Both step‐back and split‐foundation structural configurations lead to torsional effects in the direction across the slope due to the presence of shorter columns on the uphill side. Peak floor acceleration and floor response spectra are obtained at each storey's center of rigidity and at both its stiff and flexible edges. As reported in previous studies as well, it is observed that the floor response spectra are better correlated with the ground response spectrum. Therefore, the floor spectral amplification functions are obtained as the ratio of spectral ordinates at different floor levels to the one at the ground level. Peaks are observed in the spectral amplification functions corresponding to the first 2 modes in the upper portion of the hill‐side buildings, whereas a single peak corresponding to a specific kth mode of vibration is observed on the floors below the uppermost foundation level. Based on the numerical study for the step‐back and split‐foundation hill‐side buildings, simple floor spectral amplification functions are proposed and validated. The proposed spectral amplification functions take into account both the buildings' plan and elevation irregularities and can be used for seismic design of acceleration‐sensitive nonstructural components, given that the supporting structure's dynamic characteristics, torsional rotation, ground‐motion response spectrum, and location of the nonstructural components within the supporting structure are known, because current code models are actually not applicable to hill‐side buildings.  相似文献   

11.
In spite of important differences in structural response to near‐fault and far‐fault ground motions, this paper aims at extending well‐known concepts and results, based on elastic and inelastic response spectra for far‐fault motions, to near‐fault motions. Compared are certain aspects of the response of elastic and inelastic SDF systems to the two types of motions in the context of the acceleration‐, velocity‐, and displacement‐sensitive regions of the response spectrum, leading to the following conclusions. (1) The velocity‐sensitive region for near‐fault motions is much narrower, and the acceleration‐sensitive and displacement‐sensitive regions are much wider, compared to far‐fault motions; the narrower velocity‐sensitive region is shifted to longer periods. (2) Although, for the same ductility factor, near‐fault ground motions impose a larger strength demand than far‐fault motions—both demands expressed as a fraction of their respective elastic demands—the strength reduction factors Ry for the two types of motions are similar over corresponding spectral regions. (3) Similarly, the ratio um/u0 of deformations of inelastic and elastic systems are similar for the two types of motions over corresponding spectral regions. (4) Design equations for Ry (and for um/u0) should explicitly recognize spectral regions so that the same equations apply to various classes of ground motions as long as the appropriate values of Ta, Tb and Tc are used. (5) The Veletsos–Newmark design equations with Ta=0.04 s, Tb=0.35 s, and Tc=0.79 s are equally valid for the fault‐normal component of near‐fault ground motions. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

12.
First frequency-dependent empirical scaling equations of pseudo-relative velocity spectral amplitudes (PSV) of strong earthquake ground motions in the former Yugoslavia were introduced in the mid-1990s by Lee and Trifunac (1990) [15]. This followed the development of the Fourier spectral amplitudes (FS) scaling equations by Lee and Trifunac (1993) [17] in terms of earthquake source parameters, and the region-specific frequency dependent attenuation function given by Lee and Trifunac (1992) [16]. More recently, a new frequency-dependent attenuation function was developed for central and eastern Serbia for earthquakes of intermediate and large magnitudes and for large epicentral distances—exceeding 300 km—suggested by Lee et al. (2016) [19] that occur in the Vrancea source region in Romania. In this paper we use this frequency-dependent attenuation function to develop empirical scaling equations for PSV spectral amplitudes in Serbia. These scaling equations will form a basis for macro- and micro-zoning earthquake hazard studies in Serbia.  相似文献   

13.
In the framework of the revision of Part 1 of Eurocode 8, this study aims at developing new empirical correlations to compute peak values of ground velocity (PGV) and displacement (PGD) as a function of elastic spectral ordinates for design. At variance with the expressions for PGV and PGD currently adopted in the Eurocode 8, based solely on the peak ground acceleration (PGA), in this paper reference is made to spectral ordinates of the short and intermediate period range, namely Ss, which is the constant acceleration spectral ordinate, and S1, which is the spectral ordinate at 1 s. On the one hand, a relationship between PGV and the product (Ss?S1) was found based on the regression analysis on a high‐quality strong‐motion dataset. On the other hand, the PGD was estimated by extrapolating to long periods the constant displacement branch of the elastic response spectrum, introducing a correlation between the corner period TD and S1. For this purpose, results of a long period probabilistic seismic hazard assessment study for Italy, encompassing low to high seismicity areas, were considered. Furthermore, verification of the proposed relationship against strong‐motion records was carried out, and differences justified in terms of the concept of uniform hazard spectrum.  相似文献   

14.
A method for generating a suite of synthetic ground motion time‐histories for specified earthquake and site characteristics defining a design scenario is presented. The method employs a parameterized stochastic model that is based on a modulated, filtered white‐noise process. The model parameters characterize the evolving intensity, predominant frequency, and bandwidth of the acceleration time‐history, and can be identified by matching the statistics of the model to the statistics of a target‐recorded accelerogram. Sample ‘observations’ of the parameters are obtained by fitting the model to a subset of the NGA database for far‐field strong ground motion records on firm ground. Using this sample, predictive equations are developed for the model parameters in terms of the faulting mechanism, earthquake magnitude, source‐to‐site distance, and the site shear‐wave velocity. For any specified set of these earthquake and site characteristics, sets of the model parameters are generated, which are in turn used in the stochastic model to generate the ensemble of synthetic ground motions. The resulting synthetic acceleration as well as corresponding velocity and displacement time‐histories capture the main features of real earthquake ground motions, including the intensity, duration, spectral content, and peak values. Furthermore, the statistics of their resulting elastic response spectra closely agree with both the median and the variability of response spectra of recorded ground motions, as reflected in the existing prediction equations based on the NGA database. The proposed method can be used in seismic design and analysis in conjunction with or instead of recorded ground motions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
The validity of the response spectrum concept for determining loads in structures excited by differential earthquake ground motion is examined. It is shown that the common definition of response spectrum for synchronous ground motion can be reconciled to remain valid in cases when the columns of extended structures experience different motions. Then, a relative displacement response spectrum for design of first-storey columns, SDC(T, δ, ζ, τ), is defined. In addition to natural period, T, and fraction of critical damping, ζ, this spectrum depends also on the ‘travel time’, τ (of the waves in the soil over distances about one half width, or length of the structure), and on a factor, δ, specifying the relative displacement of the first floor. It is shown how this spectrum can be determined using existing empirical scaling equations for relative displacement spectra SD(T, ζ) and for peak velocity and peak acceleration of strong ground motion. These new spectra are illustrated for a horizontal component of a record in the near field of the 1994 Northridge earthquake. The results show that differential motions are more important for short period (stiff) than for longer period (flexible) structures, and for structures founded on softer ground (small shear wave velocity). © 1997 by John Wiley & Sons, Ltd.  相似文献   

16.
Design spectra including effect of rupture directivity in near-fault region   总被引:4,自引:1,他引:4  
In order to propose a seismic design spectrum that includes the effect of rupture directivity in the near-fault region, this study investigates the application of equivalent pulses to the parameter attenuation relationships developed for near-fault, forward-directivity motions. Near-fault ground motions are represented by equivalent pulses with different waveforms defined by a small number of parameters (peak acceleration, A, and velocity V; and pulse period, Tv). Dimensionless ratios between these parameters (e.g., ATv/V, VTv/D) and response spectral shapes and amplitudes are examined for different pulses to gain insight on their dependence on basic pulse waveforms. Ratios of ATv/V, VTv/D, and the ratio of pulse period to the period for peak spectral velocity (Tv-p) are utilized to quantify the difference between rock and soil sites for near-fault forward-directivity ground motions. The ATv/Vratio of recorded near-fault motions is substantially larger for rock sites than that for soil sites, while Tvp/Tv ratios are smaller at rock sites than at soil sites. Furthermore, using simple pulses and available predictive relationships for the pulse parameters, a preliminary model for the design acceleration response spectra for the near-fault region that includes the dependence on magnitude, rupture distance, and local site conditions are developed.  相似文献   

17.
Displacement response spectrum (DRS), as the input, is of great significance to the displacement-based design just like the acceleration response spectrum to the traditional force-based design. Although the procedure of performance-based, in particular the displacement-based design has achieved considerable development, there is not a general DRS covering an enough long period range for common seismic design yet. This paper develops a systematic ground motion data processing procedure for the purpose of correcting the noise in the earthquake records and generating consistent DRS for seismic design. An adaptive algorithm is proposed to determine the cutoff frequency of the high-pass digital filter. The DRS of more than 500 recorded earthquake ground motions are generated and they are classified into three groups according to the ratio of the peak ground acceleration to the peak ground velocity (A/V) and/or the ratio of the peak ground velocity to the peak ground displacement (V/D). In each group, all the ground motions are normalized with respect to a selected scaling factor. Their corresponding DRS are obtained and then averaged to get the mean and standard deviation DRS, which can be used for both deterministic and probabilistic displacement-based design.  相似文献   

18.
Hysteretic energy spectrum and damage control   总被引:1,自引:0,他引:1  
The inelastic response of single‐degree‐of‐freedom (SDOF) systems subjected to earthquake motions is studied and a method to derive hysteretic energy dissipation spectra is proposed. The amount of energy dissipated through inelastic deformation combined with other response parameters allow the estimation of the required deformation capacity to avoid collapse for a given design earthquake. In the first part of the study, a detailed analysis of correlation between energy and ground motion intensity indices is carried out to identify the indices to be used as scaling parameters and base line of the energy dissipation spectrum. The response of elastoplastic, bilinear, and stiffness degrading systems with 5 per cent damping, subjected to a world‐wide ensemble of 52 earthquake records is considered. The statistical analysis of the response data provides the factors for constructing the energy dissipation spectrum as well as the Newmark–Hall inelastic spectra. The combination of these spectra allows the estimation of the ultimate deformation capacity required to survive the design earthquake, capacity that can also be presented in spectral form as an example shows. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

19.
本文将确定性数值模拟方法与地震动预测方程相结合,提出了一种重大水电工程场址设定地震的地震动时程生成方法。该方法基于场址设定地震,首先采用地震动预测方程确定场址的场地相关反应谱;其次建立包含震源和场址的场地模型,通过确定性数值模拟方法生成场址地震动时程;最后对生成的场址地震动时程进行调整,使其反应谱与设计谱相一致,用于工程抗震分析。这一方法生成的地震动时程既考虑了震源机制、传播路径以及局部场地效应等物理背景,又与场地相关的设计地震反应谱保持一致,为重大工程抗震分析与评价提供了一种新的思路。  相似文献   

20.
A wavelet‐based random vibration theory has been developed for the non‐stationary seismic response of liquid storage tanks including soil interaction. The ground motion process has been characterized via estimates of statistical functionals of wavelet coefficients obtained from a single time history of ground accelerations. The tank–liquid–soil system has been modelled as a two‐degree‐of‐freedom (2‐DOF) system. The wavelet domain equations have been formulated and the wavelet coefficients of the required response state are obtained by solving two linear simultaneous algebraic equations. The explicit expression for the instantaneous power spectral density function (PSDF) in terms of the functionals of the input wavelet coefficients has been obtained. The moments of this PSDF are used to estimate the expected pseudo‐spectral acceleration (PSA) response of the tank. Parametric variations are carried out to study the effects of tank height, foundation natural frequency, shear wave velocity of soil and ratio of the mass of tank (including liquid) to the mass of foundation on the PSA responses of tanks. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号