首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
H. M. Poulos 《Natural Hazards》2010,54(3):1015-1023
Hurricanes are one of the major natural disturbances affecting human livelihoods in coastal zones worldwide. Assessing hurricane risk is an important step toward mitigating the impact of tropical storms on human life and property. This study uses NOAA’s historical tropical cyclone database (HURDAT or ‘best-track’), geographic information systems, and kernel smoothing techniques to generate spatially explicit hurricane risk maps for New England. Southern New England had the highest hurricane risk across the region for all storm intensities. Long Island, western Connecticut, western Massachusetts, and southern Cape Cod, Martha’s Vineyard, and Nantucket had high storm probabilities and wind speeds. Results from this study suggest that these locations may be of central importance for focusing risk amelioration resources along the Long Island and New England coastlines. This paper presents a simple methodology for hurricane risk assessment that could be applied to other regions where long-term spatial storm track data exist.  相似文献   

2.
Exposure of counties in the continental United States to tropical storm and hurricane conditions was determined using the historic record of storm tracks for the period 1851–2003. Two approaches were used to determine exposure: (1) cumulative number of hits, with a hit occurring when the storm’s path crosses a county and (2) cumulative exposure factor, which describes how much of the county has been exposed to tropical storm, hurricane, and intense hurricane-force winds. In both approaches the top 10 counties in terms of cumulative exposure are in coastal Florida, North Carolina, and Louisiana. An explanatory model was developed to describe the patterns in the documented exposure, which included distance to coast, latitude, longitude, size, and shape of the counties. Multivariate linear regression confirmed that much of the spatial variability in exposure to storm conditions can be explained with these simple parameters.  相似文献   

3.
Lu  Yunmeng  Liu  Tiezhong  Wang  Tiantian 《Natural Hazards》2021,106(3):2003-2024

Storm surge induced by hurricane is a major threat to the Gulf Coasts of the United States. A numerical modeling study was conducted to simulate the storm surge during Hurricane Michael, a category 5 hurricane that landed on the Florida Panhandle in 2018. A high-resolution model mesh was used in the ADCIRC hydrodynamic model to simulate storm surge and tides during the hurricane. Two parametric wind models, Holland 1980 model and Holland 2010 model, have been evaluated for their effects on the accuracy of storm surge modeling by comparing simulated and observed maximum water levels along the coast. The wind model parameters are determined by observed hurricane wind and pressure data. Results indicate that both Holland 1980 and Holland 2010 wind models produce reasonable accuracy in predicting maximum water level in Mexico Beach, with errors between 1 and 3.7%. Comparing to the observed peak water level of 4.74 m in Mexico Beach, Holland 1980 wind model with radius of 64-knot wind speed for parameter estimation results in the lowest error of 1%. For a given wind model, the wind profiles are also affected by the wind data used for parameter estimation. Away from hurricane eye wall, using radius of 64-knot wind speed for parameter estimation generally produces weaker wind than those using radius of 34-knot wind speed for parameter estimation. Comparing model simulated storm tides with 17 water marks observed along the coast, Holland 2010 wind model using radius of 34-knot wind speed for parameter estimation leads to the minimum mean absolute error. The results will provide a good reference for researchers to improve storm surge modeling. The validated model can be used to support coastal hazard mitigation planning.

  相似文献   

4.
Most of the countries around the North Indian Ocean are threatened by storm surges associated with severe tropical cyclones. The destruction due to the storm surge flooding is a serious concern along the coastal regions of India, Bangladesh, Myanmar, Pakistan, Sri Lanka, and Oman. Storm surges cause heavy loss of lives and property damage to the coastal structures and losses of agriculture which lead to annual economic losses in these countries. About 300,000 lives were lost in one of the most severe cyclones that hit Bangladesh (then East Pakistan) in November 1970. The Andhra Cyclone devastated part of the eastern coast of India, killing about 10,000 persons in November 1977. More recently, the Chittagong cyclone of April 1991 killed 140,000 people in Bangladesh, and the Orissa coast of India was struck by a severe cyclonic storm in October 1999, killing more than 15,000 people besides enormous loss to the property in the region. These and most of the world’s greatest natural disasters associated with the tropical cyclones have been directly attributed to storm surges. The main objective of this article is to highlight the recent developments in storm surge prediction in the Bay of Bengal and the Arabian Sea.  相似文献   

5.
Hurricane surge events have caused devastating damage in active-hurricane areas all over the world. The ability to predict surge elevations and to use this information for damage estimation is fundamental for saving lives and protecting property. In this study, we developed a framework for evaluating hurricane flood risk and identifying areas that are more prone to them. The approach is based on the joint probability method with optimal sampling (JPM-OS) using surge response functions (SRFs) (JPM-OS-SRF). Derived from a discrete set of high-fidelity storm surge simulations, SRFs are non-dimensional, physics-based empirical equations with an algebraic form, used to rapidly estimate surge as a function of hurricane parameters (i.e., central pressure, radius, forward speed, approach angle and landfall location). The advantage of an SRF-based approach is that a continuum of storm scenarios can be efficiently evaluated and used to estimate continuous probability density functions for surge extremes, producing more statistically stable surge hazard assessments without adding measurably to epistemic uncertainty. SRFs were developed along the coastline and then used to estimate maximum surge elevations with respect to a set of hurricane parameters. Integrating information such as ground elevation, property value and population with the JPM-OS-SRF allows quantification of storm surge-induced hazard impacts over the continuum of storm possibilities, yielding a framework to create the following risk-based products, which can be used to assist in hurricane hazard management and decision making: (1) expected annual loss maps; (2) flood damage versus return period relationships; and (3) affected business (e.g., number of business, number of employees) versus return period relationships. By employing several simplifying assumptions, the framework is demonstrated at three northern Gulf of Mexico study sites exhibiting similar surge hazard exposure. The framework results reveal Gulfport, MS, USA is at relatively more risk of economic loss than Corpus Christi, TX, USA, and Panama City, FL, USA. Note that economic processes are complex and very interrelated to most other human activities. Our intention here is to present a methodology to quantify the flood damage (i.e., infrastructure economic loss, number of businesses affected, number of employees in these affected businesses and sales volume in these affected businesses) but not to discuss the complex interactions of these damages with other economic activities and recovery plans.  相似文献   

6.
Phenomenal storm surge levels associated with cyclones are common in East Coast of India. The coastal regions of Andhra Pradesh are in rapid stride of myriad marine infrastructural developments. The safe elevations of coastal structures need a long-term assessment of storm surge conditions. Hence, past 50 years (1949–1998), tropical cyclones hit the Bay are obtained from Fleet Naval Meteorological & Oceanographic Center, USA, and analyzed to assess the storm surge experienced around Kakinada and along south Andhra Pradesh coast. In this paper, authors implemented Rankin Hydromet Vortex model and Bretschneider’s wind stress formulation to hindcast the surge levels. It is seen from the hindcast data that the November, 1977 cyclone has generated highest surge of the order of 1.98 m. Extreme value analysis is carried out using Weibull distribution for long-term prediction. The results reveal that the surge for 1 in 100-year return period is 2.0 m. Further the highest surge in 50 years generated by the severe cyclone (1977) is numerically simulated using hydrodynamic model of Mike-21. The simulation results show that the Krishnapatnam, Nizampatnam and south of Kakinada have experienced a surge of 1.0, 1.5 and 0.75 m, respectively.  相似文献   

7.
United States of America (US) Congress is considering a bill ‘H.R. 2555: Homeowners’ Defense Act of 2010’ to form National Catastrophe Risk Consortium, one of whose functions is to fund a National Catastrophe Fund to help public and insurance companies meet the liability claims from hurricane, fire, and blizzard. However, before the act is enacted into law by US Congress, the bill has to pass through House Financial Services Committee which takes into account the projected costs, disbursements, and the amount required to be appropriated for the task and its source. Using data for three catastrophes for the last 100 years, the 2011 claims for hurricane, fire, and blizzard in United States of America are estimated. For predicting acres burned and economic damage due to blizzards, a trend analysis and linear regression were carried out using Excel and GraphPad Prism. Poisson distribution was used to model hurricanes. The estimates for the different catastrophes are based on a 95% confidence interval. The cost to the National Catastrophe Fund for the liabilities of fire, blizzard, and hurricane comes to over 2 billion. Of this, the bulk cost arises from fire damage, followed by hurricane damage and blizzard damage.  相似文献   

8.

Hurricane surge events have caused devastating damage in active-hurricane areas all over the world. The ability to predict surge elevations and to use this information for damage estimation is fundamental for saving lives and protecting property. In this study, we developed a framework for evaluating hurricane flood risk and identifying areas that are more prone to them. The approach is based on the joint probability method with optimal sampling (JPM-OS) using surge response functions (SRFs) (JPM-OS-SRF). Derived from a discrete set of high-fidelity storm surge simulations, SRFs are non-dimensional, physics-based empirical equations with an algebraic form, used to rapidly estimate surge as a function of hurricane parameters (i.e., central pressure, radius, forward speed, approach angle and landfall location). The advantage of an SRF-based approach is that a continuum of storm scenarios can be efficiently evaluated and used to estimate continuous probability density functions for surge extremes, producing more statistically stable surge hazard assessments without adding measurably to epistemic uncertainty. SRFs were developed along the coastline and then used to estimate maximum surge elevations with respect to a set of hurricane parameters. Integrating information such as ground elevation, property value and population with the JPM-OS-SRF allows quantification of storm surge-induced hazard impacts over the continuum of storm possibilities, yielding a framework to create the following risk-based products, which can be used to assist in hurricane hazard management and decision making: (1) expected annual loss maps; (2) flood damage versus return period relationships; and (3) affected business (e.g., number of business, number of employees) versus return period relationships. By employing several simplifying assumptions, the framework is demonstrated at three northern Gulf of Mexico study sites exhibiting similar surge hazard exposure. The framework results reveal Gulfport, MS, USA is at relatively more risk of economic loss than Corpus Christi, TX, USA, and Panama City, FL, USA. Note that economic processes are complex and very interrelated to most other human activities. Our intention here is to present a methodology to quantify the flood damage (i.e., infrastructure economic loss, number of businesses affected, number of employees in these affected businesses and sales volume in these affected businesses) but not to discuss the complex interactions of these damages with other economic activities and recovery plans.

  相似文献   

9.
Hurricanes and tropical storms represent one of the major hazards in coastal communities. Storm surge generated by strong winds and low pressure from these systems have the potential to bring extensive flooding in coastal areas. In many cases, the damage caused by the storm surge may exceed the damage from the wind resulting in the total collapse of buildings. Therefore, in coastal areas, one of the sources for major structural damage could be due to scour, where the soil below the building that serves as the foundation is swept away by the movement of the water. The existing methodologies to forecast hurricane flood damage do not differentiate between the different damage mechanisms (e.g., inundation vs. scour). Currently, there are no tools available that predominantly focus on forecasting scour-related damage for buildings. Such a tool could provide significant advantages for planning and/or preparing emergency responses. Therefore, the focus of this study was to develop a methodology to predict possible scour depth due to hurricane storm surges using an automated ArcGIS tool that incorporates the expected hurricane conditions (flow depth, velocity, and flood duration), site-specific building information, and the associated soil types for the foundation. A case study from Monmouth County (NJ), where the scour damages from 2012 Hurricane Sandy were recorded after the storm, was used to evaluate the accuracy of the developed forecasting tool and to relate the scour depth to potential scour damage. The results indicate that the developed tool provides relatively consistent results with the field observations.  相似文献   

10.
Evaluation of coastal inundation hazard for present and future climates   总被引:2,自引:1,他引:1  
Coastal inundation from hurricane storm surges causes catastrophic damage to lives and property, as evidenced by recent hurricanes including Katrina and Wilma in 2005 and Ike in 2008. Changes in hurricane activity and sea level due to a warming climate, together with growing coastal population, are expected to increase the potential for loss of property and lives. Current inundation hazard maps: Base Flood Elevation maps and Maximum of Maximums are computationally expensive to create in order to fully represent the hurricane climatology, and do not account for climate change. This paper evaluates the coastal inundation hazard in Southwest Florida for present and future climates, using a high resolution storm surge modeling system, CH3D-SSMS, and an optimal storm ensemble with multivariate interpolation, while accounting for climate change. Storm surges associated with the optimal storms are simulated with CH3D-SSMS and the results are used to obtain the response to any storm via interpolation, allowing accurate representation of the hurricane climatology and efficient generation of hazard maps. Incorporating the impact of anticipated climate change on hurricane and sea level, the inundation maps for future climate scenarios are made and affected people and property estimated. The future climate scenarios produce little change to coastal inundation, due likely to the reduction in hurricane frequency, except when extreme sea level rise is included. Calculated coastal inundation due to sea level rise without using a coastal surge model is also determined and shown to significantly overestimate the inundation due to neglect of land dissipation.  相似文献   

11.
Pensacola Bay, Florida, was in the strong northeast quadrant of Hurricane Ivan when it made landfall on September 16, 2004 as a category 3 hurricane on the Saffir-Simpson scale. We present data describing the timeline and maximum height of the storm surge, the extent of flooding of coastal land, and the magnitude of the freshwater inflow pulse that followed the storm. We computed the magnitude of tidal flushing associated with the surge using a tidal prism model. We also evaluated hurricane effects on water quality using water quality surveys conducted 20 and 50 d after the storm, which we compared with a survey 14 d before landfall. We evaluated the scale of hurricane effects relative to normal variability using a 5-yr monthly record. Ivan's 3.5 m storm surge inundated 165 km2 of land, increasing the surface area of Pensacola Bay by 50% and its volume by 230%. The model suggests that 60% of the Bay's volume was flushed, initially increasing the average salinity of Bay waters from 23 to 30 and lowering nutrient and chlorophylla concentrations. Additional computations suggest that wind forcing was sufficient to completely mix the water column during the storm. Freshwater discharge from the largest river increased twentyfold during the subsequent 4 d, stimulating a modest phytoplankton bloom (chlorophyll up to 18 μg l−1) and maintaining hypoxia for several months. Although the immediate physical perturbation was extreme, the water quality effects that persisted beyond the first several days were within the normal range of variability for this system. In terms of water quality and phytoplankton productivity effects, this ecosystem appears to be quite resilient in the face of a severe hurricane effect.  相似文献   

12.
In the period between the end of October and the beginning of November 2007, the Dominican Republic was hit by the tropical storm Noel, then turned into hurricane in its movement toward the Californian coasts. The passage of Noel was accompanied by huge precipitation especially in the south-western part of the country. In some areas, the rainfall registered in 6 days exceeded 700 mm, i.e., more than two-thirds of the mean annual precipitation. The return periods calculated for this rainfall event vary greatly from region to region: while they locally reach 200 years, such as in San José de Ocoa (50 km west of Santo Domingo), in other areas, as for instance in the territory of the capital Santo Domingo, return periods do not exceed 20 years. The tropical storm caused huge damage both in terms of human victims and economic losses, related to diffused inundations and landslide phenomena, which may be attributed only partially to the exceptionality of the event. As a matter of fact, in many regions, the inadequate answer of the territory—widely characterized by serious problems of land degradation and an almost complete lack of territorial planning—appears to be the major responsible for the occurred negative effects. The impact assessment, based on the calculation of an Impact Index, confirms this statement.  相似文献   

13.
In response to the 2004 and 2005 hurricane seasons, surge risk assessment approaches have been re-evaluated to develop more rapid, reliable methods for predicting the risk associated with extreme hurricanes. Here, the development of dimensionless surge response functions relating surge to hurricane meteorological parameters is presented. Such response functions present an opportunity to maximize surge data usage and to improve statistical estimates of surge probability by providing a means for defining continuous probability density functions. A numerical modeling investigation was carried out for the Texas, USA coastline to develop physical scaling laws relating storm surge response with hurricane parameters including storm size, intensity, and track. It will be shown that these scaling laws successfully estimate the surge response at any arbitrary location for any arbitrary storm track within the study region. Such a prediction methodology has the potential to decrease numerical computation requirements by 75% for hurricane risk assessment studies.  相似文献   

14.
Records of very damaging snowstorms, those causing more than $25 million in property losses, across the United States were assessed to define the spatial and temporal dimensions of the nation’s snowstorm activity during 1949–2000. In this 52-year period 155 snowstorms occurred and caused losses totaling $21.6 billion (2000 dollars). The northeastern U.S. had the nation’s maximum storm occurrences (79 storms), total losses ($7.3 billion), and storm intensity. Two-thirds of all U.S. losses occurred in the Northeast, Southeast, and Central climate regions, and storm occurrences and losses were least in the western U.S. The incidence of storms peaked in the 1976–1985 period and exhibited no up or down trend during 1949–2000. However, national losses had a significant upward time trend, as did storm sizes and intensity. States with the greatest number of storms were New York (62) and Pennsylvania (58) with only 2 storms in Montana, Idaho, and Utah. Storm losses in the northeastern and southeastern U.S. had U-shaped time distributions with flat time trends for 1949–2000, but losses in the western regions and Deep South had distinct upward trends in losses and storm size. More than 90% of all storm losses in the western U.S. occurred after 1980. These findings indicating increased losses over time reflect that a rapidly growing population and vulnerability of more property at risk have been major factors affecting losses, and the lack of a change over time in snowstorm incidences suggests no change in climate during 1949–2000.  相似文献   

15.
Property insurance data available for 1949–2006 were assessed to get definitive measures of hurricane losses in the U.S. Catastrophes, events causing >$1 million in losses, were most frequent in the Southeast and South climate regions. Losses in these two regions totaled $127 billion, 85% of the nation’s total losses. During the period 1949–2006 there were 79 hurricane catastrophes, causing $150.6 billion in losses and averaging $2.6 billion per year. All aspects of these hurricanes showed increases in post-1990 years. Sizes of loss areas averaged one state in 1949–1967, but grew to 3 states during 1990–2006. Seven of the ten most damaging hurricanes came in 2004 (4) and 2005 (3). The number of hurricanes also peaked during 1984–2006, increasing from an annual average of 1.2 during 1949–1983 to 2.1 per year. Losses were $49.3 billion in 1991–2006, 32% of the 58-year total. Various reasons have been offered for such recent increases in hurricane losses including more hurricanes, more intense tropical storms, increased societal vulnerability in storm-prone areas, and a change in climate due to global warming, although this is debatable.  相似文献   

16.
Winter storms are a major weather problem in the United States and their losses have been rapidly increasing. A total of 202 catastrophic winter storms involving ice storms, blizzards, and snowstorms, each causing >$5 million in damages, occurred during 1949–2003, and their losses totaled $35.2 billion (2003 dollars). Catastrophic winter storms occurred in most parts of the contiguous United States, but were concentrated in the eastern half of the nation where 88% of all storm losses occurred. They were most frequent in the Northeast climate district (95 storms), and were least frequent in the West district (14 catastrophic storms). The annual average number of storms is 3.7 with a 1-year high of nine storms, and one year had no storms. Temporal distributions of storms and their losses exhibited considerable spatial variability across the nation. For example, when storms were very frequent in the Northeast, they were infrequent elsewhere, a result of spatial differences in storm-producing weather conditions over time. The time distribution of the nation’s 202 storms during 1949–2003 had a sizable downward trend, whereas the nation’s storm losses had a major upward trend for the 55-year period. This increase over time in losses, given the decrease in storm incidences, was a result of significant temporal increases in storm sizes and storm intensities. Increases in storm intensities were small in the northern sections of the nation, but doubled across the southern two-thirds of the nation, reflecting a climatic shift in conditions producing intense winter storms.  相似文献   

17.
Hurricane storm surge simulations for Tampa Bay   总被引:1,自引:0,他引:1  
Using a high resolution, three-dimensional, primitive equation, finite volume coastal ocean model with flooding and drying capabilities, supported by a merged bathymetric-topographic data set and driven by prototypical hurricane winds and atmospheric pressure fields, we investigated the storm surge responses for the Tampa Bay, Florida, vicinity and their sensitivities to point of landfall, direction and speed of approach, and intensity. All of these factors were found to be important. Flooding potential by wind stress and atmospheric pressure induced surge is significant for a category 2 hurricane and catastrophic for a category 4 hurricane. Tide, river, and wave effects are additive, making the potential for flood-induced damage even greater. Since storm surge sets up as a slope to the sea surface, the highest surge tends to occur over the upper reaches of the bay, Old Tampa Bay and Hillsborough Bay in particular. For point of landfall sensitivity, the worst case is when the hurricane center is positioned north of the bay mouth such that the maximum winds associated with the eye wall are at the bay mouth. Northerly (southerly) approaching storms yield larger (smaller) surges since the winds initially set up (set down) water level. As a hybrid between the landfall and direction sensitivity experiments, a storm transiting up the bay axis from southwest to northeast yields the smallest surge, debunking a misconception that this is the worst Tampa Bay flooding case. Hurricanes with slow (fast) translation speeds yield larger (smaller) surges within Tampa Bay due to the time required to redistribute mass.  相似文献   

18.
Hurricanes 2004: An overview of their characteristics and coastal change   总被引:2,自引:0,他引:2  
Four hurricanes battered the state of Florida during 2004, the most affecting any state since Texas endured four in 1884. Each of the storms changed the coast differently. Average shoreline change within the right front quadrant of hurricane force winds varied from 1 m of shoreline advance to 20 m of retreat, whereas average sand volume change varied from 11 to 66 m3 m−1 of net loss (erosion). These changes did not scale simply with hurricane intensity as described by the Saffir-Simpson Hurricane Scale. The strongest storm of the season, category 4 Hurricane Charley, had the least shoreline retreat. This was likely because of other factors like the storm's rapid forward speed and small size that generated a lower storm surge than expected. Two of the storms, Hurricanes Frances and Jeanne, affected nearly the same area on the Florida east coast just 3 wk apart. The first storm, Frances, although weaker than the second, caused greater shoreline retreat and sand volume erosion. As a consequence, Hurricane Frances may have stripped away protective beach and exposed dunes to direct wave attack during Jeanne, although there was significant dune erosion during both storms. The maximum shoreline change for all four hurricanes occurred during Ivan on the coasts of eastern Alabama and the Florida Panhandle. The net volume change across a barrier island within the Ivan impact zone approached zero because of massive overwash that approximately balanced erosion of the beach. These data from the 2004 hurricane season will prove useful in developing new ways to scale and predict coastal-change effects during hurricanes.  相似文献   

19.
Istanbul is home to 40% of the industrial facilities in Turkey. Thirty percent of the population working in industry lives in the city. Past earthquakes have evidenced that the structural reliability of residential and industrial buildings in the country is questionable. In the Marmara region the earthquake hazard is very high with a 2% annual probability of occurrence of a magnitude 7+ earthquake on the main Marmara fault. These facts make the management of industrial risks imperative for the reduction of socioeconomic losses. In this paper we present a first-order assessment of earthquake damage to the industry in Istanbul and raise issues for better characterization and quantification of industrial losses and management of urban industrial risks. This paper borrows from the project report entitled ‘Earthquake Risk Assessment for Industrial Facilities in Istanbul’. The full report can be found at http://www.koeri.boun.edu.tr/depremmuh.html under the link ‘Research and Applied Projects’.  相似文献   

20.
This paper presents petrographic, major element, and trace element data from high-potassium ‘shoshonitic’ rocks of Miocene age which intrude Eocene submarine basalts in southeastern Papua. The intrusives fall into two distinct but overlapping groups, a ‘near-saturated’ group ranging from gabbro to syenite with regular petrographic and chemical variations, which is either slightly nepheline normative or quartz normative, and a nepheline normative ‘undersaturated’ group which shows wide variations in texture, modal mineralogy, and chemistry. Biotite-bearing pyroxenites are associated with the intrusives but their genetic relationship to the intrusives is unknown. The intrusion of shoshonitic rocks at the beginning of a period of major tectonic activity in southeastern Papua shows that high-potassium magmas can be generated in areas of active tectonism and may form part of the island arc ‘magmatic’ association.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号