首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 215 毫秒
1.
青藏高原东部大气探空廓线的气候特征分析   总被引:1,自引:0,他引:1  
通过对青藏高原东部地区近几年部分探空资料的分析,得出了一些有意义的结论。结果表明:冬季,青藏高原东侧地区在对流层下部存在明显的逆温现象,在逆温层之下,大气相对湿度大,水汽随高度减小的幅度小,大气处于中性层结状况;在此逆温层之上,大气相对湿度小。在逆温层底部有大量的水汽堆积,在空中形成明显的逆湿层,而在高原主体上并没有此逆温层的存在,高原东侧各站逆温层底的高度差别不大。夏季,青藏高原东侧地区20时可以存在明显的混合层,混合层的高度在成都站最小,重庆站最大,而高原主体混合层高度大于东侧地区。旱年混合层高度大于涝年。8时和20时,冬季大气温、湿垂直特性变化不明显,而夏季具有明显的变化。夏季,降水过程明显抑制混合层的发展,在暴雨过程及其前后,混合层有明显的成熟、消亡、重新建立的特征。  相似文献   

2.
青藏高原东部及下游地区冬季边界层的观测分析   总被引:5,自引:3,他引:2       下载免费PDF全文
利用2007年12月的加密探空资料, 对高原东部及其下游地区的边界层结构和高原东部边界层变化对下游大气的影响进行了分析。结果表明, 冬季青藏高原东部夜间近地面逆温层可以发展到平均500 m的高度, 白天混合层可以发展到平均2000 m的高度。白天混合层内水汽和风速混合十分均匀, 在混合层发展成熟时存在十分深厚的逆湿层。冬季青藏高原下游的四川盆地, 边界层内温度日较差小, 夜间逆温层把大量地表水汽截留在近地层, 日出前近地层水汽容易达到饱和。白天, 混合层在中午发展成熟, 平均高度只有300 m。四川盆地对流层下部存在非常强的逆温层, 该逆温层是青藏高原抬升地表加热和冬季盛行西风气流形成的, 逆温层变化是青藏高原东部边界层温度日变化和局地西风变化的共同结果。逆温层显著改变大气动量、 热量和水汽的垂直分布。与对流层下部逆温相联系的中层云对辐射的影响是造成四川盆地温度日较差和混合层高度变化的原因。  相似文献   

3.
利用ERA-Interim、MERRA和NCEP/NCAR三套再分析资料,分析1979~2014年夏季青藏高原大气水汽含量的时空变化特征,同时对比了各套资料异同点,结果表明:(1) ERA-Interim和MERRA资料均显示出夏季青藏高原大气水汽含量呈现显著的上升趋势,在1994~1995年前后发生明显突变,大气水汽含量由偏低时期向偏高时期转变;而NCEP/NCAR资料并没有出现类似的显著上升趋势和突变年份;ERA-Interim资料与MERRA资料的夏季青藏高原湿池指数之间的相关性明显强于NCEP/NCAR资料与它们任何一个之间的相关性。(2)夏季青藏高原大气水汽含量呈现出自高原东南边缘地区向西北部递减的分布形式。其中,MERRA与ERA-Interim资料显示的水汽含量分布更为相似,而NCEP/NCAR资料反映的水汽含量在高原中部往北递减不明显,湿度中心较为分散。(3)从空间分布上,MERRA与ERA-Interim资料显示青藏高原大部分地区夏季水汽含量均呈显著的增加趋势,而NCEP/NCAR资料仅在高原东北部小部分区域存在显著的增加趋势。(4)从夏季青藏高原大气水汽含量的年际变化特征分析来看,ERA-Interim和MERRA资料相对于NCEP/NCAR资料也更为接近。   相似文献   

4.
利用三个时段的探空加密试验资料,分别采用气块法和Richardson数法来估算青藏高原及下游地区的对流边界层和稳定边界层的高度特征。结果显示:(1)高原中部对流边界层结构的出现概率高于高原东侧及下游地区,而四川盆地稳定边界层结构的出现概率远高于高原和长江中游。(2)高原中部和东侧的对流边界层高度春季高而夏季低,其中高原中部的对流边界层高度高于高原东侧;四川盆地和长江中游的对流边界层高度冬季低、夏季高,而高原东侧的对流边界层高度的变化趋势则相反;四川盆地的对流边界层高度低于长江中游。(3)高原的稳定边界层高度春季高而夏季低;冬季四川盆地的稳定边界层高度高于高原东侧和长江中游,而夏季长江中游的稳定边界层高度高于高原东侧和四川盆地,冬夏差异导致的稳定边界层高度的变化幅度在长江中游最明显,四川盆地次之,而高原东侧最小。(4)高原东侧及下游地区的平均边界层高度的日变化具有相似的演变特征,平均边界层高度在白天高夜间低,而高原中部的平均边界层高度在日出左右较低,之后随时间逐渐增高,并在晚上达到最大值;高原的平均边界层高度的日变化振幅大于下游地区,且其日变化振幅随站点海拔高度的增加而增大。  相似文献   

5.
本文使用青藏高原气象科学实验测站观测资料、欧洲中心FGGE-Ⅲb资料、GMS1地球同步卫星云图资料、河流水文资料以及其他一些有关的资料,详细分析了1979年7月青藏高原地区,尤其是高原西部地区的水汽状况、水汽输入的通道,讨论了夏季青藏高原地区高湿状况的维持机制. 通过研究,发现在1979年盛夏青藏高原西部也是一个高水汽区域,有利于大量的湿对流系统活动,但西部比东南部的水汽含量要略低些;潜热加热是夏季高原西部重要的热源之一;除了过去已知的在高原东南和仲巴、定日一带的两条水汽通道外,水汽还可从高原西侧边界进入高原西部.在讨论夏季高原地区高湿状况的维持机制时发现,相对于高原东部,只需要较少的水汽输入就足以维持高原西部大气的高湿状态;高原西部的降水、蒸发和向土壤中渗透是接近于平衡的,水分循环主要是局地的内循环.  相似文献   

6.
利用NCEP 1950—2004年逐日再分析资料,采用倒算法,对青藏高原大气热源的长期变化进行了计算,结果发现,青藏高原及附近地区上空大气春夏季热源在过去50年里,尤其是最近20年,表现为持续减弱的趋势。而1960—2004年青藏高原50站的冬春雪深却出现了增加,尤其是春季雪深在1977年出现了由少到多的突变。用SVD方法对高原积雪和高原大气热源关系的分析表明,二者存在非常显著的反相关关系,即高原冬春积雪偏多,高原大气春夏季热源偏弱。高原大气春夏季热源和中国160站降水的SVD分析表明,高原大气春夏季热源和夏季长江中下游降水呈反相关,与华南和华北降水呈正相关;而高原冬春积雪和中国160站降水的SVD分析显示,高原冬春积雪和夏季长江流域降水呈显著正相关,与华南和华北降水呈反相关。在年代际尺度上,青藏高原大气热源和冬春积雪与中国东部降水型的年代际变化(南涝北旱)有很好的相关。最后讨论了青藏高原大气热源影响中国东部降水的机制。青藏高原春夏季热源减弱,使得海陆热力差异减小,致使东亚夏季风强度减弱,输送到华北的水汽减少,而到达长江流域的水汽却增加;同时,高原热源减弱,使得副热带高压偏西,夏季雨带在长江流域维持更长时间。导致近20年来长江流域降水偏多,华北偏少,形成"南涝北旱"雨型。高原冬春积雪的增加,降低了地表温度,减弱了地面热源,并进而使得青藏高原及附近地区大气热源减弱。  相似文献   

7.
冬季青藏高原东部(22°N~32°N,102°E~118°E)层云区是唯一存在于副热带陆地的层云密集区,环流特征较为复杂,大多数耦合气候系统模式对该地区层云的模拟存在较大的偏差。对该地区层云模拟能力的系统分析评估是改进模式性能的重要基础。本文基于国际卫星云计划(ISCCP)卫星资料,评估了中国科学院大气物理研究所两个版本的气候系统模式FGOALS-s2和FGOALS-g2的大气环流模式试验(AMIP)对青藏高原东侧层云的模拟能力。通过分析云辐射强迫等相关特征、大气环流、稳定度、以及地表气温和云的关系,探讨了模式偏差的可能原因。结果表明,两个模式都不同程度地低估了青藏高原东侧的低层云量和云水含量。在垂直结构模拟方面,FGOALS-s2模式能较好地模拟出高原东侧低云主导的特征,其模拟的云顶高度与卫星资料更为接近;而FGOALS-g2模式则高估了该地区的平均云顶高度。分析表明,两个模式均低估了高原东侧的低层稳定度,同时不同程度地低估了该地区中低层水平水汽输送,导致层云云量的模拟偏少。此外,FGOALS-g2高估了高原东侧的上升运动和垂直水汽输送,使得模拟的低云偏少而云顶高度偏高。  相似文献   

8.
占瑞芬  李建平 《大气科学》2008,32(2):242-260
上对流层水汽(UTWV)是大气中最重要的温室气体,对全球气候变暖有重要贡献; 而青藏高原被认为是UTWV进入平流层的重要通道,在平流层-对流层水汽交换及平流层水汽变化中扮演着重要角色。首先利用高原探空站资料对大气红外探测器(AIRS)反演的水汽数据在高原地区的质量进行了检验,发现AIRS反演的水汽数据与探空实测数据是相当一致的。其中全年和夏半年AIRS的可信度较好,而冬半年,尤其是上对流层AIRS水汽可信度相对较低,但在缺乏高精密数据时仍部分可用。利用AIRS资料对青藏高原地区UTWV季节变化特征进行了分析,结果表明,高原冬季偏干,而夏季显著偏湿,并且空间分布具有明显的不均匀性。经验正交函数(EOF)分析显示,夏季高原UTWV主要存在三种空间分布型,即全区一致型,高原东西偶极型和南北带状偶极型。一致型分布具有明显的季节变化,而偶极型则以季节内振荡为主。在此基础上,重点研究夏半年高原地区UTWV季节内振荡特征,结果表明,UTWV季节内振荡的显著周期位于10~20天和30~60天。前者主要表现为纬向东传,并且可以越过高原进入我国江淮流域上空;而后者主要向南移动,基本表现为高原局地振荡。最后,进一步探讨了高原UTWV季节内振荡的可能机制,结果表明,高原地区UTWV的低频变化主要与高原热状况、南亚高压活动及其与二者相耦合的对流活动有关。  相似文献   

9.
青藏高原湿池的气候特征及其变化   总被引:1,自引:0,他引:1  
利用ERA-Interim再分析资料研究了青藏高原湿池的气候特征及其变化,得出以下主要结论:气候平均状态下,6—9月,整个青藏高原上空相对于全球中高层地区而言是一个垂直深厚的高湿区,称之为青藏高原湿池。利用比湿的相对纬偏值研究了高原湿池的垂直分布特征,通过分析发现,6—9月高原湿池相对于全球同高度地区来说是一个垂直深厚的水汽含量最大值区,不同高度层的水汽含量数值可达纬圈平均值的1倍以上到3倍以上;随着高度的增加,湿池内部比湿相对纬偏值大值区明显地向下游地区倾斜延伸,能从高原上空一直向下游延伸到120°E及以东地区,表明了高原上空的大气水汽含量对周边地区的重要影响。夏季高原湿池主要有三种空间变化模态:全区一致型,东西反向型,南北反向型。定义了一个夏季高原湿池强度指数,分析发现1979—2011年以来夏季高原湿池整体表现出显著的增强趋势,在1997年前后发生了年代际变化,33年期间主要具有3~4年、7~8年左右的振荡周期。夏季青藏高原湿池的增强趋势具有明显的区域差异,总体来说,高原西部增湿强于东部,而对高原西部来说,高空增湿强于近地面,增湿幅度最大值区域主要位于400~200 h Pa附近。最后,综合多种再分析资料以及其他研究学者采用探空观测资料、卫星资料的相关研究结果,分析了所选研究资料的适用性,结果表明ERA-Interim再分析资料对于本研究是适用的,基于该资料得出的研究结论是可信的。  相似文献   

10.
王文波  杨明  王旭  梁倩  封雅琼 《气象科技》2014,42(3):466-473
利用青藏高原中东部地区16个探空站的1979—2008年各标准等压面上的月平均探空资料对青藏高原中东部地区500~200hPa高层水汽冬夏季时空分布特征及变化趋势进行了研究,结果表明:①空间分布上,青藏高原的水汽空间分布冬夏两季呈现出一致明显的西北—东南走向,高原南部水汽年际变化波动较大,北部较稳定;夏冬两季水汽总体呈现一致变化,同时夏季还存在南北向的反相位区域异常变化,冬季则表现为东西向的反相位变化;②时间变化上,青藏高原夏季水汽总体呈现出较弱的上升趋势,1979—1995年水汽有下降趋势,1996—2005年转为增加趋势,突变主要在1997、2006年;冬季水汽总体为弱下降趋势,1979—1984年水汽为下降趋势,1985—2004年增长并保持稳定,突变主要在1986、2005年;同时青藏高原水汽还存在西部水汽增加而东部水汽呈减少趋势的区域变化特征。  相似文献   

11.
利用东疆红柳河黑戈壁下垫面陆气相互作用观测站2017年近地大气边界层梯度探测资料和红柳河气象站天气现象观测数据,分析该地区典型晴天条件下的近地层风速、温度和比湿的四季廓线特征。结果表明:四季近地层风廓线变化规律明显。典型晴天条件下,在0.5~4 m高度内风速随高度的增加而变大的速度较快,在4~32 m范围内,白天风速随高度增大较缓慢,但夜间出现快速增大;存在明显的夜间逆温,逆温层主要集中在4~32 m,冬季逆温强于夏季,晨间0.5~32 m间的温度差可达4.6℃,且红柳河四季的气温日较差均较大,秋季可达到15.7℃;夜间比湿高于白天,秋、冬季夜间逆湿层出现在10~32 m,其比湿差为0.15 g/kg左右,夏季无逆湿现象。  相似文献   

12.
In this paper, by using the sounding data collected in LOPEX05, we have analyzed the vertical atmospheric structure and boundary layer characteristics of temperature and humidity in the late summer over the east Gansu loess plateau. The results show that the bottom of the stratosphere is at about 16 500 m and varies between 14 000 m and 18 000 m above the ground. The center of the westerly jet is located between 8300 m and 14 300 m above the ground and its direction moves between 260° and 305°. There is an ...  相似文献   

13.
利用乌鲁木齐市2011~2012年08时、20时L波段(1型)雷达探测的高空资料建立了乌鲁木齐大气边界层气象要素数据库,分析了乌鲁木齐边界层内气温、风向、风速和相对湿度的垂直分布及其时间变化特征。结果表明:边界层内温度廓线的日变化和季节变化比较显著,各月均有逆温出现,且08时较20时更易出现逆温,冬季08时逆温层厚度较厚且强度最大。边界层内夏、冬两季风速随高度变化波动较大,春、秋两季变化较小。近地层春、夏、秋三季08时盛行西南偏南风,冬季盛行偏东风和西南风;20时春季盛行东北风,夏秋盛行偏北风和西北风,冬季则盛行东风和东北偏东风。08时、20时风向均随高度的增加呈明显的向右偏转趋势,且日风向的变化具有明显的“山谷风”特点。08、20时的相对湿度冬季最大,夏季最小,且随高度增加,春、夏两季08、20时相对湿度的变化较大。  相似文献   

14.
对比了2017~2019年重庆沙坪坝MP-3000A型地基微波辐射计和Metop-A掩星资料气温、湿度廓线探测之间的差异,并对两次天气过程中微波辐射计的探测特征进行分析,结果表明:(1)微波辐射计与掩星气温在整个探测高度上均为显著正相关,且低层高于高层;夏半年偏差小于冬半年;,4km以下微波辐射计探测气温高于掩星气温,降雨时偏差更大。(2)微波辐射计与掩星相对湿度相关性稍高于气温;,夏半年相关性高于冬半年,,偏差小于冬半年;降水天气时,1km以下及4~-6km之间,微波辐射计相对湿度的负偏差值明显比无降水时大。(3)降水时段,微波辐射计探测5km以下为高湿区,暖湿气团上升过程中凝结潜热和绝热冷却作用,中低层出现了逆温层;辐射雾出现时,微波辐射计探测到近地面层相对湿度增大和气温降低。  相似文献   

15.
以2007~2018年西宁二十里铺气象站探空资料为模拟样本,利用MonoRTM模式模拟中心频率21.985~58.759GHz的35通道亮温,应用BP神经网络对模拟数据进行反复训练,构建最优反演模型,并以2019年探空资料为测试样本,对比分析了不同季节和不同天气条件下BP神经网络与微波辐射计的反演效果。结果表明:晴空条件下,BP神经网络与微波辐射计在温度反演上效果最佳,水汽密度次之,相对湿度最差,其中冬春季BP神经网络反演效果优于微波辐射计,夏秋季反之;有云条件下,BP神经网络温度反演效果在冬、春和夏季均优于微波辐射计,其水汽密度反演效果在四季均较微波辐射计有明显提升,其相对湿度反演效果在冬、春和夏季均较微波辐射计更佳。晴空和有云条件下,BP神经网络在不同季节反演温度、水汽密度和相对湿度的平均绝对误差和标准偏差均小于微波辐射计,尤其是相对湿度的反演精度提升最为明显。晴空条件下,BP神经网络反演温度廓线在春、夏和秋季效果最佳,反演水汽密度廓线在中低层精度较高,反演相对湿度廓线的精度较差,但基本和探空资料趋势一致;有云条件下,BP神经网络反演温度廓线与晴空时基本一致,较微波辐射计精度更高,反演水汽密度和相对湿度廓线在8km以上效果较好。   相似文献   

16.
利用2003—2009年杭州市逐日探空观测资料及杭州市环境监测站空气污染物浓度监测资料,对杭州市主城区低空温度层结特征及与3种主要空气污染物(SO2、NO2和PM10)浓度之间的关系进行了统计分析。结果表明:杭州市主城区低空大气温度层结全年以弱稳定为主,一年四季皆有逆温层存在;冬半年逆温发生频率高于夏半年,逆温层厚度冬季较厚、夏季较薄,逆温强度秋季最强、夏季最弱。通过计算污染物浓度与逆温特性的相关关系,发现污染物浓度与逆温层底高呈负相关,与逆温频率、厚度、强度呈正相关,由此说明杭州市主城区低空大气逆温层结状况是影响当地空气污染程度的主要因素之一。  相似文献   

17.
王瑞  李伟平  刘新  王兰宁 《高原气象》2009,28(6):1233-1241
利用耦合的全球海气模式(NCAR CCSM3), 对青藏高原春季土壤湿度异常影响我国夏季7月降水的机制进行了数值模拟。结果表明, 高原6~62 cm深度的中层土壤湿度异常与表层土壤湿度异常有很好的一致性, 相对而言, 中层土壤湿度异常的持续性较好。若5月高原中层土壤偏湿, 则春末至夏初高原地面蒸发、 潜热通量增加, 而感热通量、 地面温度降低, 高原表面的加热作用减弱, 使得印度高压西撤偏晚, 环流系统的季节性转换偏晚, 东亚地区形成有利于我国夏季出现第I类雨型的环流分布形势, 使我国东部雨带偏北, 华北地区多雨, 江淮地区降水偏少, 华南地区降水偏多; 反之亦然。  相似文献   

18.
为了研究成都地区城市化对当地气候的影响,利用不同时期的下垫面土地利用类型数据和耦合单层城市冠层模型(UCM)的WRF(Weather Research and Forecasting)模式对成都夏季和冬季城市化效应进行了模拟研究,得到以下主要结论:1)成都地区城市化使夏季城区上空出现增温区域。城区地表气温升高约2.8°C,边界层高度升高约150 m,冬季地表气温平均升高约0.6°C,边界层高度升高约25 m。夏冬两季气温日较差均减小。2)受城市化影响,成都地区夏季和冬季2 m相对湿度减小,感热通量增加,潜热通量减小,且夏季变化程度强于冬季。3)城市化使地表的粗糙度增加,进而使夏季和冬季风速在城区减小,减小约0.1~0.6 m s?1,但夏季风速减小区域较冬季更大。城市化还使城市上空低层散度减小,辐合作用增强,垂直速度增大,夏季水汽往高层输送明显。4)夏季,城市化作用使日平均和白天时段降水量在城区的迎风区和下风区均增加,夜间降水量在下风区域增加,对迎风区域影响不明显。  相似文献   

19.
By using a reverse computation method and the NCEP/NCAR daily reanalysis data from 1960 to 2004, the atmospheric heat source (AHS) was calculated and analyzed. The results show that AHS over the Tibetan Plateau (TP) and its neighboring areas takes on a persistent downtrend in spring and summer during the foregone 50 years, especially the latest 20 years. Snow depth at 50 stations over the TP in winter and spring presents an increase, especially the spring snow depth exhibits a sharp increase in the late 1970s. A close negative correlation exists between snow cover and AHS over the TP and its neighboring areas, as revealed by an SVD analysis, namely if there is more snow over the TP in winter and spring, then the weaker AHS would appear over the TP in spring and summer. The SVD analysis between AHS over the TP in spring and summer and rainfall at 160 stations indicates that the former has a negative correlation with summer precipitation in the middle and lower reaches of the Yangtze River, and a positive correlation with that in South China and North China. The SVD analysis of both snow cover over the TP in winter and spring and rainfall at the same 160 stations indicates that the former has a marked positive correlation with precipitation in the middle and lower reaches of the Yangtze River, and a reversed correlation in South China and North China. On the decadal scale, the AHS and winter and spring snow cover over the TP have a close correlation with the decadal precipitation pattern shift (southern flood and northern drought) in East China. The mechanism on how the AHS over the TP influences rainfall in East China is discussed. The weakening of AHS over the TP in spring and summer reduces the thermodynamic difference between ocean and continent, leading to a weaker East Asian summer monsoon, which brings more water vapor to the Yangtze River Valley and less water vapor to North China. Meanwhile, the weakening of AHS over the TP renders the position of the subtropical high further westward and the r  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号