首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Abstract— We have determined the recoil range of spallation xenon produced by irradiation of Ba glass targets with ?1190 and ?268 MeV protons, using a catcher technique, where spallation products are measured in target and catcher foils. The inferred range for 126Xe produced in silicon carbide is ?0.19 μm, which implies retention of ?70% for 126Xe produced in “typical” presolar silicon carbide grains of 1 μm size. Recoil loss of spallation xenon poses a significantly smaller problem than loss of the spallation neon from SiC grains. Ranges differ for the various Xe isotopes and scale approximately linearly as function of the mass difference between the target element, Ba, and the product. As a consequence, SiC grains of various sizes will have differences in spallation Xe composition. In an additional experiment at ?66 MeV, where the recoil ranges of 22Na and 127Xe produced on Ba glass were determined using γ‐spectrometry, we found no evidence for recoil ranges being systematically different at this lower energy. We have used the new data to put constraints on the possible presolar age of the SiC grains analyzed for Xe by Lewis et al. (1994). Uncertainties in the composition of the approximately normal Xe component in SiC (Xe‐N) constitute the most serious problem in determining an age, surpassing remaining uncertainties in Xe retention and production rate. A possible interpretation is that spallation contributions are negligible and that trapped 124Xe/126Xe is ?5% lower in Xe‐N than in Q‐Xe. But also for other reasonable assumptions for the 124Xe/126Xe ratio in Xe‐N (e.g., as in Q‐Xe), inferred exposure ages are considerably shorter than theoretically expected lifetimes for interstellar grains. A short presolar age is in line with observations by others (appearance, grain size distribution) that indicate little processing in the interstellar medium (ISM) of surviving (crystalline) SiC. This may be due to amorphization of SiC in the ISM on a much shorter time scale than destruction, with amorphous SiC not surviving processing in the early solar system. A large supply of relatively young grains may be connected to the proposed starburst origin (Clayton 2003) for the parent stars of the mainstream SiC grains.  相似文献   

2.
Effects of aqueous alteration on primordial noble gas carriers were investigated by analyzing noble gases and determining presolar SiC abundances in insoluble organic matter (IOM) from four Tagish Lake meteorite (C2‐ung.) samples that experienced different degrees of aqueous alteration. The samples contained a mixture of primordial noble gases from phase Q and presolar nanodiamonds (HL, P3), SiC (Ne‐E[H]), and graphite (Ne‐E[L]). The second most altered sample (11i) had a ~2–3 times higher Ne‐E concentration than the other samples. The presolar SiC abundances in the samples were determined from NanoSIMS ion images and 11i had a SiC abundance twice that of the other samples. The heterogeneous distribution of SiC grains could be inherited from heterogeneous accretion or parent body alteration could have redistributed SiC grains. Closed system step etching (CSSE) was used to study noble gases in HNO3‐susceptible phases in the most and least altered samples. All Ne‐E carried by presolar SiC grains in the most altered sample was released during CSSE, while only a fraction of the Ne‐E was released from the least altered sample. This increased susceptibility to HNO3 likely represents a step toward degassing. Presolar graphite appears to have been partially degassed during aqueous alteration. Differences in the 4He/36Ar and 20Ne/36Ar ratios in gases released during CSSE could be due to gas release from presolar nanodiamonds, with more He and Ne being released in the more aqueously altered sample. Aqueous alteration changes the properties of presolar grains so that they react similar to phase Q in the laboratory, thereby altering the perceived composition of Q.  相似文献   

3.
Abstract— Abundances and isotopic compositions of noble gases in metal and graphite of the Bohumilitz IAB iron meteorite were measured. The abundance ratios of spallogenic components in metal reveal a 3He deficiency which is due to the diffusive loss of parent isotopes, that is, tritium (Tilles, 1963; Schultz, 1967). The diffusive loss likely has been induced by thermal heating by the Sun during cosmic‐ray exposure (~160 Ma; Lavielle et al, 1999). Thermal process such as impact‐induced partial loss may have affected the isotopic composition of spallogenic Ne. The 129Xe/131Xe ratio of cosmogenic components in the metal indicates an enhanced production of epi‐thermal neutrons. The abundance ratios of spallogenic components in the graphite reveal that it contained small amounts of metal and silicates. The isotopic composition of heavy noble gases in graphite itself was obtained from graphite treated with HF/HCl. The isotopic composition of the etched graphite shows that it contains two types of primordial Xe (i.e., Q‐Xe and El Taco Xe). The isotopic heterogeneity preserved in the Bohumilitz graphite indicates that the Bohumilitz graphite did not experience any high‐temperature event and, consequently, must have been emplaced into the metal at subsolidus temperatures. This situation is incompatible with an igneous model as well as the impact melting models for the IAB‐IIICD iron meteorites as proposed by Choi et al. (1995) and Wasson et al (1980).  相似文献   

4.
J. Ray  H.J. Völk 《Icarus》1983,54(3):406-416
Stimulated by recent studies indicating the possible survival of presolar grains in certain meteorites, the importance of recoil loss for the retention of spallation products in submicrometer-sized interstellar dust during irradiation by high-energy cosmic ray protons has been calculated. The model presented incorporates range straggling effects, a realistic distribution of interstellar grain sizes, and utilizes an accurate theoretical formalism for the fragmentation recoil momenta. Apart from an only vague understanding of possible grain composition, the greatest uncertainty concerns the intrinsic material density of interstellar dust which determines the recoil range for any given momentum. It is found that even allowing for a fivefold variation of density values, the retention against recoil is substantial: for example, some 20 to 50% of all 38Ar nuclei resulting from high-energy interaction remain trapped, depending on the target element considered. Retentivities for the various spallation reactions contributing to 38Ar have been calculated and are used to deduce an interstellar spallogenic production rate. The results are then considered in the light of recent discoveries of 40Ar39Ar apparent ages in excess of 4.53×109 years for some inclusions from the meteorite Allende. Limitations of both the theoretical and experimental efforts presently preclude conclusive statements regarding the question of interstellar grain survival. However, a procedure is outlined whereby this issue might be clarified in future investigations.  相似文献   

5.
Abstract— The HF/HCI‐resistant residues of the chondrites CM2 Cold Bokkeveld, CV3 (ox.) Grosnaja, CO3.4 Lancé, CO3.7 Isna, LL3.4 Chainpur, and H3.7 Dimmitt have been measured by closed‐system stepped etching (CSSE) in order to better characterise the noble gases in “phase Q”, a major carrier of primordial noble gases. All isotopic ratios in phase Q of the different meteorites are quite uniform, except for (20Ne/22Ne)Q. As already suggested by precise earlier measurements (Schelhaas et al., 1990; Wieler et al., 1991, 1992), (20Ne/22Ne)Q is the least uniform isotopic ratio of the Q noble gases. The data cluster ~10.1 for Cold Bokkeveld and Lancé and 10.7 for Chainpur, Grosnaja, and Dimmitt, respectively. No correlation of (20Ne/22Ne)Q with the classification or the alteration history of the meteorites has been found. The Ar, Kr, and Xe isotopic ratios for all six samples are identical within their uncertainties and similar to earlier Q determinations as well as to Ar‐Xe in ureilites. Thus, an unknown process probably accounts for the alteration of the originally incorporated Ne‐Q. The noble gas elemental compositions provide evidence that Q consists of at least two carbonaceous carrier phases “Q1” and “Q2” with slightly distinct chemical properties. Ratios (Ar/Xe)Q and (Kr/Xe)Q reflect both thermal metamorphism and aqueous alteration. These parent‐body processes have led to larger depletions of Ar and Kr relative to Xe. In contrast, meteorites that suffered severe aqueous alteration, such as the CM chondrites, do not show depletions of He and Ne relative to Ar but rather the highest (He/Ar)Q and (Ne/Ar)Q ratios. This suggests that Q1 is less susceptible to aqueous alteration than Q2. Both subphases may well have incorporated noble gases from the same reservoir, as indicated by the nearly constant, though very large, depletion of the lighter noble gases relative to solar abundances. However, the elemental ratios show that Q1 and Q2 must have acquired (or lost) noble gases in slightly different element proportions. Cold Bokkeveld suggests that Q1 may be related to presolar graphite. Phases Q1 and Q2 might be related to the subphases that have been suggested by Gros and Anders (1977). The distribution of the 20Ne/22Ne ratios cannot be attributed to the carriers Q1 and Q2. The residues of Chainpur and Cold Bokkeveld contain significant amounts of Ne‐E(L), and the data confirm the suggestion of Huss (1997) that the 22Ne‐E(L) content, and thus the presolar graphite abundances, are correlated with the metamorphic history of the meteorites.  相似文献   

6.
Abstract— We have carried out noble gas measurements on graphite from a large graphite‐metal inclusion in Canyon Diablo. The Ne data of the low‐temperature fractions lie on the mixing line between air and the spallogenic component, but those of high temperatures seem to lie on the mixing line between Ne‐HL and the spallogenic component. The Ar isotope data indicate the presence of Q in addition to air, spallogenic component and Ar‐HL. As the elemental concentration of Ne in Q is low, we could not detect the Ne‐Q from the Ne data. On the other hand, we could not observe Xe‐HL in our Xe data. As the Xe concentration and the Xe/Ne ratio in Q is much higher than that in the HL component, it is likely that only the contribution of Q is observed in the Xe data. Xenon isotopic data can be explained as a mixture of Q, air, and “El Taco Xe.” The Canyon Diablo graphite contains both HL and Q, very much like carbonaceous chondrites, retaining the signatures of various primordial noble gas components. This indicates that the graphite was formed in a primitive nebular environment and was not heated to high, igneous temperatures. Furthermore, a large excess of 129Xe was observed, which indicates that the graphite was formed at a very early stage of the solar system when 129I was still present. The HL/Q ratios in the graphite in Canyon Diablo are lower than those in carbonaceous chondrites, indicating that some thermal metamorphism occurred on the former. We estimated the temperature of the thermal metamorphism to about 500–600 °C from the difference of thermal retentivities of HL and Q. It is also noted that “El Taco Xe” is commonly observed in many IAB iron meteorites, but its presence in carbonaceous chondrites has not yet been established.  相似文献   

7.
Abstract— We report the discovery of presolar silicate, oxide (hibonite), and (possibly) SiC grains in four Antarctic micrometeorites (AMMs). The oxygen isotopic compositions of the eighteen presolar silicate (and one oxide) grains found are similar those observed previously in primitive meteorites and interplanetary dust particles, and indicate origins in oxygen‐rich red giant or asymptotic giant branch stars, or in supernovae. Four grains with anomalous C isotopic compositions were also detected. 12C/13C as well as Si ratios are similar to those of mainstream SiC grains; the N isotopic composition of one grain is also consistent with a mainstream SiC classification. Presolar silicate grains were found in three of the seven AMMs studied, and are heterogeneously distributed within these micrometeorites. Fourteen of the 18 presolar silicate grains and 3 of the 4 C‐anomalous grains were found within one AMM, T98G8. Presolar silicate‐bearing micrometeorites contain crystalline silicates that give sharp X‐ray diffractions and do not contain magnesiowüstite, which forms mainly through the decomposition of phyllosilicates and carbonates. The occurrence of this mineral in AMMs without presolar silicates suggests that secondary parent body processes probably determine the presence or absence of presolar silicates in Antarctic micrometeorites.  相似文献   

8.
Abstract— A series of experiments carried out by Koscheev et al. (1998, 2001, 2004, 2005) showed that the bimodal release of heavy noble gases from meteoritic nanodiamonds can be reproduced by a single implanted component. This paper investigates the implications of this result for interpreting the noble gas compositions of meteoritic nanodiamonds and for their origin and history. If the bimodal release exhibited by meteorite diamonds reflects release of the P3 noble gas component, then the composition inferred for the pure Xe‐HL end member changes slightly, the excesses of heavy krypton isotopes that define Kr‐H become less extreme, evidence appears for a Kr‐L component, and the nucleosynthetic contribution to argon becomes much smaller. After correction for cosmogenic neon inherited from the host meteorites, the neon in presolar diamonds shows evidence for pre‐irradiation, perhaps in interstellar space, and a nucleosynthetic component perhaps consistent with a supernova source. After a similar correction, helium also shows evidence for presolar irradiation and/or a nucleosynthetic component. For the case of presolar irradiation, due to the small size of the diamonds, a large entity must have been irradiated and recoiling product nuclei collected by the nanodiamonds. The high 3He/21Ne ratio (?43) calls for a target with a (C + O)/heavier‐element ratio higher than in chondritic abundances. Bulk gas + dust (cosmic abundances) meet this criteria, as would solids enriched in carbonaceous material. The long recoil range of cosmogenic 3He argues against a specific phase. The excess 3He in presolar diamonds may represent trapped cosmic rays rather than cosmogenic 3He produced in the vicinity of the diamond crystals.  相似文献   

9.
We report the development of a novel method to nondestructively identify presolar silicon carbide (SiC) grains with high initial 26Al/27Al ratios (>0.01) and extreme 13C‐enrichments (12C/13C ≤ 10) by backscattered electron‐energy dispersive X‐ray (EDX) and micro‐Raman analyses. Our survey of a large number of presolar SiC demonstrates that (1) ~80% of core‐collapse supernova and putative nova SiC can be identified by quantitative EDX and Raman analyses with >70% confidence; (2) ~90% of presolar SiC are predominantly 3C‐SiC, as indicated by their Raman transverse optical (TO) peak position and width; (3) presolar 3C‐SiC with 12C/13C ≤ 10 show lower Raman TO phonon frequencies compared to mainstream 3C‐SiC. The downward shifted phonon frequencies of the 13C‐enriched SiC with concomitant peak broadening are a natural consequence of isotope substitution. 13C‐enriched SiC can therefore be identified by micro‐Raman analysis; (4) larger shifts in the Raman TO peak position and width indicate deviations from the ideal 3C structure, including rare polytypes. Coordinated transmission electron microscopy analysis of one X and one mainstream SiC grain found them to be of 6H and 15R polytypes, respectively; (5) our correlated Raman and NanoSIMS study of mainstream SiC shows that high nitrogen content is a dominant factor in causing mainstream SiC Raman peak broadening without significant peak shifts; and (6) we found that the SiC condensation conditions in different stellar sites are astonishingly similar, except for X grains, which often condensed more rapidly and at higher atmospheric densities and temperatures, resulting in a higher fraction of grains with much downward shifted and broadened Raman TO peaks.  相似文献   

10.
We report a correlated NanoSIMS‐transmission electron microscopy study of the ungrouped carbonaceous chondrite Northwest Africa (NWA) 5958. We identified 10 presolar SiC grains, 2 likely presolar graphite grains, and 20 presolar silicate and/or oxide grains in NWA 5958. We suggest a slight modification of the commonly used classification system for presolar oxides and silicates that better reflects the grains’ likely stellar origins. The matrix‐normalized presolar SiC abundance in NWA 5958 is ppm (2σ) similar to that seen in many classes of unmetamorphosed chondrites. In contrast, the matrix‐normalized abundance of presolar O‐rich phases (silicates and oxides) is ppm (2σ), much lower than seen in interplanetary dust particles and the least‐altered CR, CO, and ungrouped C chondrites, but close to that reported for CM chondrites. NanoSIMS mapping also revealed an unusual 13C‐enriched (δ13C≈100–200‰) carbonaceous rim surrounding a 1.4 μm diameter phyllosilicate grain. Transmission electron microscopy (TEM) analysis of two presolar grains with a likely origin in asymptotic giant branch stars identified one as enstatite and one as Al‐Mg spinel with minor Cr. The enstatite grain amorphized rapidly under the electron beam, suggesting partial hydration. TEM data of NWA 5958 matrix confirm that it has experienced aqueous alteration and support the suggestion of Jacquet et al. (34) that this meteorite has affinities to CM2 chondrites.  相似文献   

11.
Abstract— We analyzed noble gases from 18 samples of weathering products (“iddingsite”) from the Lafayette meteorite. Potassium‐argon ages of 12 samples range from near zero to 670 ± 91 Ma. These ages confirm the martian origin of the iddingsite, but it is not clear whether any or all of the ages represent iddingsite formation as opposed to later alteration or incorporation of martian atmospheric 40Ar. In any case, because iddingsite formation requires liquid water, this data requires the presence of liquid water near the surface of Mars at least as recently as 1300 Ma ago, and probably as recently as 650 Ma ago. Krypton and Xe analysis of a single 34 μg sample indicates the presence of fractionated martian atmosphere within the iddingsite. This also confirms the martian origin of the iddingsite. The mechanism of incorporation could either be through interaction with liquid water during iddingsite formation or a result of shock implantation of adsorbed atmospheric gas. Our strongest conclusion is that the iddingsite in Lafayette formed on Mars, in agreement with the microstratigraphic arguments of Gooding et al. (1991) and Treiman et al. (1993). A preterrestrial origin of the iddingsite is required both by the many non‐zero K‐Ar ages and by the presence of Xe that is isotopically distinct from any terrestrial Xe. The Xe is accompanied by Kr, but the Kr and Xe have been fractionated if they are derived from the present martian atmosphere. This is presumably the result of either incorporation via interaction with liquid water (Drake et al., 1994; Bogard and Garrison, 1998) or by adsorption from the martian atmosphere, perhaps accompanied by shock (see also Gilmour et al., 1998, 1999). Although the iddingsite is enriched in Kr and Xe compared to whole‐rock analyses, it is not clear whether iddingsite is the dominant carrier of the atmospheric‐derived gas (Drake et al., 1994) or merely a minor carrier (Gilmour et al., 1999). Our 40Ar‐39Ar experiment was disappointing, in that it mostly served to confirm that the iddingsite, which contains fine‐grained clays, is susceptible to recoil loss of 39Ar during irradiation. Only one sample of five gave a clear signal of radiogenic or extraterrestrial 40Ar, and that was only by 3°. Potassium‐argon ages of the second set of samples were more successful, ranging from near 0 to 670 ± 91 Ma. It is not clear whether any or all of the ages represent iddingsite formation, as opposed to later alteration. The fact that a Rb‐Sr experiment (Shih et al., 1998) gave an apparent age for iddingsite of 679 ± 66 Ma (2a) suggests that perhaps formation of iddingsite occurred (or began) ~650 Ma ago and that some samples either formed, or were thermally altered, later. The ages could be even younger than 650 Ma, if the samples have incorporated martian atmospheric 40Ar. This means that liquid water was certainly present on Mars in the last 1300 Ma (the formation age of Lafayette), and probably within the last 650 Ma.  相似文献   

12.
We investigated the inventory of presolar silicate, oxide, and silicon carbide (SiC) grains of fine‐grained chondrule rims in six Mighei‐type (CM) carbonaceous chondrites (Banten, Jbilet Winselwan, Maribo, Murchison, Murray and Yamato 791198), and the CM‐related carbonaceous chondrite Sutter's Mill. Sixteen O‐anomalous grains (nine silicates, six oxides) were detected, corresponding to a combined matrix‐normalized abundance of ~18 ppm, together with 21 presolar SiC grains (~42 ppm). Twelve of the O‐rich grains are enriched in 17O, and could originate from low‐mass asymptotic giant branch stars. One grain is enriched in 17O and significantly depleted in 18O, indicative of additional cool bottom processing or hot bottom burning in its stellar parent, and three grains are of likely core‐collapse supernova origin showing enhanced 18O/16O ratios relative to the solar system ratio. We find a presolar silicate/oxide ratio of 1.5, significantly lower than the ratios typically observed for chondritic meteorites. This may indicate a higher degree of aqueous alteration in the studied meteorites, or hint at a heterogeneous distribution of presolar silicates and oxides in the solar nebula. Nevertheless, the low O‐anomalous grain abundance is consistent with aqueous alteration occurring in the protosolar nebula and/or on the respective parent bodies. Six O‐rich presolar grains were studied by Auger Electron Spectroscopy, revealing two Fe‐rich silicates, one forsterite‐like Mg‐rich silicate, two Al‐oxides with spinel‐like compositions, and one Fe‐(Mg‐)oxide. Scanning electron and transmission electron microscopic investigation of a relatively large silicate grain (490 nm × 735 nm) revealed that it was crystalline åkermanite (Ca2Mg[Si2O7]) or a an åkermanite‐diopside (MgCaSi2O6) intergrowth.  相似文献   

13.
We present results of FIB–TEM studies of 12 Stardust analog Al foil craters which were created by firing refractory Si and Ti carbide and nitride grains into Al foils at 6.05 km s?1 with a light‐gas gun to simulate capture of cometary grains by the Stardust mission. These foils were prepared primarily to understand the low presolar grain abundances (both SiC and silicates) measured by SIMS in Stardust Al foil samples. Our results demonstrate the intact survival of submicron SiC, TiC, TiN, and less‐refractory Si3N4 grains. In small (<2 μm) craters that are formed by single grain impacts, the entire impacting crystalline grain is often preserved intact with minimal modification. While they also survive in crystalline form, grains at the bottom of larger craters (>5 μm) are typically fragmented and are somewhat flattened in the direction of impact due to partial melting and/or plastic deformation. The low presolar grain abundance estimates derived from SIMS measurements of large craters (mostly >50 μm) likely result from greater modification of these impactors (i.e., melting and isotopic dilution), due to higher peak temperatures/pressures in these crater impacts. The better survivability of grains in smaller craters suggests that more accurate presolar grain estimates may be achievable through measurement of such craters. It also suggests small craters can provide a complementary method of study of the Wild 2 fine fraction, especially for refractory CAI‐like minerals.  相似文献   

14.
Abstract– We report on the microstructure, crystallography, chemistry, and isotopic compositions of seven SiC X grains and two mainstream grains from the Murchison meteorite. TEM crystallographic analysis revealed that the X grains (approximately 3 μm) are composed of many small crystals (24–457 nm), while the similarly sized mainstream grains are composed of only a few crystals (0.5–1.7 μm). The difference in crystal size likely results from differences in their formation environments: the X grain crystals evidently formed under conditions of greater supersaturation and rapid growth compared to their mainstream counterparts. However, the same polytypes are observed in both mainstream and X grains. Six X grains and both mainstream grains are entirely the 3C‐SiC polytype and one X grain is an intergrowth of the 3C‐SiC and 2H‐SiC polytypes. EDXS measurements indicate relatively high Mg content in the X grains (≲5 atomic%), while Mg was undetectable in the mainstream grains. The high Mg content is probably from the decay of 26Al into 26Mg. Estimates of the 26Al/27Al ratios, which range from 0.44–0.67, were made from elemental Mg/Al ratios. This range is consistent with the 26Al/27Al ratios inferred from previous isotopic measurements of X grains. We also report the first direct observations of subgrains in X grains, including the first silicides [(Fe,Ni)nSim]. Diffraction data do not match any previously observed presolar phases, but are a good fit to silicides, which are predicted stable SN condensates. Eight subgrains with highly variable Ni/Fe ratios (0.12–1.60) were observed in two X grains.  相似文献   

15.
Our detailed mineralogical, elemental, and isotopic study of the Miller Range (MIL) 07687 meteorite showed that, although this meteorite has affinities to CO chondrites, it also exhibits sufficient differences to warrant classification as an ungrouped carbonaceous chondrite. The most notable feature of MIL 07687 is the presence of two distinct matrix lithologies that result from highly localized aqueous alteration. One of these lithologies is Fe‐rich and exhibits evidence for interaction with water, including the presence of fibrous (dendritic) ferrihydrite. The other lithology, which is Fe‐poor, appears to represent relatively unaltered protolith material. MIL 07687 has presolar grain abundances consistent with those observed in other modestly altered carbonaceous chondrites: the overall abundance of O‐rich presolar grains is 137 ± 3 ppm and the overall abundance of SiC grains is 71 ± 11 ppm. However, there is a large difference in the observed O‐rich and SiC grain number densities between altered and unaltered areas, reflecting partial destruction of presolar grains (both O‐ and C‐rich grains) due to the aqueous alteration experienced by MIL 07687 under highly oxidizing conditions. Detailed coordinated NanoSIMS‐TEM analysis of a large hotspot composed of an isotopically normal core surrounded by a rim composed of 17O‐rich grains is consistent with either original condensation of the core and surrounding grains in the same parent AGB star, or with grain accretion in the ISM or solar nebula.  相似文献   

16.
The Sutter's Mill (SM) carbonaceous chondrite is a regolith breccia, composed predominantly of CM2 clasts with varying degrees of aqueous alteration and thermal metamorphism. An investigation of presolar grains in four Sutter's Mill sections, SM43, SM51, SM2‐4, and SM18, was carried out using NanoSIMS ion mapping technique. A total of 37 C‐anomalous grains and one O‐anomalous grain have been identified, indicating an abundance of 63 ppm for presolar C‐anomalous grains and 2 ppm for presolar oxides. Thirty‐one silicon carbide (SiC), five carbonaceous grains, and one Al‐oxide (Al2O3) were confirmed based on their elemental compositions determined by C‐N‐Si and O‐Si‐Mg‐Al isotopic measurements. The overall abundance of SiC grains in Sutter's Mill (55 ppm) is consistent with those in other CM chondrites. The absence of presolar silicates in Sutter's Mill suggests that they were destroyed by aqueous alteration on the parent asteroid. Furthermore, SM2‐4 shows heterogeneous distributions of presolar SiC grains (12–54 ppm) in different matrix areas, indicating that the fine‐grained matrix clasts come from different sources, with various thermal histories, in the solar nebula.  相似文献   

17.
We report on the investigation of presolar grain inventories of hydrated lithic clasts in three metal-rich carbonaceous chondrites from the CR clan, Acfer 182 (CH3), Isheyevo (CH3/CBb3), and Lewis Cliff (LEW) 85332 (C3-un), as well as the carbon- and nitrogen-isotopic compositions of the fine-grained clast material. Eleven presolar silicate grains as well as nine presolar silicon carbide (SiC) grains were identified in the clasts. Presolar silicate abundances range from 4 to 22 parts per million (ppm), significantly lower than in pristine meteorites and interplanetary dust particles (IDP), and comparable to recent findings for CM2s and CR2 interchondrule matrix. SiC concentrations lie between 9 and 23 ppm, and are comparable to the values for CI, CM, and CR chondrites. The results of our investigation suggest similar alteration pathways for the clast material, the interchondrule matrix of the CR2 chondrites, and the fine-grained fraction of CM2 chondrites. Fine-grained matter of all three meteorites contains moderate to high 15N-enrichments (~50‰ ≤ δ15N ≤ ~1600‰) compared to the terrestrial value, indicating the presence of primitive organic material. We observed no correlation between 15N-enrichments and presolar dust concentrations in the clasts. This is in contrast to the findings from a suite of primitive IDPs, which display in several cases enhanced bulk 15N/14N ratios and high presolar grain abundances of several hundred or even thousand ppm. The bulk 15N/14N ratios of the clasts are comparable to the range for primitive IDPs, suggesting a nitrogen carrier less susceptible to destruction by aqueous alteration than silicate stardust.  相似文献   

18.
《New Astronomy Reviews》2002,46(8-10):519-524
Five SiC and two graphite presolar grains exhibit isotopic ratios characteristic of ONe nova nucleosynthesis: low 12C/13C (4–9), low 14N/15N (5–20), high 26Al/27Al, high 30Si/28Si (2×solar) with close-to-normal 29Si/28Si. The upper limit of 20Ne/22Ne (<0.01) of one graphite grain suggests that the 22Ne excess is due to the decay of 22Na. In order to achieve the isotopic ratios of the grains, however, synthesized material during nova explosion had to be mixed with isotopically close-to-solar material, which should consist of more than 95% of the mix.  相似文献   

19.
Abstract— Carbon stars are an important source of presolar TiC, SiC, and graphite grains found in meteorites. The elemental abundances in the stellar sources of the SiC grains are inferred by using condensation calculations. These elemental abundances, together with C isotopic compositions, are used to identify possible groups of carbon stars that may have contributed SiC grains to the presolar dust cloud. The most likely parent stars of meteoritic SiC mainstream grains are N-type carbon stars and evolved subgiant CH stars. Both have s-process element abundances higher than solar and 10 < 12C/13C < 100 ratios. The J stars and giant CH stars, with solar and greater than solar abundances of s-process elements, respectively, are good candidate parents for the ‘A’ and ‘B’ SiC grains with low 12C/13C ratios. A special subgroup of CH giant stars with very large 12C/13C ratios could have parented the ‘Y’ SiC grains with 12C/13C ratios > 100. The carbon star population (e.g., N, R, J, CH groups) needed to provide the observed SiC grains is compared to the current population of carbon stars. This comparison suggests that low-metallicity CH stars may have been more abundant in the past (>4.5 Ga ago) than at present. This suggestion is also supported by condensation-chemistry modeling of the trace element patterns in the SiC grains that shows that subsolar Fe abundances may be required in the stellar sources for many SiC grains. The results of this study suggest that presolar SiC grains in meteorites can provide information about carbon stars during galactic evolution.  相似文献   

20.
Abstract— We report the first measurements of lithium and boron isotope ratios and abundances measured in “gently separated” presolar SiC grains. Almost all analyses of presolar SiC grains since their first isolation in 1987 have been obtained from grains that were separated from their host meteorite by harsh acid dissolution. We recently reported a new method of “gently” separating the grains from meteorites by using freeze‐thaw disaggregation, size, and density separation to retain any nonrefractory coatings or alteration to the surfaces of the grains that have been acquired in interstellar space. Nonrefractory coats or amorphized surfaces will almost certainly be removed or altered by the traditional acid separation procedure. High Li/Si and B/Si ratios of up to ~10?2 were found implanted in the outer 0.5 μm of the grains dropping to ~10?5 in the core of the grains. 7Li/6Li and 11B/10B ratios indistinguishable from solar system average values were found. Analyses obtained from SiC grains from the acid dissolution technique showed isotope ratios that were the same as those of gently separated grains, but depth profiles that were different. These results are interpreted as evidence of implantation of high velocity (1200–1800 km s?1) Li and B ions into the grains by shock waves as the grains traveled through star‐forming regions some time after their condensation in the outflow of an AGB star that was their progenitor. The results are in line with spectroscopic measurements of Li and B isotope ratios in star‐forming regions and may be used to infer abundances and isotopic sources in these regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号