首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 215 毫秒
1.
Abstract— The objective of this study was to identify and map possible source regions for all 5 known martian meteorite lithologies (basalt, lherzolite, clinopyroxenite, orthopyroxenite, and dunite) using data from the Mars Global Surveyor Thermal Emission Spectrometer (MGS TES). We deconvolved the TES data set using laboratory spectra of 6 martian meteorites (Los Angeles, Zagami, ALH A77005, Nakhla, ALH 84001, and Chassigny) as end members, along with atmospheric and surface spectra previously derived from TES data. Global maps (16 pixels/degree) of the distribution of each meteorite end member show that meteorite‐like compositions are not present at or above TES detectability limits over most of the planet's dust‐free regions. However, we have confidently identified local‐scale (100s‐1000s km2) concentrations of olivine‐ and orthopyroxene‐bearing materials similar to ALH A77005, Chassigny, and ALH 84001 in Nili Fossae, in and near Ganges Chasma, in the Argyre and Hellas basin rims, and in Eos Chasma. Nakhla‐like materials are identified near the detection limit throughout the eastern Valles Marineris region and portions of Syrtis Major. Basaltic shergottites were not detected in any spatially coherent areas at the scale of this study. Martian meteorite‐like lithologies represent only a minor portion of the dust‐free surface and, thus, are not representative of the bulk composition of the ancient crust. Meteorite‐like spectral signatures identified above TES detectability limits in more spatially restricted areas (<tens of km) are targets of ongoing analysis.  相似文献   

2.
Abstract— Spherical carbonate globules of similar composition, size, and radial Ca‐, Mg‐, and Fe‐zonation to those in martian meteorite Allan Hills (ALH) 84001 were precipitated from Mg‐rich, supersaturated solutions of Ca‐Mg‐Fe‐CO2‐H2O at 150 °C. The supersaturated solutions (pH ? 6–7) were prepared at room temperature and contained in TeflonTM‐lined stainless steel vessels, which were sealed and heated to 150 °C for 24 h. Experiments were also conducted at 25 °C and no globules comparable to those of ALH 84001 were precipitated. Instead, amorphous Fe‐rich carbonates were formed after 24 h and Mg‐Fe calcites formed after 96 h. These experiments suggest a possible low‐temperature inorganic origin for the carbonates in martian meteorite ALH 84001.  相似文献   

3.
Clay minerals, although ubiquitous on the ancient terrains of Mars, have not been observed in Martian meteorite Allan Hills (ALH) 84001, which is an orthopyroxenite sample of the early Martian crust with a secondary carbonate assemblage. We used a low‐temperature (20 °C) one‐dimensional (1‐D) transport thermochemical model to investigate the possible aqueous alteration processes that produced the carbonate assemblage of ALH 84001 while avoiding the coprecipitation of clay minerals. We found that the carbonate in ALH 84001 could have been produced in a process, whereby a low‐temperature (~20 °C) fluid, initially equilibrated with the early Martian atmosphere, moved through surficial clay mineral and silica‐rich layers, percolated through the parent rock of the meteorite, and precipitated carbonates (thereby decreasing the partial pressure of CO2) as it evaporated. This finding requires that before encountering the unweathered orthopyroxenite host of ALH 84001, the fluid permeated rock that became weathered during the process. We were able to predict the composition of the clay minerals formed during weathering, which included the dioctahedral smectite nontronite, kaolinite, and chlorite, all of which have been previously detected on Mars. We also calculated host rock replacement in local equilibrium conditions by the hydrated silicate talc, which is typically considered to be a higher temperature hydrothermal phase on Earth, but may have been a common constituent in the formation of Martian soils through pervasive aqueous alteration. Finally, goethite and magnetite were also found to precipitate in the secondary alteration assemblage, the latter associated with the generation of H2. Apparently, despite the limited water–rock interaction that must have led to the formation of the carbonates ~ 3.9 Ga ago, in the vicinity of the ALH 84001 source rocks, clay formation would have been widespread.  相似文献   

4.
Abstract— Dar al Gani 476, the 13th martian meteorite, was recovered from the Sahara in 1998. It is a basaltic shergottitic rock composed of olivine megacrysts reaching 5 mm (24 vol%) set in a finegrained groundmass of pyroxene (59 vol%) and maskelynitized plagioclase (12 vol%) with minor amounts of accessory phases (spinel, merrillite, ilmenite). Dar al Gani 476 is similar to lithology A of Elephant Moraine A79001 (EETA79001) in petrography and mineralogy, but is distinct in several aspects. Low‐Ca pyroxenes in the Dar al Gani 476 groundmass are more magnesian (En76Fs21 Wo3~En58Fs30Wo12) than those in lithology A of EETA79001 (En73Fs22Wo5~En45Fs43Wo12), rather similar to pyroxenes in lherzolitic martian meteorites (En76Fs21 Wo3~En63Fs22Wo15). Dar al Gani 476 olivine is less magnesian and shows a narrower compositional range (Fo76‐58) than EETA79001 olivine (Fo81‐53), and is also similar to olivines in lherzolitic martian meteorites (Fo74‐65). The orthopyroxene‐olivine‐chromite xenolith typical in the lithology A of EETA79001 is absent in Dar al Gani 476. It seems that Dar al Gani 476 crystallized from a slightly more primitive mafic magma than lithology A of EETA79001 and several phases (olivine, pyroxene, chromite, and ilmenite) in Dar al Gani 476 may have petrogenetic similarities to those of lherzolitic martian meteorites. Olivine megacrysts in Dar al Gani 476 are in disequilibrium with the bulk composition. The presence of fractured olivine grains in which the most Mg‐rich parts are in contact with the groundmass suggests that little diffusive modification of original olivine compositions occurred during cooling. This observation enabled us to estimate the cooling rates of Dar al Gani 476 and EETA79001 olivines, giving similar cooling rates of 0.03‐3 °C/h for Dar al Gani 476 and 0.05‐5 °C/h for EETA79001. This suggests that they were cooled near the surface (burial depth shallower than about 3 m at most), probably in lava flows during crystallization of groundmass. As is proposed for lithology A of EETA79001, it may be possible to consider that Dar al Gani 476 has an impact melt origin, a mixture of martian lherzolite and other martian rock (Queen Alexandra Range 94201, nakhlites?).  相似文献   

5.
Abstract— The martian meteorite, Allan Hills (ALH) 84001, contains D‐rich hydrogen of plausible martian origin (Leshin et al., 1996). The phase identity of the host(s) of this hydrogen are not well known and could include organic matter (McKay et al., 1996), phlogopite (Brearley, 2000), glass (Mittlefehldt, 1994) and/or other unidentified components of this rock. Previous ion microprobe studies indicate that much of the hydrogen in ALH 84001 as texturally associated with concretions of nominally anhydrous carbonates, glass and oxides (Boctor et al., 1998; Sugiura and Hoshino, 2000). We examined the physical and chemical properties of the host(s) of this hydrogen by stepped pyrolysis of variously pre‐treated subsamples. A continuous‐flow method of water reduction and mass spectrometry (Eiler and Kitchen, 2001) was used to permit detailed study of the small amounts of this hydrogen‐poor sample available for study. We find that the host(s) of D‐rich hydrogen released from ALH 84001 at relatively low temperatures (?500 °C) is soluble in orthophosphoric and dilute hydrochloric acids and undergoes near‐complete isotopic exchange with water within hours at temperatures of 200 to 300 °C. These characteristics are most consistent with the carrier phase(s) being a hydrous salt (e.g., carbonate, sulfate or halide); the thermal stability of this material is inconsistent with many examples of such minerals (e.g., gypsum) and instead suggests one or more relatively refractory hydrous carbonates (e.g., hydromagnesite). Hydrous salts (particularly hydrous carbonates) are common on the Earth only in evaporite, sabkha, and hydrocryogenic‐weathering environments; we suggest that much (if not all) of the “martian” hydrogen in ALH 84001 was introduced in analogous environments on or near the martian surface rather than through biological activity or hydrothermal alteration of silicates in the crust.  相似文献   

6.
Abstract— Considerable evidence points to a martian origin of the SNC meteorites. Noble gas isotopic compositions have been measured in most SNC meteorites. The 129Xe/132Xe vs. 84Kr/132Xe ratios in Chassigny, most shergottites, and lithology C of EETA 79001 define a linear array. This array is thought to be a mixing line between martian mantle and martian atmosphere. One of the SNC meteorites, Nakhla, contains a leachable component that has an elevated 129Xe/132Xe ratio relative to its 84Kr/132Xe ratio when compared to this approximately linear array. The leachable component probably consists in part of iddingsite, an alteration product produced by interaction of olivine with aqueous fluid at temperatures lower than 150 °C. The elevated Xe isotopic ratio may represent a distinct reservoir in the martian crust or mantle. More plausibly, it is elementally fractionated martian atmosphere. Formation of sediments fractionates the noble gases in the correct direction. The range of sediment/atmosphere fractionation factors is consistent with the elevated 129Xe/132Xe component in Nakhla being contained in iddingsite, a low temperature weathering product. The crystallization age of Nakhla is 1.3 Ga. Its low-shock state suggests that it was ejected from near the surface of Mars. As liquid water is required for the formation of iddingsite, these observations provide further evidence for the near surface existence of aqueous fluids on Mars more recently than 1.3 Ga.  相似文献   

7.
What we have learned about Mars from SNC meteorites   总被引:1,自引:0,他引:1  
Abstract— The SNC meteorites are thought to be igneous martian rocks, based on their young crystallization ages and a close match between the composition of gases implanted in them during shock and the atmosphere of Mars. A related meteorite, ALH84001, may be older and thus may represent ancient martian crust. These petrologically diverse basalts and ultramafic rocks are mostly cumulates, but their parent magmas share geochemical and radiogenic isotopic characteristics that suggest they may have formed by remelting the same mantle source region at different times. Information and inferences about martian geology drawn from these samples include the following: Planetary differentiation occurred early at ~4.5 Ga, probably concurrently with accretion. The martian mantle contains different abundances of moderately volatile and siderophile elements and is more Fe-rich than that of the Earth, which has implications for its mineralogy, density, and origin. The estimated core composition has a S abundance near the threshold value for inner core solidification. The former presence of a core dynamo may be suggested by remanent magnetization in SNC meteorites, although these rocks may have been magnetized during shock. The mineralogy of martian surface units, inferred from reflectance spectra, matches that of basaltic shergottites, but SNC lithologies thought to have crystallized in the subsurface are not presently recognized. The rheological properties of martian magmas are more accurately derived from these meteorites than from observations of martian flow morphology, although the sampled range of magma compositions is limited. Estimates of planetary water abundance and the amount of outgassed water based on these meteorites are contradictory but overlap estimates based on geological observations and atmospheric measurements. Stable isotope measurements indicate that the martian hydrosphere experienced only limited exchange with the lithosphere, but it is in isotopic equilibrium with the atmosphere and has been since 1.3 Ga. The isotopically heavy atmosphere/hydrosphere composition deduced from these rocks reflects a loss process more severe than current atmospheric evolution models, and the occurrence of carbonates in SNC meteorites suggests that they, rather than scapolite or hydrous carbonates, are the major crustal sink for CO2. Weathering products in SNC meteorites support the idea of limited alteration of the lithosphere by small volumes of saline, CO2-bearing water. Atmospheric composition and evolution are further constrained by noble gases in these meteorites, although Xe and Kr isotopes suggest different origins for the atmosphere. Planetary ejection of these rocks has promoted an advance in the understanding of impact physics, which has been accomplished by a model involving spallation during large cratering events. Ejection of all the SNC meteorites (except ALH84001) in one or two events may provide a plausible solution to most constraints imposed by chronology, geochemistry, and cosmic ray exposure, although problems remain with this scenario; ALH84001 may represent older martian crust sampled during a separate impact.  相似文献   

8.
Abstract— Phosphates in martian meteorites are important carriers of trace elements, although, they are volumetrically minor minerals. PO4 also has potential as a biomarker for life on Mars. Here, we report measurements of the U‐Th‐Pb systematics of phosphates in the martian meteorite ALH 84001 using the Sensitive High Resolution Ion MicroProbe (SHRIMP) installed at Hiroshima University, Japan. Eleven analyses of whitlockites and 1 analysis of apatite resulted in a total Pb/U isochron age of 4018 ± 81 Ma in the 238U/206Pb‐207Pb/206Pb‐204Pb/206 Pb 3‐D space, and a 232Th‐208Pb age of 3971 ± 860 Ma. These ages are consistent within a 95% confidence limit. This result is in agreement with the previously published Ar‐Ar shock age of 4.0 ± 0.1 Ga from maskelynite and other results of 3.8–4.3 Ga but are significantly different from the Sm‐Nd age of 4.50 ± 0.13 Ga based on the whole rock and pyroxene. Taking into account recent studies on textural and chemical evidence of phosphate, our result suggests that the shock metamorphic event defines the phosphate formation age of 4018 ± 81 Ma, and that since then, ALH 84001 has not experienced a long duration thermal metamorphism, which would reset the U‐Pb system in phosphates.  相似文献   

9.
Abstract— ALH84001, originally classified as a diogenite, is a coarse-grained, cataclastic, orthopyroxenite meteorite related to the martian (SNC) meteorites. The orthopyroxene is relatively uniform in composition, with a mean composition of Wo3.3En69.4Fs27.3. Minor phases are euhedral to subhedral chromite and interstitial maskelynite, An31.1Ab63.2Or5.7, with accessory augite, Wo42.2En45.1Fs12.7, apatite, pyrite and carbonates, Cc11.5Mg58.0Sd29.4Rd1.1. The pyroxenes and chromites in ALH84001 are similar in composition to these phases in EETA79001 lithology A megacrysts but are more homogeneous. Maskelynite is similar in composition to feldspars in the nakhlites and Chassigny. Two generations of carbonates are present, early (pre-shock) strongly zoned carbonates and late (post-shock) carbonates. The high Ca content of both types of carbonates indicates that they were formed at moderately high temperature, possibly ~700 °C. ALH84001 has a slightly LREE-depleted pattern with La 0.67x and Lu 1.85x CI abundances and with a negative Eu anomaly (Eu/Sm 0.56x CI). The uniform pyroxene composition is unusual for martian meteorites, and suggests that ALH84001 cooled more slowly than did the shergottites, nakhlites or Chassigny. The nearly monomineralic composition, coarse-grain size, homogenous orthopyroxene and chromite compositions, the interstitial maskelynite and apatite, and the REE pattern suggest that ALH84001 is a cumulate orthopyroxenite containing minor trapped, intercumulus material.  相似文献   

10.
Abstract— The Nakhla meteorite, commonly accepted to have originated from Mars, is a cumulus clinopyroxenite with ~10 vol% of Fe‐rich olivine. Almost all olivine grains in Nakhla contain dark lamellar inclusions (less than 2–3 μm wide). High‐resolution scanning and transmission electron microscopy revealed that the inclusions are complex intergrowths of augite and magnetite. Such a symplectic intergrowth of augite and magnetite in olivine was known in some terrestrial rocks, lunar rocks, and a few meteorites. The inclusion in Nakhla olivine is the first symplectite found in a martian rock. Apparently, the presence of Fe3+ in olivine under an oxidizing condition on Mars caused symplectic exsolution at high temperature (>900 °C) during cooling.  相似文献   

11.
Abstract— We report neutron activation analyses, including radiochemical determination of trace siderophile elements (Au, Ge, Ir, Ni, Os and Re), for three SNC/martian meteorites, and Os and Re results for numerous eucrites. Ratios such as Ga/Al in the SNC orthopyroxenite ALH84001 confirm its martian affinity—its many distinctive characteristics, most notably its near-primordial age, notwithstanding. To the list of ALH84001's idiosyncrasies can now be added extraordinarily low concentrations of Au, Ni and, especially, Re (17 pg/g), for a martian meteorite. We consider several possible origins for the anomalously low Re content in ALH84001, including metasomatism or alteration. The pyroxene-cumulate nature of this rock probably does not account for its low Re content. Other SNC meteorites are also cumulates. An examination of Re-Nd variations among terrestrial basalts and komatiites suggests that Re is compatible with mantle minerals in general and only incompatible with olivine (however, olivine dominates the mantle residuum, especially during komatiite genesis). Our preferred model is that the ALH84001 parent melt formed in a mantle source region that was far more Re-depleted, and/or at a substantially lower oxygen fugacity, than the sources of the young SNC meteorites. Such a contrast is consistent with models that replenish siderophile elements in planetary mantles by gradual admixture of late-accreting matter and similarly derive most planetary water (which serves as an oxidant) very late in accretion. According to this model, ALH84001 formed before the siderophile-rich matter and water had been mixed well into the martian interior. Possibly the martian mantle never became generally as Re-rich and/or oxidized as the source region(s) of the younger SNCs.  相似文献   

12.
Abstract— ALH84001 is an igneous meteorite, an orthopyroxenite of martian origin. It contains petrographic evidence of two shock metamorphic events, separated by thermal and chemical events. The evidence for two shock events suggests that ALH84001 is ancient and perhaps a sample of the martian highlands. From petrography and mineral chemistry, the history of ALH84001 must include: crystallization from magma, a first shock (impact) metamorphism, thermal metamorphism, low-temperature chemical alteration, and a second shock (impact) metamorphism. Originally, ALH84001 was igneous, an orthopyroxene-chromite cumulate. In the first shock event, the igneous rock was cut by melt-breccia or cataclastic veinlets, now bands of equigranular fine-grained pyroxene and other minerals (crush zones). Intact fragments of the cumulate were fractured and strained (now converted to polygonized zones). The subsequent thermal metamorphism (possibly related to the first shock) annealed the melt-breccia or cataclastic veinlets to their present granoblastic texture and permitted chemical homogenization of all mineral species present. The temperature of metamorphism was at least 875 °C, based on mineral thermometers. Next, Mg-Fe-Ca carbonates and pyrite replaced plagioclase in both clasts and granular bands, producing ellipsoidal carbonate globules with sub-micron scale compositional stratigraphy, repeated identically in all globules. The second shock event produced microfault offsets of carbonate stratigraphy and other mineral contacts, radial fractures around chromite and maskelynite, and strain birefringence in pyroxene. Maskelynite could not have been preserved from the first shock event, because it would have crystallized back to plagioclase. The martian source area for ALH84001 must permit this complex, multiple impact history. Very few craters on young igneous surfaces are on or near earlier impact features. It is more likely that ALH84001 was ejected from an old igneous unit (Hesperian or Noachian age), pocked by numerous impact craters over its long exposure at the martian surface.  相似文献   

13.
Abstract– Petrological and geochemical analyses of Miller Range (MIL) 03346 indicate that this meteorite originated from the same augitic cumulate layer(s) as the nakhlite Martian meteorites, but underwent rapid cooling prior to complete crystallization. As with the other nakhlites, MIL 03346 contains a secondary alteration assemblage, in this case consisting of iddingsite‐like alteration veins in olivine phenocrysts, Fe‐oxide alteration veins associated with the mesostasis, and Ca‐ and K,Fe‐sulfate veins. We compared the textural and mineralogical compositions of MIL 090030, 090032, and 090136 with MIL 03346, focusing on the composition and Raman spectra of the alteration assemblages. These observations indicate that the meteorites are paired, and that the preterrestrial olivine‐bound alteration assemblages were produced by weakly acidic brine. Although these alteration assemblages resemble similar assemblages in Nakhla, the absence of siderite and halite in the Miller Range nakhlites indicates that the parental alteration brine was comparatively HCO3? depleted, and less concentrated, than that which altered Nakhla. This indicates that the Miller Range nakhlite alteration brine experienced a separate evolutionary pathway to that which altered Nakhla, and therefore represents a separate branch of the Lafayette‐Nakhla evaporation sequence. Thin‐sections cut from the internal portions of these meteorites (away from any fusion crust or terrestrially exposed edge), contain little Ca‐sulfate (identified as gypsum), and no jarosite, whereas thin‐sections with terrestrially exposed edges have much higher sulfate abundances. These observations suggest that at least the majority of sulfate within the Miller Range nakhlites is terrestrially derived.  相似文献   

14.
Abstract— The major element, trace element, and isotopic compositional ranges of the martian basaltic meteorite source regions have been modeled assuming that planetary differentiation resulted from crystallization of a magma ocean. The models are based on low to high pressure phase relationships estimated from experimental runs and estimates of the composition of silicate Mars from the literature. These models attempt to constrain the mechanisms by which the martian meteorites obtained their superchondritic CaO/Al2O3 ratios and their source regions obtained their parent/daughter (87Rb/86Sr, 147Sm/144Nd, and 176Lu/177Hf) ratios calculated from the initial Sr, Nd, and Hf isotopic compositions of the meteorites. High pressure experiments suggest that majoritic garnet is the liquidus phase for Mars relevant compositions at or above 12 GPa. Early crystallization of this phase from a martian magma ocean yields a liquid characterized by an elevated CaO/Al2O3 ratio and a high Mg#. Olivine‐pyroxene‐garnet‐dominated cumulates that crystallize subsequently will also be characterized by superchondritic CaO/Al2O3 ratios. Melting of these cumulates yields liquids with major element compositions that are similar to calculated parental melts of the martian meteorites. Furthermore, crystallization models demonstrate that some of these cumulates have parent/daughter ratios that are similar to those calculated for the most incompatible‐element‐depleted source region (i.e., that of the meteorite Queen Alexandra [QUE] 94201). The incompatible‐element abundances of the most depleted (QUE 94201‐like) source region have also been calculated and provide an estimate of the composition of depleted martian mantle. The incompatible‐element pattern of depleted martian mantle calculated here is very similar to the pattern estimated for depleted Earth's mantle. Melting the depleted martian mantle composition reproduces the abundances of many incompatible elements in the parental melt of QUE 94201 (e.g., Ba, Th, K, P, Hf, Zr, and heavy rare earth elements) fairly well but does not reproduce the abundances of Rb, U, Ta and light rare earth elements. The source regions for meteorites such as Shergotty are successfully modeled as mixtures of depleted martian mantle and a late stage liquid trapped in the magma ocean cumulate pile. Melting of this hybrid source yields liquids with major element abundances and incompatible‐element patterns that are very similar to the Shergotty bulk rock.  相似文献   

15.
16.
Abstract By mineral and bulk compositions, the Lewis Cliff (LEW) 88516 meteorite is quite similar to the ALHA77005 martian meteorite. These two meteorites are not paired because their mineral compositions are distinct, they were found 500 km apart in ice fields with different sources for meteorites, and their terrestrial residence ages are different. Minerals in LEW88516 include: olivine, pyroxenes (low- and high-Ca), and maskelynite (after plagioclase); and the minor minerals chromite, whitlockite, ilmenite, and pyrrhotite. Mineral grains in LEW88516 range up to a few mm. Texturally, the meteorite is complex, with regions of olivine and chromite poikilitically enclosed in pyroxene, regions of interstitial basaltic texture, and glass-rich (shock) veinlets. Olivine compositions range from Fo64 to Fo70, (avg. Fo67), more ferroan and with more variation than in ALHA77005 (Fo69 to Fo73). Pyroxene compositions fall between En77Wo4 and En65Wo15 and in clusters near En63Wo9 and En53Wo33, on average more magnesian and with more variation than in ALHA77005. Shock features in LEW88516 range from weak deformation through complete melting. Bulk chemical analyses by modal recombination of electron microprobe analyses, instrumental neutron activation, and radiochemical neutron activation confirm that LEW88516 is more closely related to ALHA77005 than to other known martian meteorites. Key element abundance ratios are typical of martian meteorites, as is its non-chondritic rare earth pattern. Differences between the chemical compositions of LEW88516 and ALHA77005 are consistent with slight differences in the proportions of their constituent minerals and not from fundamental petrogenetic differences. Noble gas abundances in LEW88516, like those in ALHA77005, show modest excesses of 40Ar and 129Xe from trapped (shock-implanted) gas. As with other ALHA77005 and the shergottite martian meteorites (except EETA79001), noble gas isotope abundances in LEW88516 are consistent with exposure to cosmic rays for 2.5–3 Ma. The absence of substantial effects of shielding from cosmic rays suggest LEW88516 spent this time as an object no larger than a few cm in diameter.  相似文献   

17.
Abstract— In martian meteorite Allan Hills (ALH) 84001, this scanning electron microscope study was focused on the ferromagnesian minerals, which are extensively covered with nanometer‐size bodies mainly 30–100 nm in diameter. These bodies range from spheres to ovoids to caterpillar shapes and resemble, both in size and shape, nannobacteria that attack weathered rocks on Earth and that can be cultured. Dense colonies alternate with clean, smooth cleavage surfaces, possibly formed later. Statistical study shows that the distribution of presumed nannobacteria is very clustered. In addition to the small bodies, there are a few occurrences of ellipsoidal 200–400 nm objects, that are within the lower size range of “normal” earthly bacteria. We conclude that the nanobodies so abundant in ALH 84001 are indeed nannobacteria, confirming the initial assertion of McKay et al. (1996). However, whether these bodies originated on Mars or are Antarctic contamination remains a valid question.  相似文献   

18.
Launch of martian meteorites in oblique impacts   总被引:1,自引:0,他引:1  
A high-velocity oblique impact into the martian surface accelerates solid target material to escape velocity. A fraction of that material eventually falls as meteorites on Earth. For a long time they were called the SNC meteorites (Shergotty, Nakhla, and Chassigny). We study production of potential martian meteorites numerically within the frame of 3D hydrodynamic modeling. The ratio of the volume of escaping solid ejecta to projectile volume depends on the impact angle, impact velocity and the volatile content in the projectile and in the target. The size distribution of ejected fragments appears to be of crucial importance for the atmosphere-ejecta interaction in the case of a relatively small impact (with final crater size <3 km): 10-cm-sized particles are decelerated efficiently, while 30-50% of larger fragments could escape Mars. The results of numerical modeling are compared with shock metamorphic features in martian meteorites, their burial depth, and preatmospheric mass. Although it is impossible to accelerate ejected fragments to escape velocity without substantial compression (above 10 GPa), the maximum temperature increase in dunite (Chassigny) or ortopyroxenite (ALH84001) may be lower than 200 degree. This result is consistent with the observed chaotic magnetization of ALH84001. The probability of microbes' survival may be rather high even for the extreme conditions during the ejection process.  相似文献   

19.
Abstract— Mixing models using major and trace elements show that the bulk composition of lithology A (xenocryst-bearing magnesian basalt) of Elephant Moraine A79001 (EETA79001) can be reasonably approximated as a simple mixture of ~44% EETA79001 lithology B (ferroan basalt) and ~56% of Allan Hills A77005 (ALHA7705) light lithology (incompatible element-poor lherzolite). Micro-instrumental neutron activation analysis (INAA) data on xenocryst-free groundmass samples of lithology A show that about 20–25% of the melt phase could be dissolved lherzolite. The bulk and groundmass samples of lithology A have excesses in Au, which indicates either meteoritic contamination or addition by some unknown martian geochemical process. Previous workers have suggested that lithology A was formed by either assimilation of cumulates (like ALHA77005), by a basalt (like lithology B), or by mixing of basaltic and lherzolitic magmas. The former scenario is energetically improbable and unlikely to explain the normal Fe/Mg zonation in lithology A groundmass pyroxenes, whereas the latter scenario is unlikely to satisfy the constraints of the mixing model indicating the ultramafic component is poor in incompatible elements. We suggest rather that EETA79001 lithology A is an impact melt composed dominantly of basalt like lithology B and lherzolitic cumulates like the trace-element-poor fraction of ALHA77005 or Y-793605. This model can satisfy the energetic, petrologic, and geochemical constraints imposed by the samples. If EETA79001 lithology A is an impact melt, this would have considerable consequences for current models of martian petrologic evolution. It would call into question the generally accepted age of magmatism of martian basalts and preclude the use of lithology A groundmass as a primary martian basalt composition in experimental studies. Regardless, the latter is required because lithology A groundmass is a hybrid composition.  相似文献   

20.
Abstract— Thermodynamic calculations of metastable equilibria were used to evaluate the potential for abiotic synthesis of aliphatic and polycyclic aromatic hydrocarbons (PAHs) in the martian meteorite Allan Hills (ALH) 84001. The calculations show that PAHs and normal alkanes could form metastably from CO, CO2, and H2 below approximately 250–300°C during rapid cooling of trapped magmatic or impact‐generated gases. Depending on temperature, bulk composition, and oxidation‐reduction conditions, PAHs and normal alkanes can form simultaneously or separately. Moreover, PAHs can form at lower H/C ratios, higher CO/CO2 ratios, and higher temperatures than normal alkanes. Dry conditions with H/C ratios less than approximately 0.01–0.001 together with high CO/CO2 ratios also favor the formation of unalkylated PAHs. The observed abundance of PAHs, their low alkylation, and a variable but high aromatic to aliphatic ratio in ALH 84001 all correspond to low H/C and high CO/CO2 ratios in magmatic and impact gases and can be used to deduce spatial variations of these ratios. Some hydrocarbons could have been formed from trapped magmatic gases, especially if the cooling was fast enough to prevent reequilibration. We propose that subsequent impact heating(s) in ALH 84001 could have led to dissociation of ferrous carbonates to yield fine‐grain magnetite, formation of a CO‐rich local gas phase, reduction of water vapor to H2, reequilibration of the trapped magmatic gases, aromatization of hydrocarbons formed previously, and overprinting of the synthesis from magmatic gases, if any. Rapid cooling and high‐temperature quenching of CO‐, H2‐rich impact gases could have led to magnetite‐catalyzed hydrocarbon synthesis  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号