首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Abstract— The reaction between kamacite grains and H2 + CO gas mixture has been tested in the laboratory under experimental conditions presumed for interplanetary dust particle (IDP) formation in a nebular-type environment (H2:CO = 250:1; 5 × 10?4 atm total pressure, and 473 K). Carbon deposition, hydrocarbon production in the C1–C4 range, and the formation of an ?-carbide phase occur when well-defined model FeNi bcc alloy (kamacite) particles are exposed to a mixture of H2 + CO during 103 h. These results strongly support the idea that gas-solid reactions in the solar nebula during CO hydrogenation represent a plausible scenario for the formation of carbides and carbonaceous materials in IDPs, as well as for the production of hydrocarbons through Fischer-Tropsch-type reactions.  相似文献   

2.
Abstract— We studied the metallography of Fe‐Ni metal particles in 17 relatively unshocked ordinary chondrites and interpreted their microstructures using the results of P‐free, Fe‐Ni alloy cooling experiments (described in Reisener and Goldstein 2003). Two types of Fe‐Ni metal particles were observed in the chondrites: zoned taenite + kamacite particles and zoneless plessite particles, which lack systematic Ni zoning and consist of tetrataenite in a kamacite matrix. Both types of metal particles formed during metamorphism in a parent body from homogeneous, P‐poor taenite grains. The phase transformations during cooling from peak metamorphic temperatures were controlled by the presence or absence of grain boundaries in the taenite particles. Polycrystalline taenite particles transformed to zoned taenite + kamacite particles by kamacite nucleation at taenite/taenite grain boundaries during cooling. Monocrystalline taenite particles transformed to zoneless plessite particles by martensite formation and subsequent martensite decomposition to tetrataenite and kamacite during the same cooling process. The varying proportions of zoned taenite + kamacite particles and zoneless plessite particles in types 4–6 ordinary chondrites can be attributed to the conversion of polycrystalline taenite to monocrystalline taenite during metamorphism. Type 4 chondrites have no zoneless plessite particles because metamorphism was not intense enough to form monocrystalline taenite particles. Type 6 chondrites have larger and more abundant zoneless plessite particles than type 5 chondrites because intense metamorphism in type 6 chondrites generated more monocrystalline taenite particles. The distribution of zoneless plessite particles in ordinary chondrites is entirely consistent with our understanding of Fe‐Ni alloy phase transformations during cooling. The distribution cannot be explained by hot accretion‐autometamorphism, post‐metamorphic brecciation, or shock processing.  相似文献   

3.
David E. Woon  Jin-Young Park 《Icarus》2009,202(2):642-680
Barrierless reactions between unsaturated hydrocarbons and the ethynyl radical (C2H) can contribute to the growth of organic particulates in the haze-forming regions of Titan's atmosphere as well as in the gas giants and in the interstellar medium. We employed a combination of quantum chemistry and statistical rate theories to characterize reactions between ground state C2H and seven alkenes of the general structure R1R2CCR3R4 containing up to six carbons. The alkenes included ethene (C2H4); propene (C3H6); 1-butene, 2-butene, and isobutene (C4H8); trimethylethene (C5H10); and tetramethylethene (C6H12). Density functional theory calculations at the B3LYP/6-31 + G∗∗ level were used to characterize the adducts, isomers, products, and the intervening transition states for the addition-elimination reactions of all seven species. A multiple-well treatment was then employed to determine the outcome distributions for the range of temperatures and pressures relevant to Titan's atmosphere, the interstellar medium, and the outer atmospheres of the gas giants. Finally, trajectory calculations using an ROMP2 potential energy surface were used to calculate kinetic rates for the ethene + C2H reaction, where the agreement between the computed and measured values is very good. At low pressure and temperature, vinyl acetylene is a dominant product of several of the reactions, and all of the reactions yield at least one dominant product with both a double and a triple CC bond.  相似文献   

4.
Abstract— Electron microprobe studies of several H5 and H6 chondrites reveal that olivine crystals exhibit systematic Fe‐Mg zoning near olivine‐metal interfaces. Olivine Fa concentrations decrease by up to 2 mol% toward zoned taenite + kamacite particles (formed after relatively small amounts of taenite undercooling) and increase by up to 2 mol% toward zoneless plessite particles (formed after ?200 °C of taenite undercooling). The olivine zoning can be understood in terms of localized olivine‐orthopyroxene‐metal reactions during cooling from the peak metamorphic temperature. The silicate‐metal reactions were influenced by solid‐state metal phase transformations, and the two types of olivine zoning profiles resulted from variable amounts of taenite undercooling at temperatures <700 °C. The relevant silicate‐metal reactions are modeled using chemical thermodynamics. Systematic olivine Fe‐Mg zoning adjacent to metal is an expected consequence of retrograde silicate‐metal reactions, and the presence of such zoning provides strong evidence that the silicate and metallic minerals evolved in situ during cooling from the peak metamorphic temperature.  相似文献   

5.
Abstract— Oxidation of Fe metal and Gibeon meteorite metal to magnetite via the net reaction 3 Fe (metal) + 4 H2O (gas) = Fe3O4 (magnetite) + 4 H2 (gas) was experimentally studied at ambient atmospheric pressure at 91–442 °C in H2 and H2-He gas mixtures with H2/H2O molar ratios of ~4–41. The magnetite produced was identified by x-ray diffraction. Electron microprobe analyses showed 3.3 wt% NiO and 0.24 wt% CoO (presumably as NiFe2O4 and CoFe2O4) in magnetite formed from Gibeon metal. The NiO and CoO concentrations are higher than expected from equilibrium between metal and oxide under the experimental conditions. Elevated NiO contents in magnetite were also observed by metallurgists during initial stages of oxidation of Fe-Ni alloys. The rate constants for magnetite formation were calculated from the weight gain data using a constant surface area model and the Jander, Ginstling-Brounshtein, and Valensi-Carter models for powder reactions. Magnetite formation followed parabolic (i.e., diffusion-controlled) kinetics. The rate constants and apparent activation energies for Fe metal and Gibeon metal are: These rate constants are significantly smaller than the parabolic rate constants for FeS growth on Fe metal in H2S-H2 gas mixtures containing 1000 or 10 000 ppmv H2S (Lauretta et al., 1996a). The experimental data for Fe and Gibeon metal are used to model the reaction time of Fe alloy grains in the solar nebula as a function of grain size and temperature. The reaction times for 0.1–1 μm radius metal grains are generally within estimated lifetimes of the solar nebula (0.1–10 Ma). However, the calculated reaction times are probably lower limits, and further study of magnetite formation at larger H2/H2O ratios, at lower temperatures and pressures, and as a function of metal alloy composition is needed for further modeling of nebular magnetite formation.  相似文献   

6.
Experimental results on the spectral identification of new infrared absorption features and the changes of their absorbances produced through vacuum ultraviolet-extreme ultraviolet (VUV-EUV) photon-induced chemical reactions in the C2H2-H2O mixed ices at 10 K are obtained. To the best of our knowledge, this is the first time that EUV photons have been employed in the study of the photolysis of ice analogues. Two different compositions, i.e., C2H2:H2O=1:4 and 1:1, were investigated in this work. A tunable intense synchrotron radiation light source available at the Synchrotron Radiation Research Center, Hsinchu, Taiwan, was employed to provide the required VUV-EUV photons. In this study, the photon wavelengths selected to irradiate the icy samples corresponded to the prominent solar hydrogen, helium, and helium ion lines at 121.6 nm, 58.4 nm, and 30.4 nm, respectively. The photon dosages used were typically in the range of 1×1015 to 2×1017 photons. Molecular species produced and identified in the ice samples at 10 K resulting from VUV-EUV photon irradiation are mainly CO, CO2, CH4, C2H6, CH3OH, and H2CO. In addition to several unidentified features, we have tentatively assigned several absorption features to HCO, C3H8, and C2H5OH. While new molecular species were formed, the original reactants, i.e., H2O and C2H2, were detectably depleted due to their conversion to other species. The new chemical species produced by irradiation of photons at 30.4 nm and 58.4 nm can be different from those produced by the 121.6-nm photolysis. In general, the product column density of CO reaches saturation at a lower photon dosage than that of CO2. Furthermore, the production yield of CO is higher than that of CO2 in the photon irradiation. In the present study, we also observe that the photon-induced chemical reaction yields are high using photons at 30.4 and 58.4 nm. The results presented in this work are essential to our understanding of chemical synthesis in ice analogues, e.g., the cometary-type ices and icy satellites of planetary systems.  相似文献   

7.
We observed the products C4H5, C4H4, C3H3 and CH3 of the C(3P) + C3H6 reaction using product time-of-flight spectroscopy and selective photoionization. The identified species arise from the product channels C4H5 + H, C4H4 + 2H and C3H3 + CH3. Product isomers were identified via measurements of photoionization spectra and calculations of adiabatic ionization energy. Product C4H5 probably involves three isomers HCCCHCH3, H2CCCCH3 and H2CCCHCH2. In contrast, products C4H4 and C3H3 involve exclusively HCCCHCH2 and H2CCCH, respectively. Reaction mechanisms are unraveled with crossed-beam experiments and quantum-chemical calculations. The 3P carbon atom attacks the π orbital of propene (C3H6) to form a cyclic complex c-H2C(C)CHCH3 that rapidly opens the ring to form H2CCCHCH3 followed by decomposition to HCCCHCH3/H2CCCCH3/H2CCCHCH2 + H and H2CCCH + CH3; the corresponding branching ratios are 7:5:10:78 predicted with RRKM calculations at collision energy 4 kcal mol?1. Nascent C4H5 with enough internal energy further decomposes to HCCCHCH2 + H. Ratios of products C4H5, C4H4 and C3H3 are experimentally evaluated to be 17:8:75. This work provides a comprehensive look at product channels of the title reaction and gives implications for the formation of hydrocarbons in extra-terrestrial environments such as Titan and carbon-rich interstellar media. We suggest that the title reaction, hitherto excluded in any chemical networks, needs to be taken into account at least in the atmosphere of Titan and carbon-rich molecular clouds where rapid neutral–neutral reactions are dominant and carbon atoms and propene are abundant.  相似文献   

8.
A. Bar-Nun  M. Podolak 《Icarus》1985,64(1):112-124
The lightning energy dissipation rate on Jupiter from Voyager's observation is used, together with shock-tube experimental results and reasonable eddy diffusion coefficients for the various atmospheric layers, to compute the column abundances of lightning-produced CO, C2H2, and HCN. Shock-tube experiments on the hydrogenation of CO clearly rule out chemical “freezing” of CO at the 1064°K and 400-bar level and its subsequent upwelling to the upper atmosphere. Also, lightning in the water cloud cannot produce enough CO to meet its observed abundance. Hence, the CO is formed from an external source of oxygen or water. The production of acetylene both by lightning above the water cloud and by startospheric methane photolysis is required to maintain its observed abundance against destruction processes. This explains the decrease in the C2H2/C2H6 ratio from the equator to the pole, as observed in the IR. HCN production by lightning above the water cloud is sufficient to account for its observed abundance and meets the observational requirement of a tropospheric HCN source.  相似文献   

9.
There are relatively few H2CO mappings of large-area giant molecular cloud (GMCs). H2CO absorption lines are good tracers for low-temperature molecular clouds towards star formation regions. Thus, the aim of the study was to identify H2CO distributions in ambient molecular clouds. We investigated morphologic relations among 6-cm continuum brightness temperature (CBT) data and H2CO (111−110; Nanshan 25-m radio telescope), 12CO (1–0; 1.2-m CfA telescope) and midcourse space experiment (MSX) data, and considered the impact of background components on foreground clouds. We report simultaneous 6-cm H2CO absorption lines and H110α radio recombination line observations and give several large-area mappings at 4.8 GHz toward W49 (50′×50′), W3 (70′×90′), DR21/W75 (60′×90′) and NGC2024/NGC2023 (50′×100′) GMCs. By superimposing H2CO and 12CO contours onto the MSX color map, we can compare correlations. The resolution for H2CO, 12CO and MSX data was ∼10′, ∼8′ and ∼18.3″, respectively. Comparison of H2CO and 12CO contours, 8.28-μm MSX colorscale and CBT data revealed great morphological correlation in the large area, although there are some discrepancies between 12CO and H2CO peaks in small areas. The NGC2024/NGC2023 GMC is a large area of HII regions with a high CBT, but a H2CO cloud to the north is possible against the cosmic microwave background. A statistical diagram shows that 85.21% of H2CO absorption lines are distributed in the intensity range from −1.0 to 0 Jy and the ΔV range from 1.206 to 5 km s−1.  相似文献   

10.
The reactivity of C2(X1Σ+g) with simple saturated (CH4, C2H6 and C3H8) and unsaturated (C2H2 and C2H4) hydrocarbons has been studied in the gas phase over the temperature range 24-300 K using the CRESU (Cinétique de Réaction en Ecoulement Supersonique Uniforme or Reaction Kinetics in a Uniform Supersonic Flow) technique. All reactions have been found to be very rapid in this temperature range and the rate coefficients are typically ?10−10 cm3 molecule−1 s−1 with the exception of methane for which the rate coefficient is one order of magnitude lower: ∼10−11 cm3 molecule−1 s−1. These results have been analyzed in terms of potential destruction sources of C2(X1Σ+g) in the atmospheres of Titan and the Giant Planets. It appears that the rate coefficient of the reaction 1C2 + CH4 should be updated with our new data and that reactions with C2H2, C2H4 and C2H6 should also be included in the existing photochemical models.  相似文献   

11.
In this paper we study the effect of shock waves on the chemical structure of the interstellar clouds. A model of molecular cloud has been assumed. The chemistry is investigated in a time dependent model. Our chemical network contains 56 species in 251 reactions to including molecules of the elements H, O, C, N, S, and Si.The results indicate that the calculated fractional abundance of the molecules NS, H2O, CN, NH, CO, and SO agrees well with the observations. The molecules OH, H2S, CS, H2CS, HS, NO, SiO, CH, CH2, CH3, HCO, C2, and HCN reach high post-shock abundances.  相似文献   

12.
Abstract— An H5 chondrite was found near the village of Rumanová, Slovakia. dominant minerals of the meteorite are enstatite, olivine, kamacite, taenite and troilite. The minor minerals are oligoclase, augite, pigeonite, accessory chromite, whitlockite and chlorapatite. The composition of olivine (Fa19.0) and low-Ca orthopyroxene (Fs17.0), and the density and chemical composition of the meteorite correspond to those of an H chondrite. Normal zoning of Ni in metal grains and parallel planar fractures in olivine suggest weak shock metamorphism of stage S3. Due to moderate oxidation of metal, iron hydroxides were formed corresponding to weathering stage W2.  相似文献   

13.
A global-mean model of coupled neutral and ion chemistry on Titan has been developed. Unlike the previous coupled models, the model involves ambipolar diffusion and escape of ions, hydrodynamic escape of light species, and calculates the H2 and CO densities near the surface that were assigned in some previous models. We tried to reduce the numbers of species and reactions in the model and remove all species and reactions that weakly affect the observed species. Hydrocarbon chemistry is extended to C12H10 for neutrals and C10H+11 for ions but does not include PAHs. The model involves 415 reactions of 83 neutrals and 33 ions, effects of magnetospheric electrons, protons, and cosmic rays. UV absorption by Titan's haze was calculated using the Huygens observations and a code for the aggregate particles. Hydrocarbon, nitrile, and ion chemistries are strongly coupled on Titan, and attempt to calculate them separately (e.g., in models of ionospheric composition) may result in significant error. The model densities of various species are typically in good agreement with the observations except vertical profiles in the stratosphere that are steeper than the CIRS limb data. (A model with eddy diffusion that facilitates fitting to the CIRS limb data is considered as well.) The CO densities are supported by the O+ flux from Saturn's magnetosphere. The ionosphere includes a peak at 80 km formed by the cosmic rays, steplike layers at 500-700 and 700-900 km and a peak at 1060 km (SZA = 60°). Nighttime densities of major ions agree with the INMS data. Ion chemistry dominates in the production of bicyclic aromatic hydrocarbons above 600 km. The model estimates of heavy positive and negative ions are in reasonable agreement with the Cassini results. The major haze production is in the reactions C6H + C4H2, C3N + C4H2, and condensation of hydrocarbons below 100 km. Overall, precipitation rate of the photochemical products is equal to 4-7 kg cm−2 Byr−1 (50-90 m Byr−1 while the global-mean depth of the organic sediments is ∼3 m). Escape rates of methane and hydrogen are 2.9 and 1.4 kg cm−2 Byr−1, respectively. The model does not support the low C/N ratio observed by the Huygens ACP in Titan's haze.  相似文献   

14.
We have imaged several known molecular (CO) outflows in H2 v=1-0 S(1) and wide-band K in order to identify the molecular shocks associated with the acceleration of ambient gas by outflows from young stars. We detected H2 line emission in all the flows we observed: L 1157, VLA 1623, NGC 6334I, NGC 2264G, L 1641N and Haro 4-255. A comparison of the H2 data with CO outflow maps strongly suggests that prompt entrainment near the head of a collimated jet probably is the dominant mechanism for producing the CO outflows in these sources.  相似文献   

15.
The neutral gas environment of a comet is largely influenced by dissociation of parent molecules created at the surface of the comet and collisions of all the involved species. We compare the results from a kinetic model of the neutral cometary environment with measurements from the Neutral Mass Spectrometer and the Dust Impact Detection System onboard the Giotto spacecraft taken during the fly-by at Comet 1P/Halley in 1986. We also show that our model is in good agreement with contemporaneous measurements obtained by the International Ultraviolet Explorer, sounding rocket experiments, and various ground based observations.The model solves the Boltzmann equation with a Direct Simulation Monte Carlo technique (Tenishev, V., Combi, M., Davidsson, B. [2008]. Astrophys. J. 685, 659-677) by tracking trajectories of gas molecules and dust grains under the influence of the comet’s weak gravity field with momentum exchange among particles modeled in a probabilistic manner. The cometary nucleus is considered to be the source of dust and the parent species (in our model: H2O, CO, H2CO, CO2, CH3OH, C2H6, C2H4, C2H2, HCN, NH3, and CH4) in the coma. Subsequently our model also tracks the corresponding dissociation products (H, H2, O, OH, C, CH, CH2, CH3, N, NH, NH2, C2, C2H, C2H5, CN, and HCO) from the comet’s surface all the way out to 106 km.As a result we are able to further constrain cometary the gas production rates of CO (13%), CO2 (2.5%), and H2CO (1.5%) relative to water without invoking unknown extended sources.  相似文献   

16.

The Chelyabinsk meteorite sample of type LL5 was subjected to calcination in the specially constructed instrument in the temperature range 200–800°C in increments of 100°C. The composition of the obtained volatile constituents was examined on a chromatograph. Detected were: CO2, H2O, and N2 in concentrations of 5–40 μg/g of the sample; H2, CO, CH4, and H2S in concentrations of 0.1–2.0 μg/g. By observing changes in the selected component concentrations over time (up to 90 minutes), it was concluded that chemical reactions in the system between volatile components occur directly during outgassing.

  相似文献   

17.
We investigate, neutral-neutral radiative association reactions (C2+CO) and (C2+CS) for the formation of C3O and C3S respectively by DFT. Both the reactions are spin allowed and found to be exothermic and barrierless in nature. The product of these reactions are perfectly linear and the calculated rotational transitions are in good agreement with earlier published data. At the DFT/TZ2P level, the difference between the calculated rotational constant and experimental one is 0.064 % for C3O and 0.16 % for C3S. We also discussed the intrinsic and relative stability of these molecules.  相似文献   

18.
We investigated the parent volatile composition of the Oort cloud Comet C/2000 WM1 (LINEAR) on 23-25 November 2001, using the Near Infrared Echelle Spectrograph on the Keck II telescope. Flux-calibrated spectra, absolute production rates, and mixing ratios are presented for H2O, HCN, CH4, C2H2, C2H6, H2CO, CH3OH and CO. Compared with “organics-normal” comets, WM1 is moderately depleted in HCN, CH4 and CH3OH, and is even more depleted in C2H2 and CO. Its composition is thus intermediate to comets that are severely depleted in their organic volatile composition and those that exhibit “normal” organic volatile abundances. We argue that WM1 may have formed closer to the young Sun than “organics-normal” comets, but at greater distance than the severely depleted comets, before its ejection to the Oort cloud. The mixing ratios of the above-listed organic volatiles agree day-by-day for 23-25 November 2001. Thus, there is no evidence of macroscopic heterogeneity in chemistry of this comet’s nucleus at the achieved measurement accuracy. As the first comet to show moderate organic depletion in parent volatiles, WM1 represents an important addition to the emerging taxonomic classification based on chemical composition.  相似文献   

19.
The transition 111 ? 110 at 4.829 GHz of formaldehyde (H2CO) was the first one showing the anomalous absorption, i.e., the absorption against the cosmic microwave background. Anomalous absorption is an unusual phenomena. Structure of H2CC is very similar to that of H2CO and H2CS. Both H2CO and H2CS have already been identified in a number of cosmic objects. Though H2CC is not yet identified in the cosmic objects, we propose that H2CC may be identified in cool cosmic objects through its transition 111 ? 110 at 4.85 GHz in anomalous absorption.  相似文献   

20.
Sekiguchi  T.  Watanabe  J.  Fukushima  H.  Yamamoto  T.  Yamamoto  N. 《Earth, Moon, and Planets》1997,78(1-3):143-148
In order to monitor the various phenomena of comets, we continuously made the near-nucleus imaging observations of comets at National Astronomical Observatory, Mitaka. Here we report on the results of the observations of two spectacular comets. One is the analysis of photometry of C2 emission images in the coma of comet Hyakutake (C/1996 B2). By comparing the production rates of C2 radicals with C2H2 molecules, we conclude that the most C2 radicals were originated from C2H2, while some of them might be produced from other parents. The second item is the analysis of the morphology of C2 emission images in the coma of comet Hale-Bopp(C/1995 O1). By applying a ring masking technique, we detected asymmetrical distribution of the C2 molecules. The results of these two comets might suggest that a portion of C2 radicals were formed by the disintegration of the small organic dust grains, like the so-called CHON particles. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号