首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
龙门山断裂带大地震孕震环境的岩石磁学证据   总被引:3,自引:1,他引:2       下载免费PDF全文
地震断裂带的孕震环境对于研究地震的发生至关重要.本文以汶川地震断裂带科学钻探2号(WFSD-2)钻孔岩心中的假玄武玻璃、碎裂岩及其围岩为研究对象,通过岩石磁学测试,并结合显微结构观察探讨龙门山断裂带大地震的孕震环境.WFSD-2岩心碎裂岩中的假玄武玻璃是龙门山断裂带曾经发生过大地震活动的岩石学证据,假玄武玻璃具有高磁化率特征,而碎裂岩的磁化率值与围岩相似,假玄武玻璃中的新生磁铁矿是其高磁化率值异常的重要原因之一.假玄武玻璃中较少量的新生磁铁矿暗示了假玄武玻璃的生成环境为含氧量较低的高温还原环境.大地震断裂的摩擦热是改变龙门山断裂带中假玄武玻璃岩石磁学特征的主导因素,流体作用较弱.无高磁化率异常的碎裂岩经历的温度小于300℃,推测假玄武玻璃的生成深度较深.WFSD-2岩心中20余层假玄武玻璃脉体证明映秀—北川断裂带是一条长期活跃的断裂带,龙门山断裂带上曾经发生了多次大地震断裂活动,这些大地震可能发生在深度较大、流体作用较弱的还原性孕震环境中.  相似文献   

2.
云南活动性断裂带的结构变异与孕震体构造的空间关系   总被引:2,自引:1,他引:1  
王晋南  王华林 《地震研究》1998,21(3):268-276
中国的强震主要发生在一些板内大型走滑断裂带上,地震的破裂基本上是以走滑型破裂为特征。在这些活动性的走滑断裂带上形成的孕震体构造与该走滑断裂结构在空间的变化有关,并且表现出几种主要的变异形式。结合西南地区地震构造的实例,本文剖析了这几种结构变异形式,阐明了孕震体构造存在的空间机制。本文从地震与构造丛集相关及其所具有的分维特征入手,展开了对孕震区断裂结构变异特征的识别和孕震体空间机制的探讨,表述了一条活动性大断裂必须由若干次级断裂和无数中小断裂的空间组合,才能形成孕震体的必要条件。  相似文献   

3.
基于震例探讨大地震的物理机制   总被引:3,自引:1,他引:2       下载免费PDF全文
查明大地震物理机制对地震预测和防震减灾具有重要意义.本文评述了当前主流地震机制假说,指出用于描述浅源地震机制的弹性回跳说和粘滑说存在诸多缺陷;前人提出的脱水致裂、相变失稳、剪切熔融和反裂隙断层作用等中-深源地震机制假说,均存在与观测事实不符的情况.本文简要介绍了近些年我们发展的孕震断层多锁固段脆性破裂理论,指出断层运动导致锁固段累进性破裂发生地震,称锁固段在体积膨胀点和峰值强度点发生的显著地震为标志性地震事件.震例分析表明,浅源、中源、深源及其混合型地震区标志性地震事件的孕育规律均遵循该理论.进一步的讨论指出,弹性回跳说和粘滑说均隐含着断层面上存在锁固段的假设;深源地震震源体具有发生脆性破裂的环境条件;该理论能合理解释地震应力降远小于室内岩石破裂应力降、热流佯谬和自组织临界性这些难点问题.这充分说明,大地震物理机制均可统一解释为锁固段脆性破裂.  相似文献   

4.
—Measurements indicate that stress magnitudes in the crust are normally limited by the frictional equilibrium on pre-existing, optimally oriented faults. Fault zones where these limitations are frequently reached are referred to as seismic zones. Fault zones in the crust concentrate stresses because their material properties are different from those of the host rock. Most fault zones are spatially relatively stable structures, however the associated seismicity in these zones is quite variable in space and time. Here we propose that this variability is attributable to stress-concentration zones that migrate and expand through the fault zone. We suggest that following a large earthquake and the associated stress relaxation, shear stresses of a magnitude sufficient to produce earthquakes occur only in those small parts of the seismic zone that, because of material properties and boundary conditions, encourage concentration of shear stress. During the earthquake cycle, the conditions for seismogenic fault slip migrate from these stress-concentration regions throughout the entire seismic zone. Thus, while the stress-concentration regions continue to produce small slips and small earthquakes throughout the seismic cycle, the conditions for slip and earthquakes are gradually reached in larger parts of, and eventually the whole, seismogenic layer of the seismic zone. Prior to the propagation of an earthquake fracture that gives rise to a large earthquake, the stress conditions in the zone along the whole potential rupture plane must be essentially similar. This follows because if they were not, then, on entering crustal parts where the state of stress was unfavourable to this type of faulting, the fault propagation would be arrested. The proposed necessary homogenisation of the stress field in a seismic zone as a precursor to large earthquakes implies that by monitoring the state of stress in a seismic zone, its large earthquakes may possibly be forecasted. We test the model on data from Iceland and demonstrate that it broadly explains the historical, as well as the current, patterns of seismogenic faulting in the South Iceland Seismic Zone.  相似文献   

5.
INTRODUCTIONHowtocombinethestudyofseismogenictectonicswithearthquakepredictionisanurgentscientificdifficulty .Thereexistbiggapsbetweenstudymethodsandcurrentknowledgeonseismogenitectonics ,earthquakeprediction ,seismogenesisandthephysicsofearthquakeoccurre…  相似文献   

6.
The results of an instrumental and analytical investigation of the products of mineral and textural transformations in the tectonic slickensides and fault gouge in the near-surface terrigenous sedimentary rocks (clays, arkose sandstones, shungites) which have undergone localized deformations in fault zones of presumably seismogenic origin are presented. Based on this, several peculiarities in the behavior of a dynamic slip in the upper transition horizon from aseismic to seismogenic mode of faulting in the Earth’s crust are elucidated. The changes in the mineral phase compositions of the fault facies against the protolith composition are estimated; the parameters of the temperature regime and thermal energy balance of deformational metamorphic reactions are determined. The probable causes of instability in the faults, the mechanisms of the loss of strength, the weakening and strengthening during seismogenic dynamic slip are considered. The role of tribochemical phenomena in the course of a rock’s transformation into a fault gouge and the related energy effects are discussed. An inventory of the possible energy costs on the processes of transforming material in dynamic slip zones is compiled.  相似文献   

7.
Miocene successions in western Turkey are dominated by lacustrine, fluvial and evaporitic sedimentary deposits. These deposits include considerable amounts of volcaniclastic detritus derived from numerous NE-trending volcanic centres in western Turkey as well as in the Bigadiç region. Early Miocene syn-depositional NE-trending olivine basalt and trachyandesite bodies that formed as intrusions and lava flows occur within the Bigadiç borate basin. Olivine basalts occur as partly emergent intrusions, and trachyandesite dykes fed extensive lava flows emplaced in a semi-arid lacustrine environment.Peperites associated with the olivine basalt and trachyandesites appear to display contrasting textural features, although all the localities include a large variety of clast morphologies from blocky to fluidal. Fluidal clasts, mainly globular, ameboidal and pillow-like varieties, are widespread in the peperite domains associated with olivine basalts, apparently due to large-volume sediment fluidisation. In contrast, fluidal clasts related to trachyandesites are restricted to narrow zones near the margins of the intrusions and have commonly elongate and polyhedral shapes with digitate margins, rather than globular and equant varieties. Blocky and fluidal clasts in the olivine basalt peperite display progressive disintegration, suggesting decreasing temperature and increasing viscosity during fragmentation. Abundance of blocky clasts with respect to fluidal clasts in the trachyandesite peperite indicates that the fluidal emplacement and low-volume sediment fluidisation in the early stages were immediately followed by quench fragmentation due to the high viscosity of the magma.Size, texture and abundance of the blocky and fluidal clasts in the olivine basalt and trachyandesite peperites were mainly controlled by sediment fluidisation, pulsatory magma injection and magma properties such as composition, viscosity, vesicularity, and size, abundance and orientation of phenocrysts. Variously combining these contrasting features to varying degrees may form diverse juvenile clast shapes in peperitic domains.  相似文献   

8.
慢滑移及相关脉动和慢地震研究的历史和现状   总被引:1,自引:2,他引:1  
观测表明,慢滑移事件通常发生在活动断裂带内,为发震层之下的短暂滑移,能够造成地表的瞬态运动。与慢滑移密切相关的慢地震能够发射出频率在一定范围内的脉动信号,但不造成灾害性事件。慢滑移和慢地震很可能是断裂带上形变能释放的基本方式,其观测有可能为人们更深入地了解断裂带的动力学过程提供基础和依据。本文重点介绍近10年来关于慢地震和慢滑移事件的研究历史和现状。目前对慢滑移引发的地表形变和慢地震发射的脉动信号特征有了深入细致的研究,开展了对慢滑移的数值模拟和慢地震定位的研究;但对慢地震和慢滑移发生的位置、两者的关系以及物理机制等方面还存在很多争论和问题。  相似文献   

9.
Seismological and geodetic observations indicate that slow slip sometimes occurs in active fault zones beneath the seismogenic depth, and large slow slip can result in transient ground motion. Slow earthquakes, on the other hand, emit tremor-like signals within a narrow frequency band, and usually produce no catastrophic consequences. In general, slow slip and slow earthquakes probably correspond to deformation processes associated with releasing elastic energy in fault zones, and understanding their mechanisms may help improve our understanding of fault zone dynamic processes. This article reviews the research progress on slow slip and slow earthquakes over the last decade. Crustal motion and tremor activities associated with slow slip and slow earthquakes have been investigated extensively, mainly involving locating sources of slow slip and slow earthquakes and numerical modeling of their processes. In the meantime, debates have continued about slow slip and slow earthquakes, such as their origins, relationship, and mechanisms.  相似文献   

10.
ZHOU Yong-sheng 《地震地质》2019,41(5):1266-1272
Paleo-seismic and fault activity are hard to distinguish in host rock areas compared with soft sedimentary segments of fault. However, fault frictional experiments could obtain the conditions of stable and unstable slide, as well as the microstructures of fault gouge, which offer some identification marks between stick-slip and creep of fault. We summarized geological and rock mechanical distinction evidence between stick-slip and creep in host rock segments of fault, and analyzed the physical mechanisms which controlled the behavior of stick-slip and creep. The chemical composition of fault gouge is most important to control stick-slip and creep. Gouge composed by weak minerals, such as clay mineral, has velocity weakening behavior, which causes stable slide of fault. Gouge with rock-forming minerals, such as calcite, quartz, feldspar, pyroxene, has stick-slip behavior under condition of focal depth. To the gouge with same chemical composition, the deformation mechanism controls the frictional slip. It is essential condition to stick slip for brittle fracture companied by dilatation, but creep is controlled by compaction and cataclasis as well as ductile shear with foliation and small fold. However, under fluid conditions, pressure solution which healed the fractures and caused strength recovery of fault, is the original reason of unstable slide, and also resulted in locking of fault with high pore pressure in core of fault zone. Contrast with that, rock-forming minerals altered to phyllosilicates in the gouges by fluid flow through degenerative reaction and hydrolysis reaction, which produced low friction fault and transformations to creep. The creep process progressively developed several wide shear zones including of R, Y, T, P shear plane that comprise gouge zones embedded into wide damage zones, which caused small earthquake distributed along wide fault zones with focal mechanism covered by normal fault, strike-slip fault and reverse fault. However, the stick-slip produced mirror-like slide surfaces with very narrow gouges along R shear plane and Y shear plane, which caused small earthquake distributed along narrow fault zones with single kind of focal mechanism.  相似文献   

11.
断裂带同震温度响应,可在震后钻孔测温中获得并识别,为发震断层摩擦特性与发震机制等基础研究提供了非常独特的思路和有效手段.集集、汶川及日本东北大地震后,实施了台湾车笼埔断层钻探项目(TCDP)、汶川地震断裂带科学钻探工程(WFSD)和日本海沟快速钻探计划(JFAST).钻孔测温结果表明:滑移面上下5~20m范围内存在温度正异常,这是同震摩擦生热所致,该机制已被广泛认识和接受;同时,距滑移面20~60m范围内也存在明显的温度负异常,但其成因机制几乎还未被真正关注和认识.虽然温度负异常峰值只有正异常峰值的1/4~1/3,但温度负异常分布范围却是正异常分布范围的3~4倍,即正、负温度异常区对应的总能量基本相当.因此,断裂带震后钻孔测温中的负异常及其成因不容忽视.在详细分析几种可能的同震温度负异常机制后(如岩层热物性分布差异、流体运移、表面自由能增大及同震应力释放),发现能在理论、实验及野外观测上都得到支撑的普适性机制只有同震应力释放.这可能是断裂带震后温度负异常的主要原因.  相似文献   

12.
We present the first attempt to explain slow earthquakes as cascading thermal-mechanical instabilities. To attain this goal we investigate brittle-ductile coupled thermal-mechanical simulation on vastly different time scales. The largest scale model consists of a cross section of a randomly perturbed elasto-visco-plastic continental lithosphere on the order of 100 × 100 km scale with no other initial structures. The smallest scale model investigates a km-scale subsection of the large model and has a local resolution of 40 × 40 m. The model is subject to a constant extension velocity applied on either side. We assume a free top surface and with a zero tangential stress along the other boundaries. Extension is driven by velocity boundary conditions of 1 cm/a applied on either side of the model. This is the simplest boundary condition, and makes it an ideal starting point for understanding the behavior of a natural system with multiscale brittle-ductile coupling. Localization feedback is observed as faulting in the brittle upper crust and ductile shearing in an elasto-viscoplastic lower crust. In this process brittle faulting may rupture at seismogenic rates, e.g., at 102–103 ms?1, whereas viscous shear zones propagate at much slower rates, up to 3 × 10?9 ms?1. This sharp contrast in the strain rates leads to complex short-time-scale interactions at the brittle-ductile transition. We exploit the multiscale capabilities from our new simulations for understanding the underlying thermo-mechanics, spanning vastly different, time- and length-scales.  相似文献   

13.
 On King George Island during latest Oligocene/earliest Miocene time, submarine eruptions resulted in the emplacement of a small (ca. 500 m estimated original diameter) basalt lava dome at Low Head. The dome contains a central mass of columnar rock enveloped by fractured basalt and basalt breccia. The breccia is crystalline and is a joint-block deposit (lithic orthobreccia) interpreted as an unusually thick dome carapace breccia cogenetic with the columnar rock. It was formed in situ by a combination of intense dilation, fracturing and shattering caused by natural hydrofracturing during initial dome effusion and subsequent endogenous emplacement of further basalt melt, now preserved as the columnar rock. Muddy matrix with dispersed hyaloclastite and microfossils fills fractures and diffuse patches in part of the fractured basalt and breccia lithofacies. The sparse glass-rich clasts formed by cooling-contraction granulation during interaction between chilled basalt crust and surrounding water. Together with muddy sediment, they were injected into the dome by hydrofracturing, local steam fluidisation and likely explosive bulk interaction. The basalt lava was highly crystallised and degassed prior to extrusion. Together with a low effusion temperature and rapid convective heat loss in a submarine setting, these properties significantly affected the magma rheology (increased the viscosity and shear strength) and influenced the final dome-like form of the extrusion. Conversely, high heat retention was favoured by the degassed state of the magma (minimal undercooling), a thick breccia carapace and viscous shear heating, which helped to sustain magmatic (eruption) temperatures and enhanced the mobility of the flow. Received: 1 August 1996 / Accepted: 15 September 1997  相似文献   

14.
2016年5月22日,在西藏定结县发生四次MW4~5地震,研究本序列地震的发震断层几何和运动特征对于认识周边活动断裂性质具有重要意义.由于发震地区偏远,且观测台网分布稀疏,本研究采用星载雷达干涉测量(DInSAR)技术进行了同震形变场重建,但是定结地震震级较小,单干涉像对获取的形变场受相位噪声影响较大.为了解决这一问题,本研究基于时间序列Sentinel-1A干涉数据生成多期同震与非同震干涉图,并利用叠加平均法对本次定结地震同震形变场进行重建,提取了定结2016年5月22日多次地震产生的同震累计整体形变场.基于InSAR同震形变场和区域地质特征,研究进行了滑动分布反演,确定其主要贡献的发震断层几何参数及滑动分布:断层走向为188°,倾角为43°,平均滑动角为78°,发震断层的运动性质以正断为主兼具少量左旋走滑分量,滑动主要集中在断层垂直深度0~9km处,最大滑动量约为25cm,位于断层倾向深度3km处,反演得到的矩震级为MW5.58.本研究结果表明采用星载InSAR叠加平均技术可以较好地压制相位噪声,有效提取此类中小型浅源地震同震微弱形变场.最后,我们认为本次定结地震与藏南拆离断层与申扎-定结断层的活动密切相关.  相似文献   

15.
地震破裂区是地震时沿发震断裂带的同震错动面或破裂面在地表的垂直投影区域,指示了震源断层/破裂的位置与尺度。确定过去长期的强震/大地震破裂区是鉴别地震空区、研究与预测强震危险性的重要基础。对于现代强震,破裂区可运用多种现代技术方法确定,但对于历史强震,破裂区确定的方法需要探索与发展。以华北地区为例,研究利用烈度/等震线资料、结合地震构造与震区地表地质环境等信息确定历史强震破裂区的方法,并开展应用试验。结果表明:研究区现代地震破裂区延伸的烈度区间与极震区烈度、震区环境之间存在密切关系,基于这种关系建立了2条经验准则,可分别用于根据烈度分布确定华北2类震区环境(基岩区和厚层第四纪松散堆积覆盖区)历史强震破裂区的位置与延伸。文中还提出通过综合地震构造、现代小震/余震分布等信息,辅助确定历史强震破裂区横向宽度的思路与途径。作为应用试验,文中确定了5次历史地震的破裂区,结果表明本文发展的经验准则及相应方法适用于华北地区历史强震破裂区的确定。  相似文献   

16.
长周期形变波及其所反应的短期和临震地震前兆   总被引:32,自引:3,他引:32       下载免费PDF全文
本文应用断裂力学和流变介质中波的传播理论来研究震前长周期形变波的波动源以及这类波传播的一些主要特征,在理论研究结果的基础上,对我国多次较大地震前观测到的短临地震前兆进行了剖析,并从中识别出一些可能与长周期形变波有关的短临地震前兆.首先,从粘滑与破裂这两类主要地震机制出发,提出了粘滑前的预滑与破裂前断裂的预扩展(亚稳态扩展)可能是产生震前长周期波的两类波动源的看法,并着重从理论上讨论了后一类波动源.其次,以地壳流变介质模型为基础,对长周期形变波的传播特性进行了理论研究.选用地壳的广义流变介质模型,求解了所述的两类波动源在这种流变地壳介质中引起的长周期形变波传播的动力学问题,从理论上得出了长周期形变波在地壳内传播的某些一般特征.然后,专门分析了我国多次大地震前实际观测到的短期和临震地震前兆资料,并着重讨论了唐山地震的短临前兆.在这些不同类型的短临地震前兆中,我们得出地下水位、地倾斜及潮位自动记录曲线等的某些振动式及阶跃式短临地震前兆与长周期形变波的理论探讨结果基本相符,因而可以认为它们属于由长周期形变波所反映的地震前兆.在理论研究与实际资料分析的基础上,本文归纳了由长周期形变波所引起的短临地震前兆的一些基本特征,包括传播速度、衰   相似文献   

17.
根据已发布震源机制解目录(哈佛大学CMT),将青藏高原东部及邻区划分为5个构造应力场分区,并对各分区的地震逐个计算其发震断层面上的固体潮汐正应力、剪应力、库仑破裂应力及相位角,分析潮汐应力分量对不同类型发震断层的作用效果及其随深度变化特征.基于库仑破裂应力判断准则,研究潮汐应力对各种类型地震的触发作用;基于Schuster检验方法,统计分析潮汐应力对各个震级档、不同构造类型地震的影响.综合运用上述两种分析方法,探讨潮汐应力对不同震级地震以及处于不同构造块体、发震断层、震源深度地震的触发机制.结果表明,潮汐应力对印度块体和拉萨块体的正断和逆断型地震,滇缅泰块体、印支块体和松潘-甘孜块体的走滑和斜滑型地震,川滇菱形块体的斜滑型地震均存在不同程度的触发效应,且触发效应的强弱依赖于震源深度、震级大小、发震断层类型及其所处区域构造应力场.  相似文献   

18.
Investigation of the rheology of magmas at high crystal concentrations by experimental means has proved problematic. An alternative approach is to study textures of igneous rocks that not only preserve evidence of the kinematics of magma flow, such as flow direction, but can also preserve evidence of rheology. Flow textures in multiply intruded trachyte dykes on Fraser Island, eastern Australia record evidence of dilatant flow during solidification. This conclusion is reached by interpretation of microscopic ductile shear zones that disrupt the groundmass of aligned feldspar laths. Detailed three-dimensional investigation demonstrates that the dihedral angle between conjugate micro-shear zones is approximately 65°. This conjugate angle is equivalent to that observed in dilatant granular materials such as sand. Dilatant behaviour is synonymous with shear thickening rheology indicating that the magma flow is time-dependent and resists high flow rates. Some of the dykes contain autobrecciation fragments that may represent localities where the ductile flow rate threshold was exceeded. Newtonian or pseudoplastic (shear thinning) rheology of crystal-poor magmas must progressively give way to shear thickening rheology during cooling and increasing crystal concentration.  相似文献   

19.
We propose a model which may explain seismic sequences which are often observed in seismogenic regions, as for example in the Apenninic chain (Italy). In particular, we consider a normal fault and earthquakes taking place at different depths: a first shock in a shallower layer and a second in a deeper one. The normal fault is embedded in a viscoelastic half-space. As a consequence of the rheology, there are two different brittle layers, a shallower and a deeper one, where earthquakes can nucleate. Between these two layers, the rheological behavior is ductile. The thicknesses of the layers depend on the geothermal profile that is calculated taking into account the profile of the thermal and rheological parameters with depth. The fault plane, crossing layers with different rheological behavior, is heterogeneous in respect to the slip style: seismic in the brittle layers, aseismic in the ductile layer. Dislocations in the shallower layer are assumed to produce aseismic slip in the area of the fault belonging to the ductile layer. The stress concentrated, by the seismic and aseismic dislocations, on the fault plane section in the deeper brittle layer is evaluated. It is compared with the tectonic stress rate in order to calculate how much earlier the second earthquake would occur compared to if just the bare tectonic sstress was acting. It results that such an advance is comparable with typical recurrence times of earthquakes and so a mechanism of interaction between different seismic sources, mediated by aseismic slip, can be supposed. The strains and displacements at the Earth’s surface due to seismic and aseismic slip are calculated. They are large enough to be detected by present geodetic techniques.  相似文献   

20.
Divergent plate boundaries, such as the one crossing Iceland, are characterized by a high density of subparallel volcanic fissures and tectonic fractures, collectively termed rift zones, or fissure swarms when extending from a specific volcano. Volcanic fissures and tectonic fractures in the fissure swarms are formed during rifting events, when magma intrudes fractures to form dikes and even feeds fissure eruptions. We mapped volcanic fissures and tectonic fractures in a part of the divergent plate boundary in northern Iceland. The study area is ~1,800 km2, located within and north of the Askja central volcano. The style of fractures changes with distance from Askja. Close to Askja the swarm is dominated by eruptive fissures. The proportion of tectonic fractures gets larger with distance from Askja. This may indicate that magma pressure is generally higher in dikes close to Askja than farther away from it. Volcanic fissures and tectonic fractures are either oriented away from or concentric with the 3–4 identified calderas in Askja. The average azimuth of fissures and fractures in the area deviates significantly from the azimuth perpendicular to the direction of plate velocity. As this deviation decreases gradually northward, we suggest that the effect of the triple junction of the North American, Eurasian and the Hreppar microplate is a likely cause for this deviation. Shallow, tectonic earthquakes in the vicinity of Askja are often located in a relatively unfractured area between the fissure swarms of Askja and Kverkfjöll. These earthquakes are associated with strike-slip faulting according to fault plane solutions. We suggest that the latest magma intrusions into either the Askja or the Kverkfjöll fissure swarms rotated the maximum stress axis from being vertical to horizontal, causing the formation of strike-slip faults instead of the dilatational fractures related to the fissure swarms. The activity in different parts of the Askja fissure swarm is uneven in time and switches between subswarms, as shown by a fissure swarm that is exposed in an early Holocene lava NW of Herðubreið but disappears under a younger (3500–4500 BP) lava flow. We suggest that the location of inflation centres in Askja central volcano controls into which part of the Askja fissure swarm a dike propagates. The size and amount of fractures in the Kollóttadyngja lava shield decrease with increasing elevation. We suggest that this occurred as the depth to the propagating dike(s) was greater under central Kollóttadyngja than under its flanks, due to topography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号