首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
饱和土中管桩的水平动阻抗研究   总被引:3,自引:0,他引:3  
刘林超  闫启方 《岩土力学》2014,35(5):1348-1356
为了考察桩、土主要参数对饱和土中管桩水平振动的影响,将土体分为桩周饱和土和桩芯饱和土两部分,利用多孔介质理论的饱和土控制方程建立了饱和土-管桩的耦合振动模型。在考虑桩周饱和土和桩芯饱和土边界条件的情况下,运用势函数解耦的方法对桩周饱和土和桩芯饱和土的水平振动进行了求解。在考虑桩周饱和土和桩芯饱和土对管桩作用的情况下对饱和土中管桩的水平振动进行了求解,得到了管桩桩顶的水平动力阻抗,并分析了主要桩、土参数对管桩水平动力阻抗的影响。研究表明:管桩内外半径、桩周土和桩芯土剪切模量比、泊松比之比对管桩水平动力阻抗的影响较大,低频时液-固耦合系数比对管桩水平动力阻抗有一定的影响,而阻尼比之比对管桩水平动力阻抗阻尼因子有一定的影响。  相似文献   

2.
土壤饱和导水率的多尺度预测模型与转换关系   总被引:1,自引:0,他引:1       下载免费PDF全文
运用联合多重分形方法研究不同土层土壤饱和导水率与土壤基本物理特性的多尺度相关性,建立不同土层土壤饱和导水率的多尺度预测模型,构建不同土层土壤饱和导水率之间的转换关系。结果表明:不同土层土壤饱和导水率与土壤基本物理特性的相关程度排序不同;在单一尺度和多尺度上,0~20 cm土层土壤饱和导水率与土壤基本物理特性的相关程度排序相同,20~40 cm土层土壤饱和导水率与土壤基本物理特性的相关程度排序不同;土壤饱和导水率多尺度预测模型的预测精度较高,0~20 cm土层和20~40 cm土层拟合值的均方根误差分别为0.035 0和0.029 0;0~20 cm土层和20~40 cm土层土壤饱和导水率转换关系的计算精度较高,拟合值的均方根误差为0.037 5。  相似文献   

3.
含液各向异性多孔介质应变局部化分析   总被引:4,自引:0,他引:4  
张洪武  周雷  黄辉 《岩土力学》2004,25(5):675-680
工程中的含液多孔介质如饱和或非饱和岩土材料往往具有各向异性特性。采用Rudnicki建立的针对岩土材料的各向异性本构模型,对轴对称压缩试验中的含液多孔介质骨架的各向异性力学行为进行了分析;基于不连续分叉理论,导出了静态非渗流条件下处于轴对称应力状态的含液多孔介质应变局部化发生的临界模量、剪切带方向以及不连续速度矢量的显式表达式,在此基础上计算并讨论了材料参数变化和孔隙液体存在对各向异性多孔介质应变局部化的影响。  相似文献   

4.
甘肃引洮供水工程饱和黄土工程地质研究   总被引:4,自引:2,他引:2  
当黄土分布区地下水埋深较浅时,黄土常呈饱和状态,不具湿陷性,简称饱和黄土,甘肃引洮供水一期工程总干渠13#、14#、15#隧洞通过饱和黄土,通过常规土工和扫描电子显微镜等综合测试,对饱和黄土的显微结构及化学成分进行了研究,并探讨了其微观结构与物理力学性质及工程特性之间的关系,认为应选择盾构法进行饱和黄土隧洞开挖。  相似文献   

5.
爆炸波在高饱和度饱和土中传播规律的研究   总被引:1,自引:1,他引:0  
通过在? 2.5×5 m模拟爆炸装置中进行饱和土爆炸试验,得到了变埋深条件下饱和土中的压力实测波形,实测到了冲击波和弹性波,二者之间具有较明显的分界,爆炸近区和远区荷载形式具有较大的区别。通过综合分析给出了饱和土中波的传播规律,揭示饱和土中爆炸冲击波传播时出现流体动力区和冲击波形成等性质,建立了饱和土双线性递增硬化本构关系,确定了由冲击波向弹性波转换的分界压力。  相似文献   

6.
为准确获取原状Q3黄土的竖向和水平饱和渗透系数,进行了原位、室内试验测试以及数值模拟反演,并应用大型试坑浸水试验检验了所获饱和渗透系数的可靠性。进行了不同内径尺寸的原位双环入渗试验,获取了竖向饱和渗透系数,并应用室内试验测试了竖向和水平饱和渗透系数以及持水曲线;应用COMSOL软件对双环入渗试验进行数值模拟,检验了所测饱和渗透系数的可靠性,利用正交试验获得了最优的竖向和水平饱和渗透系数取值,并利用反演结果对试坑进行数值模拟,将其水分入渗情况与实测值对比。研究结果表明:在现场进行双环入渗试验时选取较大内径的双环获得的竖向饱和渗透系数更为合理。针对双环入渗试验,数值模拟反演所得最优饱和渗透系数在竖向上接近于原位试验所得竖向饱和渗透系数、水平向上接近室内所测水平向饱和渗透系数,竖向饱和渗透系数比水平向饱和渗透系数更加显著地影响水分入渗过程。通过对大型试坑水分入渗情况的验证,检验了反演所得最优饱和渗透系数的可靠性。  相似文献   

7.
非饱和土化学-塑性耦合本构行为的数值模拟   总被引:2,自引:0,他引:2  
周雷  张洪武 《岩土力学》2009,30(7):2133-2140
基于Hueckel提出的饱和黏土化学-塑性本构模型和Gallipoli提出的非饱和土弹塑性本构模型,提出了一个新的非饱和多孔介质的化学-塑性本构模型,并建立了该模型的隐式积分算法,算法中考虑了化学软化和非饱和吸力的影响。在已有的非饱和多孔介质有限元分析程序平台上进行了程序研发,对孔隙水中化学污染物浓度变化对非饱和土力学行为的影响进行数值模拟,使所研制的程序能够进行岩土工程问题的化学-力学耦合非线性分析。  相似文献   

8.
袁万  蔡袁强  史吏  曹志刚 《岩土力学》2013,34(7):2111-2118
基于Biot饱和多孔介质U-W格式动力控制方程,采用Galerkin法和Fourier变换,推导了饱和土体2.5维有限元方程及黏弹性人工边界,建立了饱和土地基中空沟分析模型,并在波数域中进行求解,通过快速Fourier变换(FFT)进行波数展开,获得三维空间域中结果。算例分析了移动荷载作用下均质饱和土地基、分层饱和土地基、上覆单相弹性层饱和土地基3种饱和土地基模型中空沟的隔振效果。结果表明:饱和土地基中空沟的隔振效果不仅与空沟自身深度有关,还与地基中成层土体的分界面以及土体参数有关,波在不同土体分界面上的透射和反射会影响空沟的隔振效果;饱和土地基中上覆单相弹性层厚度对空沟的隔振效果影响显著,随着上覆单相弹性层厚度的增加,饱和土地基中空沟的隔振效果变好。  相似文献   

9.
考虑横向效应饱和黏弹性土层中桩的纵向振动   总被引:1,自引:0,他引:1  
杨骁  蔡雪琼 《岩土力学》2011,32(6):1857-1863
由于饱和土中土体颗粒与孔隙水的相互作用以及桩与土体的不同渗透率,饱和土体中桩基的力学行为与单相土中桩基力学行为有很大的差别。基于饱和多孔介质理论,考虑桩纵向振动时的横向变形及惯性效应,将桩等效为Rayleigh-Love杆,在频率域中研究了饱和黏弹性土层中端承桩纵向振动的动力特性,给出了饱和黏弹性土层和桩纵向振动时动力响应的解析解及桩头复刚度的解析表达式。通过数值计算,给出了桩头动刚度因子和阻尼随激励频率的响应,考察了饱和土物性参数、桩土模量比、桩长径比、泊松比等参数对桩头刚度因子和阻尼的影响。研究表明,对于大直径桩,当外载荷激励频率较大时桩横向效应对桩头刚度因子和阻尼有显著的影响  相似文献   

10.
非饱和粘性土中气体渗透特征   总被引:1,自引:0,他引:1  
由于气体的进入形成了非饱和带,饱和土层中的气体渗透实质上是非饱和渗透问题。本文借助基于多孔介质气体渗流理论并考虑气体压缩性的、描述非饱和土中气体渗流运动的本构方程,试验研究了上海地区饱和粘性土层中的气体渗透规律。结果表明,饱水粘性土层中,气体渗透存在起始压力值,数值为100~200kPa, 与上海地区粘土的非饱和进气值较为接近;气体渗透速度与外界所施加的压力平方差梯度之间存在明显的分段特征。后者可能与在充满结合水的微孔隙通道中,只有一部分结合水在气压梯度的作用下发生流动,从而形成气体通道,施加的外力越大,形成的气体通道也越大,气体渗流也越明显。非饱和粘性土中气体渗透规律的研究,对于饱和粘土中的气压法施工,具有重要的理论与工程实践意义。  相似文献   

11.
饱和黏土中的长期浮力是否需要折减是一个具有争议的问题。为研究饱和黏土中的长期浮力是否小于相同水头高度下的静水压力,通过地基上浮失稳的模型试验,实测了上浮极限状态下(即有效应力约等于0时)饱和砂土和黏土中的浮力折减系数。实验装置由模型槽、土样、凡士林、浮筒、配重及压重设施组成,通过浮筒上浮瞬间的受力平衡得到失稳时的实际上浮力。实验测得饱和砂土中的浮力折减系数为1,饱和高岭土和饱和蒙脱石中的浮力折减系数分别为0.973±0.024和0.959±0.016。试验结果表明上浮极限状态下,饱和土中的浮力与纯水中的浮力差别很小。即便在高塑性黏土中,模型基础失稳时受到的上浮力与纯水中的浮力相比,仅折减了不到5%。基于饱和土有效应力原理的分析表明,上浮极限状态下的浮力折减系数与土样固结前的Skempton B值互为倒数。大量实测数据并未发现饱和黏土的Skempton B值明显大于1,故饱和黏土的浮力折减系数也不可能显著小于1。本文模型试验和理论分析表明,在地基抗浮承载力验算时,饱和黏土中的长期浮力不宜进行显著折减。  相似文献   

12.
宋佳  杜修力  许成顺  孙宝印 《岩土力学》2018,39(8):3061-3070
饱和土场地-桩基-地上结构体系中,饱和土与结构分别具有不同控制方程和计算方法,造成有限元计算的不便。基于Client-Server技术,通过两个子程序分别计算饱和土和桩基-上部结构的动力响应,并利用土体和结构的共同节点传递两者间的作用力与位移,建立了一套求解饱和土-结构相互作用问题的交互式计算方法,其中饱和土采用基于u-p(其中u表示固相位移,p表示孔压)方程的全显式时域积分法求解,有效提高计算效率。最后,通过与Newmark法的数值结果进行对比,验证了提出方法的正确性,并说明该方法可以应用于求解饱和土场地-桩基-地上结构体系的地震响应问题。  相似文献   

13.
西安地区饱和软黄土工程地质特征研究   总被引:7,自引:4,他引:7  
饱和软黄土是黄土地区一种特殊性岩土。结合西安城区和北环铁路工程勘察的结果,分析了西安地区饱和软黄土的分布规律及其物理力学性质,讨论了饱和软黄土分布上的差异,从地质环境角度探讨了北环铁路饱和软黄土分布的成因,提出了上层滞水含水层也存在饱和软黄土的观点。  相似文献   

14.
饱和土变形过程模拟的统计损伤方法研究   总被引:1,自引:0,他引:1  
针对传统损伤理论的不足与局限性,从研究岩土材料损伤的合理定义入手,并通过深入探讨饱和土损伤的微观力学机制,建立了适合于饱和土的新型损伤模型。在此基础上,引进统计损伤理论,建立了模拟特定围压下饱和土变形全过程的统计损伤本构模型及其参数确定方法。通过探讨饱和土损伤统计本构模型参数与围压的关系,建立了该模型的合理修正方法,从而建立了反映不同围压条件的统一饱和土损伤统计本构模型。理论与试验结果分析表明了该模型的合理性,该模型不仅能反映饱和土的变形全过程,而且能反映孔隙水压力对饱和土变形的影响。  相似文献   

15.
王家鼎  黄海国 《现代地质》1993,7(1):102-108
本文在文献[1],[2]的基础上对黄土区饱和土蠕动及滑动液化作了进一步研究。文中首先列举了黄土滑坡现场饱和土液化的一些典型实例及其所造成的宏观危害。从不同的角度提出了饱和土蠕(滑)动液化的定义,在大量现场及室内试验的基础上分析了饱和土蠕(滑)动液化的机理和影响因素,最后给出了液化势的评价方法。  相似文献   

16.
The consolidation of the layered saturated soil is an important issue in civil engineering and has been investigated extensively during the past decades. In this study, based on the Biot's theory, the reflection–transmission matrix (RTM) method for treating the layered saturated soil under axisymmetric consolidation is developed. To decouple the governing equations of the Biot's theory, the McNamee displacement functions are introduced, and the general solution for the saturated soil is obtained using the Laplace and Hankel transforms. In order to develop the RTM method for the layered saturated soil, based on the obtained general solution, the static wave vector corresponding to the state vector of the saturated soil and the transform matrix relating the aforementioned two vectors are defined. Also, the transfer matrices corresponding to the two vectors are introduced, and the representations of the RTMs for the static wave vector of the saturated soil are presented. As the state vector, static wave vector, and the transform matrix relating the two vectors are all defined in the global coordinate system, the RTMs obtained in this study thus have a reasonable physical meaning. By using the RTMs for the layered saturated soil, the solutions for the layered saturated soil subjected to external sources are derived. Comparison of results due to the proposed RTM method with some existing results and results due to the transfer matrix method validates the developed RTM method. Some numerical results are obtained based on the proposed RTM method for the layered saturated soil. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
以现有的4种土壤转换函数(Pedotransfer Functions, PTFs)(包括ROSETTA、RAWLS、CAMPBELL和VAUCLIN)为例,将其用于土壤水力性质数据库UNSODA中56个典型砂土样本的非饱和导水率预测,对4种PTFs的预测结果进行了误差分析,探讨了饱和导水率对非饱和导水率预测的影响。结果表明,当同种PTFs预测的饱和导水率作为输入时,在4种PTFs中VAUCLIN的预测精度最高,其次为ROSETTA和RAWLS,CAMPBELL的误差最大;当实测饱和导水率作为输入时,RAWLS、CAMPBELL和ROSETTA的预测精度有了不同程度提高,但VAUCLIN的预测误差反而有所增大;饱和导水率对非饱和导水率预测的影响较大,实测饱和导水率作为输入时CAMPBELL预测的非饱和导水率与实测值最为接近。  相似文献   

18.
In this paper, models have been developed to predict the hydraulic conductivity of the saturated bentonite and saturated sand-bentonite mixtures. For these models, free swell void ratio of the bentonite is required which can be obtained using a simple test. It was observed that hydraulic conductivity of the saturated bentonite and saturated sand-bentonite mixtures could be predicted within 5 or 1/5 times of the measured values for most of the cases.  相似文献   

19.
丁伯阳  张勇  王瑞峰  徐庭 《岩土力学》2016,37(4):922-928
饱和土在理论上一直以两相饱和孔隙介质模拟,利用Biot饱和孔隙介质动力方程纵波解耦的 (u为波动的振幅位移,p为孔隙水压)解答,结合排水的Somigliana表象积分,能够完成饱和土排水动力反应计算,结果也能在野外试验中验证。为了进一步深入研究饱和土排水的动力特性,设计了室内饱和土动三轴的排水试验,以不同状态饱和粉砂土排水状态下试验的结果,阐述了排水理论计算解答与动三轴试验测试结果的对比分析。最后指出修正后的理论解答与饱和粉砂土的试验测试结果较吻合,并在今后饱和土伴有排水的动力响应分析能在饱和土动力学问题研究中有所应用。  相似文献   

20.
基于无黏性可压缩理想流体介质波动理论和Biot流体饱和多孔介质波动理论,考虑水下饱和土的流固耦合,借助Hankel函数积分变换法(HFITM)给出入射平面P1波在海底洞室周围散射问题的解析解。相比传统研究中的"大圆弧假定",Hankel函数积分变换法可以较好地处理半空间表面边界条件。利用该解析解,计算分析了洞室表面透水条件、入射角度、入射频率、海水水深和饱和土的孔隙率等因素对水-土交界面处水平位移、竖向位移和洞室表面动水压力、环周总应力的影响。结果表明:洞室表面透水条件对水-土交界面处水平位移和竖向位移影响较小;随着斜入射角的增加,水-土交界面处竖向位移减小;随着入射频率的增加,水-土交界面处水平位移随之增加;海水水深为2.5倍SV波的波长时,水-土交界面处水平位移及洞室表面动水压力最大值最大;随着孔隙率的增加,水-土交界面处水平位移、竖向位移和洞室表面环周总应力减小,而洞室表面动水压力随之增加。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号