首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Here we present the results of a detailed cryptotephra investigation through the Lateglacial to early Holocene transition, from a new sediment core record obtained from Lake Hämelsee, Germany. Two tephra horizons, the Laacher See Tephra (Eifel Volcanic Field) and the Saksunarvatn Ash (Iceland), have been previously described in this partially varved sediment record, indicating the potential of the location as an important Lateglacial tephrochronological site in northwest Europe. We have identified three further tephra horizons, which we correlate to: the c. 12.1 ka BP Vedde Ash (Iceland), the c. 11 ka BP Ulmener Maar tephra (Eifel Volcanic Field) and the c. 10.8 ka BP Askja‐S tephra (Iceland). Three additional cryptotephra deposits have been found (locally named HÄM_T1616, HÄM_T1470 and HÄM_T1456‐1455), which cannot be correlated to any known eruption at present. Geochemical analysis of the deposits suggests that these cryptotephras most likely have an Icelandic origin. Our discoveries provide age constraints for the new sediment records from Lake Hämelsee and enable direct stratigraphical correlations to be made with other tephra‐bearing sites across Europe. The new tephrostratigraphical record, within a partially varved Lateglacial sediment record, highlights the importance of Lake Hämelsee as a key site within the European tephra lattice.  相似文献   

2.
Complex flow-like landslides (CFLLs) are important geomorphic agents of Late Quaternary mountain evolution in the Flysch Belt of the Outer Western Carpathians. The CFLLs are characterised by the upper section of deep-seated, retrogressive landslide of structurally unfavourably oriented rocks and lower sections composed of earthflows originated due to liquefaction of material accumulated from the upper slopes. Radiocarbon dating of organic matter incorporated into landslide debris or related deposits suggests that most of the CFLLs collapsed repeatedly throughout the Holocene with typical recurrence intervals of approximately 1–2 ka. Catastrophic landslides that occurred during extreme hydrometeorological events in recent decades displayed evidence of Holocene activity. Most of the CFLLs dammed and steepened adjacent valleys. Our chronological dataset is biased by erosion of older landforms, but most of the dated reactivations correlate to regional increases in humidity identified by previous paleoenvironmetal studies.  相似文献   

3.
Four stratigraphic sections in the southern part of the Columbia Basin preserve a sequence of aeolian and non-aeolian sediments ranging in age from 9·43 to >47·0 14C ka based on accelerator mass spectrometry radiocarbon dating of fossil molluscs, geochemistry of Cascade Mountain-sourced tephra and association with formally recognized pedostratigraphic units (the Washtucna and Old Maid Coulee soils). Study sections are interpreted as representing concurrent deposition of loess and distal Missoula Flood rhythmites in valleys tributary to main drainages backflooded during the Missoula Floods, and formation of carbonate and iron-rich soils. Sediments belong to the formally recognized L-1 and L-2 loess units established for the Palouse loess, which were deposited in the Columbia Basin subsequent to events of glacial outburst flooding. Sediments associated with the Mount Saint Helens set S and set C tephras in the study sections preserve a fauna of five species of gastropod mollusc which have not been reported previously from sediments of late Pleistocene age in the Palouse region. The fossils comprise two distinct faunules stratigraphically separated by the Mount Saint Helens So tephra. Accelerator mass spectrometry radiocarbon dating of the fossils collected above the tephra in two of the sections yielded ages of 12·48 ± 0·06 and 9·43 ± 0·05 14C kyr. These ages suggest that independent determinations of the 13·35 14C kyr age of the So tephra in other areas where Missoula Flood sediments are preserved are probably accurate, and help to refine the age of the latest events in the most recent sequence of catastrophic glacial outburst flooding.  相似文献   

4.
Evidence is presented to show that two measurable concentrations of microtephra particles can be detected in deposits of Late Devensian Late-glacial age in three sites in Scotland. One layer is attributed to the Vedde Ash, a marker horizon within the Younger Dryas chronozone. The second is a new tephra reported for the first time, which we name the Borrobol Tephra. This occurs consistently near the base of the Late-glacial Interstadial organic sediments at each site, and is thought to date to around 12.5 14C ka BP. Geochemical determinations using an electron microprobe confirm the identification of the Vedde Ash, suggest the Borrobol Tephra to have an Icelandic origin, and demonstrate the consistency of the geochemical signals at all three sites. © 1997 John Wiley & Sons, Ltd.  相似文献   

5.
Five cores from the southern Tyrrhenian and Ionian seas were studied for their tephra and cryptotephra content in the 4.4–2.0 ka time interval. The chronological framework for each core was obtained by accelerator mass spectrometry 14C dating, the occurrence of distinct marker tephra and stratigraphic correlation with adjacent records. Tephrochronology allowed us to correlate the analyzed deposits with tephra markers associated with Somma-Vesuvius (79 ad ), Ischia Island (Cretaio), Mt Etna (FG, FL and FS) and Campi Flegrei (Astroni-Agnano Monte Spina) events. For the first time in the marine setting, a large single glass data set is provided for the Late Holocene Etnean marker beds including the FS tephra (ca. 4.3 ka). Moreover, unknown deposits from Lipari (ca. 2.2–2.0 ka) and Vulcano (3.6–3.3 ka) are also recognized at more distal sites than previously reported. These results contribute to improve the high-resolution tephrostratigraphic framework of the central Mediterranean Sea. They also provide new insights into the chemical composition and dispersal pattern of tephras that can be used as inter-archive tools for regional and ‘local’ stratigraphic correlations and for addressing paleoclimate research.  相似文献   

6.
In Quaternary studies, tephras are widely used as marker horizons to correlate geological deposits. Therefore, accurate and precise dating is crucial. Among radiometric dating techniques, luminescence dating has the potential to date tephra directly using glass shards, volcanic minerals that formed during the eruption or mineral fragments that originate from the shattered country rock. Moreover, sediments that frame the tephra can be dated to attain an indirect age bracket. A review of numerous luminescence dating studies highlights the method's potential and challenges. While reliable direct dating of volcanic quartz and feldspar as a component in tephra is still methodically difficult mainly due to thermal and athermal signal instability, red thermoluminescence of volcanic quartz and the far-red emission of volcanic feldspar have been used successfully. Furthermore, the dating of xenolithic quartz within tephra shows great potential. Numerous studies date tephra successfully indirectly. Dating surrounding sediments is generally straightforward as long as samples are not taken too close to the tephra horizons. Here, issues arise from the occurrence of glass shards within the sediments or unreliable determination of dose rates. This includes relocation of radioelements, mixing of tephra into the sediment and disregarding different dose rates of adjacent material.  相似文献   

7.
The Okanagan Centre section is the stratotype for marine oxygen isotope stage (MIS) 4 sediments (Okanagan Centre Drift) in the southern interior of British Columbia, Canada. Previous work suggested that these sediments record two glacial and two interglacial cycles. This study reports on detailed sedimentological and geochronological investigations of lithostratigraphic units comprising the Okanagan Centre sequence, revealing successive deposition of subaqueous and subaerial outwash, a subglacial till and glaciolacustrine sediments during MIS 4. A limiting optical age of 113 ± 8 ka defines the base of this sequence. Sedimentological, paleopedological, optical dating and tephrochronological data from sediments near the middle of the sequence reveal soil development (MIS 3) in eolian sediments deposited on a river terrace overlying a deglaciated surface. Within these sediments, identification of Mt. St. Helens set C tephra suggest sedimentation between 50 and 35k 14C a BP. Optical dating corroborates the tephrochronology and suggests that this surface formed after ~52 ± 7 ka. The record of MIS 2 glaciation is restricted to deglaciation, and overlies MIS 3 sediments above an unconformity possibly related to regional subglacial meltwater erosion. Eolian sediments containing Mt Mazama set O tephra (~7.62k cal a BP) cap the sequence.  相似文献   

8.
A tephra record is presented for a sediment core from Llyn Llech Owain, south Wales, spanning the early- to mid-Holocene. Seven cryptotephra deposits are discovered with three thought to correlate with known eruptions and the remaining four considered to represent previously undocumented events. One deposit is suggested to correlate with the ~6.9 cal ka bp Lairg A tephra from Iceland, whereas more distant sources are proposed as the origin for two of the tephra deposits. A peak of colourless shards in early-Holocene sediments is thought to tentatively correlate with the ~9.6 cal ka bp Fondi di Baia tephra (Campi Flegrei) and a second cryptotephra is tentatively correlated with the ~3.6 cal ka bp Aniakchak (CFE) II tephra (Alaska). The Fondi di Baia tephra has never been recorded beyond proximal sites and its discovery in south Wales significantly extends the geographical distribution of ash from this eruption. The remaining four cryptotephra deposits are yet to be correlated with known eruptions, demonstrating that our current understanding of widespread tephra deposits is incomplete. This new tephra record highlights the potential for sites at more southerly and westerly locations in northwest Europe to act as repositories for ash from several volcanic regions.  相似文献   

9.
青藏高原东缘是全球古滑坡最发育的地区之一。基于大量地面调查、遥感解译和年龄测试资料,总结了青藏高原东缘深切河谷区古滑坡的判识方法、主要发育特征、形成时代和分布规律。结果表明,古滑坡具有规模巨大、高位起动、物质组成和结构复杂等特征,其空间分布与地形地貌、岩性组合和活动构造等因素关系密切。古滑坡在区域上受气候变化影响较明显,一般形成于河流强烈下切阶段,与河流阶地具有较好的对应关系,多数已发现的古滑坡与T2阶地时代相当,时间跨度为40~10 ka,集中分布于30~20 ka。构造活动和地震造成古滑坡在不同区段的分布具有差异性,一般在活动断裂带附近密集发育,现今发现的古滑坡多为这种成因。这些认识对于科学认知古滑坡的形成演化过程和未来巨灾风险预测具有重要的指导作用。  相似文献   

10.
In this paper we present Quaternary stratigraphy of the area around Chennai based on archaeological findings on the ferricrete surface, geomorphological observations supplemented by radiocarbon dating. The coastal landscape around Chennai, Tamil Nadu, has preserved ferruginised boulder gravel deposits, ferricretes and fluvial deposits of varying thickness. The area studied is approximately 150 km east to west and 180 km north to south with a broad continental shelf towards the seaward. Several rivers enter the Bay of Bengal along its shores like the Koratallaiyar, Cooum and the Adyar. Precambrian charnockite and Upper Gondwana sandstone and shale bedrock rim the shelf margin. For the most part, the Upper Pleistocene-Holocene fluvial sediments overlie an erosion surface that has cut into older Pleistocene sediments and ferricrete surface. Incised valleys that cut into this erosion surface are up to 5–6 km wide and have a relief of at least 30 m. The largest valley is that cut by the Koratallaiyar River. Holocene sediments deposited in the incised valleys include fluvial gravels, early transgressive channel sands and floodplain silts. Older Pleistocene sediments are deposited before and during the 120-ka high stand (Marine isotope stage 5). They consist of ferricretes and ferricrete gravel formed in nearshore humid environments. Muddy and sandy clastic sediments dated to the ca. 5 ka highstand suggest that the climate was semi arid at this time with less fluvial transport. The coarsening up sequence indicates deposition by high intensity channel processes. Pedogenic mottled, clayey silt unit represents an important tectonic event when the channel was temporarily drained and sediment were sub aerially exposed. Uplift of the region has caused the local rivers to incise into the landscape, forming degradation terraces.  相似文献   

11.
At least 12 silicic tephra layers (SILK tephras) erupted between ca. 6600 and ca. 1675 yr BP from the Katla volcanic system, have been identified in southern Iceland. In addition to providing significant new knowledge on the Holocene volcanism of the Katla system which typically produces basaltic tephra, the SILK tephras form distinct and precise isochronous marker horizons in a climatically sensitive location close to both the atmospheric and marine polar fronts. With one exception the SILK tephras have a narrow compositional range, with SiO2 between 63 and 67%. Geochemically they are indistinguishable from ocean transported pumice found on beaches in the North Atlantic region, although they differ significantly from the silicic component of the North Atlantic Ash Zone One (NAAZO). Volumes of airborne SILK tephra range from 0.05 to 0.3 km3. We present new isopach maps of the six largest layers and demonstrate that they originate within the Katla caldera. The apparently stable magma system conditions that produced the SILK tephras may have been established as a consequence of the eruption of the silicic component of NAAZO (ca. 10.3 ka) and disrupted by another large‐scale event, the tenth century ad Eldgjá eruption (ca. 1 ka). Despite the current long repose, silicic activity of this type may occur again in the future, presenting hitherto unknown hazards. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

12.
This paper presents the first detailed study of a late Pleistocene marine tephra sequence from the NW Pacific, downwind from the Kamchatka volcanic arc. Sediment core SO201-2-40, located on the Meiji Rise ~400 km offshore the peninsula, includes 25 tephras deposited within the last 215 ka. Volcanic glass from the tephras was characterized using single-shard electron microprobe analysis and laser ablation inductively coupled mass spectrometry. The age of tephras was derived from a new age model based on paleomagnetic and paleoclimate studies. Geochemical correlation of distal tephras to Kamchatkan pyroclastic deposits allowed the identification of tephras from the Karymsky, Gorely, Opala and Shiveluch eruptive centers. Three of these tephras were also correlated to other marine and terrestrial sites and hence are identified as the best markers for the north-west Pacific region. These are an early Holocene tephra from the Karymsky caldera (~8.7 ka) and two tephras falling into the Marine Isotope Stage (MIS) 6 glacial time: an MIS 6.4 tephra from Shiveluch (~141 ka) and the MIS 6.5 Rauchua tephra (~175 ka) from Karymsky. The data presented in this study can be used in paleovolcanological and paleoceanographic reconstructions.  相似文献   

13.
Abstract

Quaternary alluvial and colluvial sediments infill major river valleys and form alluvial fans and colluvium-filled bedrock depressions on the range fronts and within the Mount Lofty Ranges of southern Australia. A complex association of alluvial successions occurs in the Sellicks Creek drainage basin, as revealed from lithostratigraphy, physical landscape setting and optically stimulated luminescence (OSL) ages. Correlation of OSL ages with the Marine Oxygen Isotope record reveals that the alluvial successions represent multiple episodes of alluvial sedimentation since the penultimate glaciation (Marine Isotope Stage 6; MIS 6). The successions include a penultimate glacial maximum alluvium (Taringa Formation; 160?±?15?ka; MIS 6), an unnamed alluvial succession (42?±?3.2?ka; MIS 3), a late last glacial colluvial succession within bedrock depressions (ca 15?ka; MIS 2) and a late last glacial alluvium (ca 15?ka; MIS 2) in the lowest, distal portion of Sellicks Creek. In addition, the Waldeila Formation, a Holocene alluvium (3.5?±?0.3?ka; MIS 1), and sediments deposited during a phase of Post-European Settlement Aggradation (PESA) are also identified. The age and spatial distribution of the red/brown successions, mapped as the Upper Pleistocene Pooraka Formation, directly relate to different topographic and tectonic settings. Neotectonic uplift locally enhanced erosion and sedimentation, while differences in drainage basin sizes along the margin of the ranges have influenced the timing and delivery of sediment in downstream locations. Close to the Willunga Fault Scarp at Sellicks Creek, sediments resembling the Pooraka Formation have yielded a pooled mean OSL age of 83.9?±?7?ka (MIS 5a) corroborating the previously identified extended time range for deposition of the formation. Elsewhere, within major river valleys, the Pooraka Formation was deposited during the last interglacial maximum (128–118?ka; MIS 5e). In general, alluviation occurred during interglacial and interstadial pluvial events, while erosion predominated during drier glacial episodes. In both cases, contemporaneous erosion and sedimentation continued to affect the landscape. For example, in the Sellicks Creek drainage basin, which lies across an actively uplifting fault zone, late glacial age sediments (MIS 2) occur within the ranges and near the distal margin of the alluvial fan complex. OSL dating of the alluvial successions reported in this paper highlights linkages between the terrestrial and marine environments in association with sea-level (base-level) and climatic perturbations. While the alluvial successions relate largely to climatically driven changes, especially in major river valleys, tectonics, eustasy, geomorphic setting and topography have influenced erosion and sedimentation, especially on steep-sloped alluvial fan environments.
  1. KEY POINTS
  2. Luminescence dating of the Sellicks Creek alluvial fan complex reveals that sedimentation occurred predominantly during the later stages of glacial cycles accompanying lower sea-levels than present.

  3. Luminescence dating confirms that the stratigraphically lower portions of the Pooraka Formation are beyond the range of radiocarbon dating.

  4. Upper Pleistocene alluvial fan sedimentation at Sellicks Creek correlates with pluvial events in southeastern Australia.

  相似文献   

14.
Last interglacial sediments in unglaciated Alaska and Yukon (eastern Beringia) are commonly identified by palaeoecological indicators and stratigraphic position ~2–5 m above the regionally prominent Old Crow tephra (124 ± 10 ka). We demonstrate that this approach can yield erroneous age assignments using data from a new exposure at the Palisades, a site in interior Alaska with numerous exposures of last interglacial sediments. Tephrochronology, stratigraphy, plant macrofossils, pollen and fossil insects from a prominent wood‐rich organic silt unit are all consistent with a last interglacial age assignment. However, six 14C dates on plant and insect macrofossils from the organic silt range from non‐finite to 4.0 14C ka BP, indicating that the organic silt instead represents a Holocene deposit with a mixed‐age assemblage of organic material. In contrast, wood samples from presumed last interglacial organic‐rich sediments elsewhere at the Palisades, in a similar stratigraphic position with respect to Old Crow tephra, yield non‐finite 14C ages. Given that local permafrost thaw since the last interglaciation may facilitate reworking of older sediments into new stratigraphic positions, minimum constraining ages based on 14C dating or other methods should supplement age assignments for last interglacial sediments in eastern Beringia that are based on palaeoecology and stratigraphic association with Old Crow tephra. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
Investigations of Lateglacial to Early Holocene lake sediments from the Nahe palaeolake (northern Germany) provided a high-resolution palynological record. To increase the temporal resolution of the record a targeted search for cryptotephra was carried out on the basis of pollen stratigraphy. Three cryptotephra horizons were detected and geochemically identified as G10ka series tephra (a Saksunarvatn Ash), Vedde Ash and Laacher See Tephra. Here we present the first geochemically confirmed finding of the ash from the Laacher See Eruption in Schleswig-Holstein—extending the so far detected fallout fan of the eruption further to the north-west. These finds enable direct stratigraphical correlations and underline the potential of the site for further investigations.  相似文献   

16.
Tephra abundance data and geochemistry in Late‐glacial and Holocene sediments on the East Greenland shelf are presented. Two well‐known tephras were identified from electron microprobe analysis of tephra shards picked from ash peaks in the cores. These are the Vedde Ash and Saksunarvatn Ash, which probably were deposited on the shelf after transport on drifting ice. The radiocarbon dates (marine reservoir corrected by −550 yr) that constrain the timing of deposition of the tephra layers compare well with the terrestrial and ice‐core ages of the tephras without requiring additional reservoir correction to align them with the known tephra ages. Several prominent tephra layers with a composition of Ash Zone 2 tephra punctuate the deglacial sediments. These tephra peaks coincide with significant light stable isotope events (signifying glacial meltwater) and fine‐grained sediments poor in ice‐rafted detritus. We interpret the Ash Zone 2 tephra peaks as sediment released from the Greenland Ice Sheet during strong melting pulses of the deglaciation. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

17.
The Mt. Edgecumbe Volcanic Field (MEVF), located on Kruzof Island near Sitka Sound in southeast Alaska, experienced a large multiple-stage eruption during the last glacial maximum (LGM)-Holocene transition that generated a regionally extensive series of compositionally similar rhyolite tephra horizons and a single well-dated dacite (MEd) tephra. Marine sediment cores collected from adjacent basins to the MEVF contain both tephra-fall and pyroclastic flow deposits that consist primarily of rhyolitic tephra and a minor dacitic tephra unit. The recovered dacite tephra correlates with the MEd tephra, whereas many of the rhyolitic tephras correlate with published MEVF rhyolites. Correlations were based on age constraints and major oxide compositions of glass shards. In addition to LGM-Holocene macroscopic tephra units, four marine cryptotephras were also identified. Three of these units appear to be derived from mid-Holocene MEVF activity, while the youngest cryptotephra corresponds well with the White River Ash eruption at ∼ 1147 cal yr BP. Furthermore, the sedimentology of the Sitka Sound marine core EW0408-40JC and high-resolution SWATH bathymetry both suggest that extensive pyroclastic flow deposits associated with the activity that generated the MEd tephra underlie Sitka Sound, and that any future MEVF activity may pose significant risk to local population centers.  相似文献   

18.
The tephrostratigraphy of lake sediments in the Endinger Bruch provides the first robust age model for the Lateglacial palynological records of Vorpommern (north‐east Germany). Cryptotephra investigations revealed six tephra layers within sediments spanning from Open vegetation phase I (~Bølling, ~15 ka) to the Early Holocene Betula/Pinus forest phase (~Pre‐boreal, ~10.5 ka). Four of these layers have been correlated with previously described tephra layers found in sites across Europe. The Laacher See Tephra (Eifel Volcanic Field) is present in very high concentrations within sediments of the Lateglacial Betula (/Pinus) forest phase (~Allerød). The Vedde Ash (Iceland) lies midway through Open vegetation phase III (~Younger Dryas). The Hässeldalen and the Askja tephras (Iceland) lie in the Early Holocene Betula/Pinus forest phase (~Preboreal). These tephra layers have independently derived age estimates, which have been imported into the Endinger Bruch record. Furthermore, the layers facilitate direct correlation of the regional vegetation record with other palaeoenvironmental archives, which contain one or more of the same tephra layers, from Greenland to Southern Europe. In doing this, localized variations are confirmed in some aspects of the pollen stratigraphy; however, transitions between the main vegetation phases appear to occur synchronously (within centennial errors) with the equivalent environmental transitions observed in sites across the European continent. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
The climactic Los Chocoyos (LCY) eruption from Atitlán caldera (Guatemala) is a key chronostratigraphic marker for the Quaternary period given the extensive distribution of its deposits that reached both the Pacific and Atlantic Oceans. Despite LCY tephra being an important marker horizon, a radioisotopic age for this eruption has remained elusive. Using zircon (U–Th)/He geochronology, we present the first radioisotopically determined eruption age for the LCY of 75 ± 2 ka. Additionally, the youngest zircon crystallization 238U–230Th rim ages in their respective samples constrain eruption age maxima for two other tephra units that erupted from Atitlán caldera, W-Fall (130 +16/−14 ka) and I-Fall eruptions (56 +8.2/−7.7 ka), which under- and overlie LCY tephra, respectively. Moreover, rim and interior zircon dating and glass chemistry suggest that before eruption silicic magma was stored for >80 kyr, with magma accumulation peaking within ca. 35 kyr before the LCY eruption during which the system may have developed into a vertically zoned magma chamber. Based on an updated distribution of LCY pyroclastic deposits, a new conservatively estimated volume of ~1220 ± 150 km3 is obtained (volcanic explosivity index VEI > 8), which confirms the LCY eruption as the first-ever recognized supereruption in Central America.  相似文献   

20.
The sediment record from the Piànico palaeolake in the southern Alps is continuously varved, spans more than 15 500 years, and represents a key archive for interglacial climate variability at seasonal resolution. The stratigraphic position of the Piànico Interglacial has been controversial in the past. The identification of two volcanic ash layers and their microscopic analysis provides distinct marker layers for tephrochronological dating of these interglacial deposits. In addition to micro‐facies analyses reconstructing depositional processes of both tephra layers within the lake environment, their mineralogical and geochemical composition has been determined through major‐element electron probe micro‐analysis on glass shards. Comparison with published tephra data traced the volcanic source regions of the Piànico tephras to the Campanian volcanic complex of Roccamonfina (Italy) and probably the Puy de Sancy volcano in the French Massif Central. Available dating of near‐vent deposits from the Roccamonfina volcano provides a robust tephrochronological anchor point at around 400 ka for the Piànico Interglacial. These deposits correlate with marine oxygen isotope stage (MIS) 11 and thus are younger than Early to Middle Pleistocene previously suggested by K/Ar dating and older than the last interglacial as inferred from macrofloral remains and the geological setting. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号