首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 4050 Å band of C3 was observed with Keck/HIRES echelle spectrometer during the Deep Impact encounter. We perform a 2-dimensional analysis of the exposures in order to study the spatial, spectral, and temporal changes in the emission spectrum of C3. The rotational population distribution changes after impact, beginning with an excitation temperature of ~45 K at impact and increasing for 2 hr up to a maximum of 61±5 K. From 2 to 4 hours after impact, the excitation temperature decreases to the pre-impact value. We measured the quiescent production rate of C3 before the encounter to be 1.0×1023 s?1, while 2 hours after impact we recorded a peak production rate of 1.7×1023 s?1. Whereas the excitation temperature returned to the pre-impact value during the observations, the production rate remained elevated, decreasing slowly, until the end of the 4 hr observations. These results are interpreted in terms of changing gas densities in the coma and short-term changes in the primary chemical production mechanism for C3.  相似文献   

2.
There are numerous complex organic molecules containing carbon and oxygen atoms which show either C–C–O or C–O–C bonding backbone. This paper examines altogether 51 C–C–O and C–O–C bonding backbone molecules from ten different isomeric groups (C2H2O, C3H2O, C2H4O, C2H4O2, C3H4O, C2H6O, C2H6O2, C3H6O, C3H6O2, C3H8O) to summarize the present astronomical status of these molecules. Accurate calculations of enthalpy of formation of these molecules show that the isomers with C–C–O backbone are more stable than the C–O–C backbone. Interestingly, a detailed analysis of relevant astromolecules indicates that most of the observed astromolecules have the C–C–O backbone. As a matter of fact, of all the molecules examined in this study, 80% of the astronomically observed species have the C–C–O backbone while only 20% have the C–O–C backbone. In general, interstellar abundance of a molecule is controlled by some factors such as kinetics, formation and destruction pathways,thermodynamics etc. A proper consideration of these factors could explain the observed abundances of these molecules. All these possible key factors are discussed in this paper.  相似文献   

3.
The University of Wisconsin–Madison and NASA–Goddard conducted acomprehensive multi-wavelength observing campaign of coma emissionsfrom comet Hale–Bopp, including OH 3080 Å, [O I] 6300 Å H2O+ 6158 Å, H Balmer-α 6563 Å, NH2 6330 Å, [C I] 9850 ÅCN 3879 Å, C2 5141 Å, C3 4062 Å,C I 1657 Å, and the UV and optical continua. In thiswork, we concentrate on the results of the H2O daughter studies.Our wide-field OH 3080 Å measured flux agrees with other, similarobservations and the expected value calculated from published waterproduction rates using standard H2O and OH photochemistry.However, the total [O I] 6300 Å flux determined spectroscopically overa similar field-of-view was a factor of 3-4 higher than expected.Narrow-band [O I] images show this excess came from beyond theH2O scale length, suggesting either a previously unknown source of[O I] or an error in the standard OH + ν→ O(1 D) + H branching ratio. The Hale–Bopp OH and[O I] distributions, both of which were imaged tocometocentric distances >1 × 106 km, were more spatiallyextended than those of comet Halley (after correcting for brightnessdifferences), suggesting a higher bulk outflow velocity. Evidence ofthe driving mechanism for this outflow is found in the Hα lineprofile, which was narrower than in comet Halley (though likelybecause of opacity effects, not as narrow as predicted by Monte-Carlomodels). This is consistent with greater collisional coupling betweenthe suprathermal H photodissociation products and Hale–Bopp's densecoma. Presumably because of mass loading of the solar wind by ionsand ions by the neutrals, the measured acceleration of H2O+ downthe ion tail was much smaller than in comet Halley. Tailwardextensions in the azimuthal distributions of OH 3080 Å,[O I], and [C I] , as well as a Doppler asymmetry in the[O I] line profile, suggest ion-neutral coupling. While thetailward extension in the OH can be explained by increased neutralacceleration, the [O I] 6300 Å and [C I] 9850 Å emissions show 13%and >200% excesses in this direction (respectively), suggesting anon-negligible contribution from dissociative recombination of CO+and/or electron collisional excitation. Thus, models including theeffects of photo- and collisional chemistry are necessary for the fullinterpretation of these data.  相似文献   

4.
We present results of polarimetry and photometry of comet C/2004 Q2 (Machholz) obtained with the 0.7-m telescope of Institute of Astronomy at the Karazin Kharkiv National University on February 3 and 4, and March 4 and 14, 2005. The observations were carried out with a one-channel photoelectric photometer-polarimeter. The IHW continuum UC (λ3650/80 Å), BC (λ4845/65 Å), RC (λ6840/90 Å) and emission filters CN (λ3871/50 Å), C3 (λ4060/70 Å), and C2 (λ5140/90 Å) were used. Degree of the comet polarization at phase angles ≈ 52° and ≈44° in the red continuum was close to that for so called dusty comets. The comet had a typical spectral gradient of polarization ΔP/Δλ=0.86% per 1000 Å. In the framework of the Haser model we have found the gas production rates Q of the CN, C3 and C2 species and the dust production rates Afρ on February 4 and March 14, 2005. The ratio log[Afρ (BC)/Q(CN)] was compared with data for other comets. The normalized spectral gradient of cometary dust S’(BC,RC) was 8.7%/1000 Å for February 4 and 17.0%/1000 Å for March 14. We conclude that comet C/2004 Q2 (Machholz) in many respects is a typical dusty comet.  相似文献   

5.
We observed the products C4H5, C4H4, C3H3 and CH3 of the C(3P) + C3H6 reaction using product time-of-flight spectroscopy and selective photoionization. The identified species arise from the product channels C4H5 + H, C4H4 + 2H and C3H3 + CH3. Product isomers were identified via measurements of photoionization spectra and calculations of adiabatic ionization energy. Product C4H5 probably involves three isomers HCCCHCH3, H2CCCCH3 and H2CCCHCH2. In contrast, products C4H4 and C3H3 involve exclusively HCCCHCH2 and H2CCCH, respectively. Reaction mechanisms are unraveled with crossed-beam experiments and quantum-chemical calculations. The 3P carbon atom attacks the π orbital of propene (C3H6) to form a cyclic complex c-H2C(C)CHCH3 that rapidly opens the ring to form H2CCCHCH3 followed by decomposition to HCCCHCH3/H2CCCCH3/H2CCCHCH2 + H and H2CCCH + CH3; the corresponding branching ratios are 7:5:10:78 predicted with RRKM calculations at collision energy 4 kcal mol?1. Nascent C4H5 with enough internal energy further decomposes to HCCCHCH2 + H. Ratios of products C4H5, C4H4 and C3H3 are experimentally evaluated to be 17:8:75. This work provides a comprehensive look at product channels of the title reaction and gives implications for the formation of hydrocarbons in extra-terrestrial environments such as Titan and carbon-rich interstellar media. We suggest that the title reaction, hitherto excluded in any chemical networks, needs to be taken into account at least in the atmosphere of Titan and carbon-rich molecular clouds where rapid neutral–neutral reactions are dominant and carbon atoms and propene are abundant.  相似文献   

6.
Lis  D. C.  Mehringer  D. M.  Benford  D.  Gardner  M.  Phillips  T. G.  Bockelée-Morvan  D.  Biver  N.  Colom  P.  Crovisier  J.  Despois  D.  Rauer  H. 《Earth, Moon, and Planets》1997,78(1-3):13-20
We present millimeter-wave observations of HNCO, HC3N, SO, NH2CHO, H13CN, and H3O+ in comet C/1995 O1 (Hale-Bopp)obtained in February–April, 1997 with the Caltech Submillimeter Observatory (CSO). HNCO, first detected at the CSO in comet C/1996B2 (Hyakutake), is securely confirmed in comet Hale-Bopp via observations of three rotational transitions. The derived abundance with respect to H2O is (4-13) × 10-4. HC3N, SO, and NH2CHO are detected for the first time in a comet. The fractional abundance of HC3N based on observations of three rotational lines is (1.9 ± 0.2) × 10-4. Four transitions of SO are detected and the derived fractional abundance, (2-8) ×10-3, is higher than the upper limits derived from UV observations of previous comets. Observations of NH2CHO imply a fractional abundance of (1-8) × 10-4. H3O is detected for the first time from the ground. The H13CN (3-2)transition is also detected and the derived HCN/H13CN abundance ratio is 90 ± 15, consistent with the terrestrial12C/13C ratio. In addition, a number of other molecular species are detected, including HNC, OCS, HCO+, CO+, and CN(the last two are first detections in a comet at radio wavelengths). This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
One-dimensional radial models of the chemistry in cometary comae have been constructed for heliocentric distances ranging from 2 to 0.125 AU. The coma's opacity to solar radiation is included and photolytic reaction rates are calculated. A parent volatile mixture similar to that found in interstellar molecular clouds is assumed. Profiles through the coma of number density and column density are presented for H2O, OH, O, CN, C2, C3, CH, and NH2. Whole-coma abundances are presented for NH2, CH, C2, C3, CN, OH, CO+, H2O+, CH+, N2+, and CO2+.  相似文献   

8.
We obtained spectra of comet C/1999 S4 (LINEAR) with the UAGS spectrograph(long slit and CCD) installed on the 1-m Zeiss reflector of the SAO of the RAS(Northern Caucuses, Nizhny Arkhyz) on July 23/24, 26/27 and 27/28, 2000. OnJuly 22/23, before the splitting of the cometary nucleus, several emission lines,such as C2, C3, CN, NH, CH, NH2, CO+, H2O+ wereclearly identified in the spectra. The inspections of the CCD spectra obtainedon July 27/28, 2000 reveals only very weak emission lines superimposed on thesolar reflection spectrum. From analyzing the surface brightness profile of C2 along the slit the velocity of separation of two secondary fragments (V = 10 km/h) and the energy of the fragment separation (E = 8.7 × 1015 erg) were estimated. A luminescence cometary continuum of 26% of the total continuum level is detected in the spectra of the comet at 5000 Å. Possible mechanisms of nucleus splitting are discussed.  相似文献   

9.
We used the NIRSPEC instrument on the Keck-2 telescope atop Mauna Kea, HI to observe Comet C/2001 A2 (LINEAR) in a Target of Opportunity campaign on UT 2001 July 9.5, 10.5 August 4.4, 10.5. We measured seven organic parent volatiles (C2H6, C2H2, HCN, CH4, CO, CH3OH, H2CO) simultaneously with H2O. We obtained absolute production rates and relative abundances for parent volatiles, and also measured rotational temperatures for several of these species. The chemical composition of C/2001 A2 differs substantially from any comet we have observed to date. The abundances we measure (relative to H2O) for C2H6, C2H2, HCN, and CH3OH are enriched by a factor of ∼2 to 3 in C/2001 A2 compared with most comets in our database. Other molecular species were detected within the typical range of measured abundances. C/2001 A2 presented a unique opportunity to study the chemistry of a fragmenting comet where pristine areas are exposed to the Sun.  相似文献   

10.
Simon Petrie 《Icarus》2004,171(1):199-209
We report results of quantum chemical calculations of Mg+/ligand bond dissociation energies involving ligands identified as major constituents of Titan's upper atmosphere. Trends identified in these results allow elucidation of the important bimolecular and termolecular reactions of Mg+, and of simple molecular ions containing Mg+, arising from meteoric infall into Titan's atmosphere. Our study highlights, and includes calculated rate coefficients for, crucial ligand-switching and ligand-stripping reactions which ensure that a dynamic equilibrium exists between atomic and molecular ions of Mg+. Neutralization of ionized meteoric Mg is expected to produce the radical MgNC in high yield. The highly polar MgNC radical should provide an excellent nucleation site for condensation of polar (e.g., HCN, CH3CN, and HC3N) and highly unsaturated (e.g., C2H2, C4H2, and C2N2) neutrals at comparatively high altitude, leading to precipitation of Mg-doped tholin-like material. The implications for Titan's prebiotic chemical evolution, of the surface deposition of such material (which may feasibly contain magnesium porphyrins, or other bioactive Mg-containing complexes) remain to be assessed.  相似文献   

11.
We report on simultaneous optical and infrared observations of the Halley Family comet 8P/Tuttle performed with the ESO Very Large Telescope. Such multi-wavelength and coordinated observations are a good example of what can be done to support space missions. From high resolution optical spectroscopy of the CN (0,0) 388 nm and NH2 (0,9,0) 610 nm bands using UVES at UT2 we determined 12C/13C = 90 ± 10 and 14N/15N = 150 ± 20 in CN and we derived a nuclear spin temperature of NH3 of 29 ± 1 K. These values are similar to those found in Oort-Cloud and Jupiter Family comets. From low resolution long slit spectroscopy with FORS1 at UT2 we determined the CN, C3 and C2 production rates and the parent and daughter scale lengths up to 5.2 105 km tailward. From high resolution IR spectroscopy with CRIRES at UT1 we measured simultaneously the production rates and mixing ratios of H2O, HCN, C2H2, CH4, C2H6, and CH3OH.  相似文献   

12.
The formation of cometary CN, C2 and C3 radicals is investigated in a photochemical reaction scheme. From an analysis of the observed brightness profiles of these radicals, it is shown that CN is formed as a primary product in the photolysis of its parent molecules, whereas C2 and C3 are formed via two-step photodissociation of their parents. We suggest that major parent of C2 is different species from those of CN and C3 on the basis of the difference of the variation with heliocentric distance of the sublimation rate of the parents of these radicals. Parent molecules and reaction schemes for the formation of these radicals are discussed.  相似文献   

13.
S.A. Haider 《Icarus》2005,177(1):196-216
In this paper we have studied the chemistry of C, H, N, O, and S compounds corresponding to ions of masses ?40 amu in the inner coma of the Comet 1P/Halley. The production rates, loss rates, and ion mass densities are calculated using the Analytical Yield Spectrum approach and solving coupled continuity equation controlled by the steady state photochemical equilibrium condition. The primary ionization sources in the model are solar EUV photons, photoelectrons, and auroral electrons of the solar wind origin. The chemical model couples ion-neutral, electron-neutral, photon-neutral and electron-ion reactions among ions, neutrals, electrons, and photons through over 600 chemical reactions. Of the 46 ions considered in the model the chemistry of 24 important ions (viz., CH3OH+2, H3CO+, NH+4, H3S+, H2CN+, H2O+, NH+3, CO+, C3H+3, OH+, H3O+, CH3OH+, C3H+4, C2H+2, C2H+, HCO+, S+, CH+3, H2S+, O+, C+, CH+4, C+2, and O+2) are discussed in this paper. At radial distances <1000 km, the electron density is mainly controlled by 6 ions, viz., NH+4, H3O+, CH3OH+2, H3S+, H2CN+, and H2O+, in the decreasing order of their relative contribution. However, at distances >1000 km, the 6 major ions are H3O+, CH3OH+2, H2O+, H3CO+, C2H+2, and NH+4; along with ions CO+, OH+, and HCO+, whose importance increases with further increase in the radial distance. It is found that at radial distances greater than ∼1000 km (±500 km) the major chemical processes that govern the production and loss of several of the important ions in the inner coma are different from those that dominate at distances below this value. The importance of photoelectron impact ionization, and the relative contributions of solar EUV, and auroral and photoelectron ionization sources in the inner coma are clearly revealed by the present study. The calculated ion mass densities are compared with the Giotto Ion Mass Spectrometer (IMS) and Neutral Mass Spectrometer (NMS) data at radial distances 1500, 3500, and 6000 km. There is a reasonable agreement between the model calculation and the Giotto measurements. The nine major peaks in the IMS spectra between masses 10 and 40 amu are reproduced fairly well by the model within a factor of two inside the ionopause. We have presented simple formulae for calculating densities of the nine major ions, which contribute to the nine major peaks in the IMS spectra, throughout the inner coma that will be useful in estimating their densities without running the complex chemical models.  相似文献   

14.
We present a preliminary analysis of medium resolution optical spectra of comet C/2000 WM1 (LINEAR) obtained on 22 November 2001. Theemission lines of the molecules C2, C3, CN, NH2,H2O+ and presumably CO (Asundi and triplet bands) and C2 -were identified in these spectra. By analysing the brightnessdistributions of the C2, C3, CN emission lines along theslit of the spectrograph we determined some physical parameters of theseneutrals, such as their lifetimes and expansion velocities inthe coma. The Franck–Condon factors for the CO Asundi bands and C2 - bands were calculated using a Morse potential model.  相似文献   

15.
Ethylene oxide (\(c\)-C2H4O) and its isomer acetaldehyde (CH3CHO) are important organic molecules because of their potential role in the formation of amino acids. The \(c\)-C2H4O molecule is a \(b\)-type asymmetric top molecule and owing to half-spin of each of the four hydrogen atoms, it has two distinct ortho (nuclear spin one) and para (nuclear spin zero and two) species. It has been detected in the Sgr B2N. Using the rotational and centrifugal distortion constants along with the electric dipole moment, we have calculated energies of 100 rotational levels of each of the ortho and para species of \(c\)-C2H4O molecule and the Einstein \(A\)-coefficients for radiative transitions between the levels. The values of Einstein \(A\)-coefficients along with the scaled values for the collisional rate coefficients are used for solving a set of statistical equilibrium equations coupled with the equations of radiative transfer.Brightness-temperatures of five rotational transitions of each of the ortho and para species of \(c\)-C2H4O molecule are investigated. Out of these ten transitions, three transitions are found to show the anomalous absorption and rest seven are found to show the emission feature. We have also investigated seven transitions observed unblended in the Sgr B2(N). We have found that the transitions \(3_{3 0} - 3_{2 1}\) (23.134 GHz), \(2_{2 0} - 2_{1 1}\) (15.603 GHz), \(3_{3 1} - 3_{2 2}\) (39.680 GHz) and \(1_{1 1} - 0_{0 0}\) (39.582 GHz) may play important role for the identification of ethylene oxide in a cosmic object.  相似文献   

16.
C/2006 P1 McNaught is a dynamically new comet from the Oort cloud that passed very close to the Sun, driving overall volatile production rates up to about 1031 molecules s−1. Post-perihelion observations were obtained in a target-of-opportunity campaign using the CSHELL instrument at the NASA Infrared Telescope Facility atop Mauna Kea, Hawaii, on UT 2007 January 27 and 28. Eight parent volatiles (H2O, CH4, C2H2, C2H6, HCN, CO, NH3, H2CO) and two daughter fragments (OH and NH2) were detected, enabling the determination of a rotational temperature and production rate for H2O on UT January 27 and absolute and relative production rates for all the detected parent species on UT January 28. The chemical composition measured in the coma suggests that this close perihelion passage stripped off processed outer surface layers, likely exposing relatively fresh primordial material during these observations. The post-perihelion abundances we measure for CO and CH4 (relative to H2O) are slightly depleted while C2H2, NH2 and possibly NH3 are enhanced when compared to the overall comet population. Measured abundances for other detected molecular species were within the range typically observed in comets.  相似文献   

17.
We have investigated the role of several ion-molecule reactions in the conversion of N2O5 to HNO3. In the proposed conversion, an N2O5 molecule would react with an H2O molecule clustered to an inert ion to produce two HNO3 molecules. Subsequent clustering of an H2O molecule to the inert ion would make the reaction catalytic. If such an ion-catalysed conversion of N2O5 to HNO3 occurs, it would probably play a role in the stratospheric chemistry at high latitudes in winter. In this paper we present reaction rate constant measurements made in a flowing afterglow apparatus for hydrated H3O+, H+(CH3CN)m (m = 1, 2, 3), and several negative ions reacting with N2O5. Slow rate constants were found for these ions for hydration levels that are predominant in the stratosphere. With the known stratospheric ion density, these slow rate constants preclude significant N2O5 conversion by ion-molecule reactions.  相似文献   

18.
In this paper we study the effect of shock waves on the chemical structure of the interstellar clouds. A model of molecular cloud has been assumed. The chemistry is investigated in a time dependent model. Our chemical network contains 56 species in 251 reactions to including molecules of the elements H, O, C, N, S, and Si.The results indicate that the calculated fractional abundance of the molecules NS, H2O, CN, NH, CO, and SO agrees well with the observations. The molecules OH, H2S, CS, H2CS, HS, NO, SiO, CH, CH2, CH3, HCO, C2, and HCN reach high post-shock abundances.  相似文献   

19.
It is proposed that energy transfer from excited O2 contributes to the production of O(1S) in aurora. An analysis is presented of the OI5577 Å emission in an IBC II+ aurora between 90 and 130 km. The volume emission rate of the emission at these altitudes is consistent with the production rate of O(1S) by energy transfer to O(3P) from N2 in the A3Σ2+ state and O2 in the A3Σu+, C3Δc1Σu? states, the N2A state being populated by direct electron impact excitation and BA cascade and the excited O2 states by direct excitation. Above the peak emission altitude (~105 km), energy transfer from N2A is the predominant production mechanism for O(1S). Below it, the contribution from quenching of the O2 states becomes significant.  相似文献   

20.
Following our recently published measurements of the rate coefficients for mutual neutralization, α, of the ionospherically important reactions NO+ + NO2?(α1) and NO+ + NO3?(α2) carried out in ion-ion flowing afterglow plasmas at 300 K, we have determined the mutual neutralization rates for the water cluster ion H3O+ · (H2O)3 with a mixture of several negative ions which are known to exist in the D region. The α coefficients for these cluster ion reactions do not differ significantly from alpha;1 and α2, all of these reactions having α ?6 × 10?8 cm3/sec which is significantly smaller than values usually adopted in ionospheric calculations. Current information on the ionic composition of the D region and the implications of the present results to de-ionization rate calculations are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号