首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Hydrophobic organic contaminants (HOCs) may be used as tracers of particle dynamics in aquatic systems. Internal cycling of polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) were studied in the mesohaline Chesapeake Bay to assess the role of resuspension in maintaining particle and contaminant inventories in the water column, and to compare settling and suspended particle characteristics. Direct measurements of sediment resuspension and settling conducted in conjunction with one of the sediment trap deployments indicate reasonable agreement between measurements of particle flux using the two different methods. Organic carbon and PCB concentrations in settling solids collected in near-surface sediment traps were remarkably lower than concentrations in suspended particles collected by filtration during the trap deployments, but higher PAH concentrations were found in the settling particles. The different behaviors of PAHs and PCBs in the settling particles are due to their different source types and association to different types of particles. Sediment trap collections in near bottom waters were dominated by resuspension. Resuspension fluxes of HOCs measured 2 m above the bay bottom were as high as 2.5 μg/m2 day for total PCBs and 15 μg/m2 day for fluoranthene, and were 25 and 10 times higher than their settling fluxes from surface waters, respectively. HOC concentrations in the near bottom traps varied much less between trap deployments than HOC concentrations in the surface traps, indicating that the chemical composition of the resuspended particles collected in the near bottom traps was more time-averaged by repeated resuspension than the surface particles.  相似文献   

2.
Five transects across the NW Iberian margin were studied in the framework of the EU-funded Ocean Margin EXchange II (OMEX II) project, to determine and establish recent sediment and organic carbon transport and accumulation processes and fluxes.On the Galician shelf and shelf edge, resuspension of sediments resulting in well-developed bottom nepheloid layers was observed at all stations, but transport of suspended sediment appears largely confined to the shelf. On the continental slope, only very dilute bottom nepheloid layers were present, and intermediate nepheloid layers were only occasionally seen. This suggests that cross-slope transfer of particles is limited by the prevailing northerly directed shelf and slope currents.Optical backscatter and ADCP current measurements by the BOBO lander, deployed at 2152 m depth on the Galician slope, indicated that particles in the bottom boundary layer were kept in suspension by tidal currents with highest speeds between 15–25 cm s−1. Net currents during the recording period August 6th–September 10th 1998, were initially directed along-slope toward the NNW, but later turned off-slope toward the SW.The separation of the water masses on the slope from the sediment-laden shelf water by the along-slope current regime is reflected in the recent sedimentary deposits of the Galician shelf and slope. Apart from compositional differences, shelf deposits differ from those on the slope by their higher flux of excess 210Pb (0.57–5.37 dpm cm−2y−1 versus 0.11–3.00 dpm cm−2y−1), a much higher sediment accumulation rate (315.6–2295.9 g m−2y−1 versus 10.9–124.7 g m−2y−1) and organic carbon burial rate (1.01–34.30 g m−2y−1 versus 0.01–0.69 g m−2y−1).In contrast to the observations on the Galician margin, pronounced nepheloid layers occurred in the Nazaré Canyon, which extended to considerably greater water depths. This indicates that significantly greater transport of fine-grained particles in both the INL and the BNL was occurring within the canyon, as reflected in the exceptionally high 210Pb excess flux (up to 34.09 dpm cm−2y−1), mass accumulation rates (maximum 9623.1 g m−2y−1) and carbon burial fluxes (up to 180.91 g m−2y−1) in the sediment. However, radioisotope fluxes in the lower canyon were only slightly higher than at comparable depths on the Galician margin. This suggests that transport and rapid accumulation is focused on the upper and middle part of the canyon, from where it is episodically released to the deep sea. Compared to the Galician margin, the Nazaré Canyon may be considered as an important organic carbon depocenter on short time-scales, and a major conduit for particulate matter transport to the deep sea on >100 y time-scales.  相似文献   

3.
Sinking particulate matter were obtained from twelve depths using free-drifting sediment trap arrays which were deployed in the upper 2,000 m water column of the Izu Trench, northwest Pacific Ocean. The largest flux of 146 mgC m–2 day–1 was observed at 150 m depth. The flux generally decreased with depth below the maximum, however, minor flux peaks occurred at 1,000 and 1,250 m depth (>30 mgC m–2 day–1). Sinking large particles (>100 µm) were composed of fecal pellets typical of crustaceans, macroscopic aggregates, and planktonic organisms and their fragments. Three major components constituted 19%, 20% and 29%, respectively, of the total carbon flux (averaged from the fluxes at five depths; 50, 100, 150, 1,000 and 2,000 m). Among them, fecal pellet flux and large organism flux were well correlated with the total flux. The close correspondence between the fecal flux and the total carbon flux suggests that the latter is derived from a group of variables including other biogenic matter, among which fecal pellet is one of the leading factors controlling total flux, though the latter is only a minor covariable in quantity. Vertical flux profiles of fecal pellets and their internal constituents revealed some new inputs of feces occurring through the water column. This phenomenon implies that downward transportation of organic material is characterized by feeding and egestion activities of zooplankton, including overlapping processes of sinking and dispersion of large fecal particles and repackaging of dispersed small particles.  相似文献   

4.
The vertical distributions of suspended particles in Osaka Bay were measured by using anin situ beam attenuation meter. The concentration of suspended particles near the bottom increases rapidly toward the bottom where size of sediment is in a range of silt. The settling velocity of suspended particles near the bottom was measured with the use of a settling tower in the laboratory. The settling velocity of the suspended particles with diameter from 10 to 100m is 2×10–3cm s–1 to 5×10–2cm s–1. The density of the particles ranges from 2.0 to 1.1 and decreases with increasing particle diameter.  相似文献   

5.
Fatty acids and hydrocarbons of sedimenting particles were investigated in the northeastern Adriatic Sea from November 1988 to December 1989. Particles were collected at approximately monthly intervals, using sediment traps deployed at 30 m depth (2 m above bottom). Seasonal changes in sedimentation of particulate matter were very pronounced. Hydrocarbon fluxes and concentrations were found to vary significantly depending on the season. They averaged 2.69 ± 1.44 mg m−2 day−1 and 232.4 ± 90.93 μg g−1 in winter, respectively. In late spring-early summer the corresponding values amounted to 0.045 ± 0.015 mg m−2 day−1 and 13.72 ± 5.56 μg g−1, and they increased towards autumn, when mean values of 0.517 ± 0.228 mg m−2 day−1 and 98.86 ± 48.72 μg g−1 were obtained. In contrast, fatty acid fluxes and concentrations were low during winter (0.26 ± 0.08 mg m−2 day−1 and 21.95 ± 3.35 μg g−1), increased slightly towards the summer (0.48 ± 0.12 mg m−2 day−1 and 139.9 ± 44.6 μ g−1) and reached maximum rate and concentration in autumn, when average values were 1.98 ± 1.30 mg m2 day−1 and 489.1 ± 186.7 μg g−1, respectively. The differences in composition, concentrations and fluxes of the fatty acids and hydrocarbons were related to the sources of sedimenting material, reflecting the influence of resuspension of bottom sediments during winter and the appearance of mucus aggregates during summer and their subsequent deposition in autumn.  相似文献   

6.
An array of sediment traps was deployed for the analysis of the pattern of particulate organic carbon (POC) supply to the sea bottom in April, May and July 1988 at the mouth of Otsuchi Bay (about 80 m depth), Northeastern Japan.On the basis of a simple two-component mixing model using stable carbon isotope ratios, the POC flux was separated into marine planktonic and terrestrial components. Both the planktonic and terrestrial POC fluxes had maximum values at 30 m above the sea bottom throughout the three experiments. The planktonic POC flux showed a significant decrease with depth between 30 m and 10 m or 5 m above the bottom. Vertical supply of the planktonic POC and supply of the resuspended planktonic POC were estimated on the basis of regression lines between water depth and the planktonic POC flux in the depth range where the flux decreases with depth.Vertical supply of the planktonic POC and supply of the resuspended planktonic POC to the sea bottom were largest in May (52.1 mgC m–2 d–1 and 19.5 mgC m–2 d–1 at 5 m above the sea bottom), and horizontal supplies of the terrestrial POC were almost constant (31.9±3.5 mgC m–2 d–1 at 5 m above the bottom) throughout the three experiments.  相似文献   

7.
Cylindrical sediment traps were deployed at various depths in the anoxic water of Framvaren for two periods of one year (1981–1982 and 1983–1984). The traps were emptied three times during 1981–1982 and five times during 1983–1984. The vertical fluxes of total suspended material, organic carbon and nitrogen were calculated on a daily and annual basis. The average annual sediment flux 20 m above the bottom was approximately 60 g m−2 y−1 and the flux of organic carbon was 20 g m−2 y−1. On the basis of an average C/N ratio of 8 and a constant carbon flux below a depth of 20 m, it is concluded that little mineralization of the organic matter takes place in the anoxic water column. Assuming a primary production of the order to 50–100 g m−2 y−1, 22–24% of that reaches the anoxic water masses. Further breakdown of organic matter takes place in the surface sediments.  相似文献   

8.
From July to November, the thermocline which has strong temperature gradient (0.7C m–1) is formed in the bottom water of Beppu Bay, and it prevents the downward mixing of surface water. This has caused the bottom water of the basin to become depleted in oxygen, and in November the bottom water below about 60 m depth becomes anoxic. Accordingly manganese and iron are reduced and more soluble under the anoxic condition, those concentrations are high relative to surface water, and the maximums are 1,240g l–1 and 80g l–1. Under the anoxic condition, the flux of dissolved manganese from the sediment is about 10g cm–2 day–1.  相似文献   

9.
桑沟湾夏、秋季悬浮颗粒物的沉降通量及再悬浮的影响   总被引:1,自引:0,他引:1  
杨茜  杨庶  宋娴丽  孙耀 《海洋学报》2014,36(12):85-90
应用锚式悬挂沉积物捕捉器法,研究了我国北方重要海水养殖区域桑沟湾悬浮颗粒物沉降通量的分布特征,并通过金属Al标记法,同步测定了沉降颗粒物再悬浮比率。结果表明,桑沟湾的底层悬浮颗粒物(SPM)、颗粒有机碳(POC)、颗粒态总氮(PTN)和颗粒态总磷(PTP)平均表观沉降通量分别为1 511.4g/(m2·d)、20.01g/(m2·d)、1.497g/(m2·d)和0.474g/(m2·d),显著高于我国其他近岸海域,但底层沉降颗粒物再悬浮比率平均值高达92.8%,认为在养殖内湾,受再悬浮程度的影响,测得的底层表观沉降通量是中层的2.7倍,秋季明显大于夏季,海带和扇贝养殖区大于牡蛎养殖区。经再悬浮比率校正后的净沉降通量,仍存在着显著的空间和季节变化,但受控因素发生了根本转变;这主要表现为净沉降颗粒物质主要源于生物代谢活动强烈中上层水体,贝类的排泄作用使牡蛎和扇贝养殖区的净沉降通量显著大于海带养殖区,养殖贝类个体增大、排泄量增加使秋季净沉降通量高于夏季。在我国近岸海域,再悬浮作用的影响,会对该区域悬浮颗粒物沉降通量的估算带来巨大误差,因此该作用不容忽视。  相似文献   

10.
王爱军  叶翔  陈坚  黄财宾 《海洋学报》2015,37(1):125-136
运用时间序列的沉积物捕获器对海岸与陆架海域沉降颗粒物进行采集,估算沉降通量,并运用多学科综合研究手段分析沉降颗粒物的来源、组成、时空变化及控制因素,可以为海岸与陆架沉积动力过程的研究提供新的研究手段。福建罗源湾的实验表明,夏季罗源湾潮下带小潮至中潮期间的沉降通量为133.20~256.18g/(m2·t);由中潮向大潮变化期间单个潮周期的沉降通量明显增大,台风过后的大潮期间的沉降通量为373.99~590.51g/(m2·t);台风显著影响期间的沉降通量为746.34g/(m2·t);粒度分析及水动力观测结果显示,观测期间罗源湾潮下带沉降颗粒物主要来源于海底沉积物的再悬浮。台湾海峡西北部内陆架海域的实验研究表明,该海域近底部悬浮颗粒物沉降通量最大值为13.34g/(m2·d),由小潮向中潮沉降通量逐渐增大,这主要是由于近底部温盐跃层层位上移,近底部垂向混合作用增强,致使底部再悬浮沉积物向上扩散,并最终被沉积物捕获器捕获。沉积物捕获器可以接收到再悬浮沉积物,结合底部边界层过程的观测研究,可以深入认识海底沉积物的侵蚀、沉降及埋藏过程,在研究海岸与陆架区沉积动力学、泥质区沉积记录的形成过程与保存潜力中扮演着十分重要的角色。  相似文献   

11.
We present the results of six dye tracer experiments that measured the mixing and circulation at the shelfbreak front on the New England Shelf. The last three were conducted during the New England Shelfbreak Productivity Experiment (NESPEX) with concurrent isopycnal float deployments. The results are consistent with the Chapman and Lentz [Chapman, D.C., and Lentz, S.J. (1994). Trapping of a coastal density front by the bottom boundary layer. Journal of Physical Oceanography, 24, 1465–1479.] model prediction of the separation and upwelling along the shelfbreak front of bottom boundary layer (BBL) water forced by an Ekman buoyancy flux, but show considerable variability. Cross-shelf velocities at the detachment point are 2–3 × 10−2 m/s. But seaward, over the slope region, dye tagged water was sheared from the main patch into small filaments that upwelled along the front with cross-shelf speeds up to 0.1 m/s. Cross-shelf diffusion was of order 10 m2/s in the mixed bottom layer and 1 m2/s in the interior along the front. Within the stratified front, the mean vertical diffusivity was Kz  4 × 10−6 m2/s. The dispersion of shelfwater in the slope region is effected by turbulent flow with advective speeds exceeding the small scale diffusive mixing. The mean flux of the detached BBL water is sufficient to account for the net loss of shelf water during its transit from Cape Cod to Cape Hatteras.  相似文献   

12.
Organic carbon flux from eutrophicated Tokyo Bay to the Pacific Ocean is estimated as 260 ton C day–1 based on the horizontal gradient of COD and the dispersion coefficient at the bay mouth. Also, carbon flux from the air or from the open ocean to Tokyo Bay is estimated as 156 ton C day–1. If we suppose that five percent of the coastal seas in the world might be eutrophicated as Tokyo Bay and the organic carbon flux from the shelf to the open ocean in other coastal seas might be one third of that in Tokyo Bay, 1.12 G tons year–1 would be transported from the eutrophicated coastal seas to the open ocean and such carbon flux may account for the missing sink in the global carbon budget.  相似文献   

13.
In order to study particle behaviour and its time-variability in the near-bottom layer on the Porcupine Abyssal Plain (48°50′N, 16°30′W, 4850 m), long-term measurements were made of currents, and nephelometry and particle samples were collected using an autonomous lander between mid-1996 and mid-1998. Water samples, collected in the Bottom Nepheloid Layer within 1000 m of the bottom, were filtered for suspended particles whose contents of organic carbon, nitrogen and pigments were determined. This study was co-ordinated with a water column flux study and a detailed programme of benthic studies to understand how the abyssal boundary layer responds to and modifies inputs of organic matter from the water column (MAST3/BENGAL programme).There were strong seasonal fluctuations in the near-bottom (2 m above the bottom, mab) particle flux, whose variation were correlated in time with the water column fluxes. During the periods of peak flux, the near-bottom flux was sometimes higher than that recorded higher up in the water column, but not always at other times. These excesses were attributed to the resuspension events, since we observed a correlation between current speed and nephelometry. However, in summer the peak in the particle resuspension flux could not be explained by the variations in the tidal amplitude. Instead we attribute it to the large quantities of fresh large particles (aggregations) that had just arrived on the bottom; it was probably linked to the feeding activity and sediment reworking by the rich and varied benthic and benthopelagic megafauna.In both 1997 and 1998, the nephelometry signal (directly related to fine particle concentration) and its variability increased after the peaks in large particle flux with a time-lag of 2–3 months. We assume that this time lag corresponds to the time it takes for the large fresh particles, once they have settled on the bottom, to be disaggregated into smaller particles, and hence become subject to resuspension in the quiet current conditions then prevailing in the BENGAL area. The suspended particle analyses confirm the vertical structure of the Bottom Nepheloid Layer, the lower part of which corresponds to the Bottom Mixed Layer (BML) where resuspension and mixing are higher.  相似文献   

14.
To quantify recent sediment accumulation, carbon fluxes and cycling, three N.W. European Continental Margin transects on Goban Spur and Meriadzek Terrace were extensively studied by repeated box- and multicore sampling of bottom sediments. The recent sediment distribution and characteristics appear directly related to the near-bed hydrodynamic regime on the margin, which at the upper slope break on the Goban Spur results in along-slope and periodic off-slope directed transport of particles, possibly by entrainment of particles in a detached bottom or intermediate nepheloid layer. From the shelf to the abyssal plain the surface sediments on the Goban Spur change from terrigenous sandy shelf sediments into clayey silts. 210Pb activity decreases exponentially down core, reaching a stable background value at 10 cm (shallower stations) to 5 cm (deeper stations) sediment depth. 210Pb profiles of repeatedly sampled stations indicate negligible annual variability of mixing and flux. The 210Pbxs flux to the sediment shows a decreasing trend with increasing water depth. Below about 2000 m the average 210Pbxs flux is about 0.3 dpm cm−2 y−1, a third of the fluxes measured on the shelf and upper slope stations. Sediment mixing rates (Db) correlate with macro- and meiofaunal density changes and are within the normal oceanic ranges. Lower mixing rates on the lower slope likely reflect lower organic carbon fluxes there. Mass accumulation rates on Meriadzek Terrace are at maximum 80 g m−2 y−1, almost twice as high as at Goban Spur stations of comparable depth. A minimum accumulation rate of 16.6 g m−2 y−1 is found at the Goban Spur upper slope break. Organic carbon burial rates are low compared to other margins and range from a lowest value of 0.05 g m−2 y−1 at the upper slope break to 0.11 g m−2 y−1 downslope. A maximum organic carbon burial rate of 0.41 g m−2 y−1 is found on Meriadzek Terrace. Carbonate burial rates increase along the northern transect from the shelf (13 g m−2 y−1) via a low (9.3 g m−2 y−1) on the upper slope break to the deep sea (30.7 g m−2 y−1). Carbonate burial is highest on Meriadzek Terrace (44.5 g m−2 y−1). The N.W. European Margin at Goban Spur and Meriadzek Terrace cannot be considered a major carbon depocenter.  相似文献   

15.
In January–February 1987, an urgent cruise JENEX-87 was carried out in the central equatorial Pacific during the occurrence of the 1986–87 El Niño. This cruise, supported by the Japan Science and Technology Agency, supplied heat flux data through the sea surface, on the basis of direct measurements of short- and long-wave radiation fluxes.In the time average, the heat gain due to the radiation flux (153 W m–2) was almost compensated by the heat loss due to latent heat flux (130 W m–2), and thus the net heat gain was small in magnitude (20 W m–2). On the other hand, day-to-day changes of the net heat flux ranged within ±130 W m–2, mainly reflecting the downward short-wave radiation variations.The heat balance in the surface oceanic mixed layer was investigated in two quadrangle areas (160°E-180° and 180°-160°W between 2°N and 2°S), using the surface heat flux and estimating the advective heat fluxes due to the geostrophic and Ekman currents. In these two quadrangles, we respectively derived –187±88 W m–2 and +27±95 W m–2. The former value, which is equivalent to about 1°C month–1 drop of the mixed layer temperature, is evidence of the abnormal oceanic condition in the occurrence of the 1986–87 El Niño event.  相似文献   

16.
The Ross Sea, a region of high seasonal production in the Southern Ocean, is characterized by blooms of the haptophyte Phaeocystis antarctica and of diatoms. The different morphology, structural composition and consumption of these two phytoplankton by grazing zooplankton may result in different carbon cycling dynamics and carbon flux from the euphotic zone. We sampled short-term (2 days) particle flux at 5 sites from 177.6°W to 165°E along a transect at 76.5°S with traps placed below the euphotic zone at 200 m during December 1995–January 1996. We estimated carbon flux of as many eucaryotic organisms and fecal pellets as possible using microscopy for counts and measurements and applying volume:carbon conversions from the literature. Eucaryotic organisms contributed about 20–40% of the total organic carbon flux in both the central Ross Sea polynya and in the western polynya, and groups of organisms differed in contribution to the carbon flux at the different sites. Algal carbon flux ranged from 4.5 to 21.1 mg C m−2 day−1 and consisted primarily of P. antarctica (cell plus mucus) and diatom carbon at all sites. Different diatom species dominated the diatom flux at different sites. Carbon fluxes of small pennate diatoms may have been enhanced by scavenging, by sinking senescent P. antarctica colonies. Heterotrophic carbon flux ranged from 9.2 to 37.6 mg C m−2 day−1 and was dominated by athecate heterotrophic dinoflagellate carbon in general and by carbon flux of a particular large athecate dinoflagellate at two sites. Fecal pellet carbon flux ranged from 4.6 to 54.5 mg C m−2 day−1 and was dominated by carbon from ovoid/angular pellets at most sites. Analysis of fecal pellet contents suggested that large protozoans identified by light microscopy contributed to ovoid/angular fecal pellet fluxes. Carbon flux as a percentage of daily primary production was lowest at sites where P. antarctica predominated in the water column and was highest at sites where fecal pellet flux was highest. This indicates the importance of grazers in carbon export.  相似文献   

17.
Lagrangian experiments with short-term, drifting sediment traps were conducted during a cruise on RRS Charles Darwin to the NW coast of Spain to study the vertical flux and composition of settling biogenic matter. The cruise was split into two legs corresponding to (i) a period of increased production following an upwelling event on the continental shelf (3–10 August 1998) and (ii) an evolution of a cold water filament originating from the upwelled water off the shelf (14–19 August). The export of particulate organic carbon (POC) from the upper layer (0–60m) on the shelf was 90–240mgC.m−2.d−1 and off the shelf was 60–180mgC.m−2.d−1. Off shelf the POC flux at 200m was 50–60mg.m−2.d−1. A modest sedimentation of diatoms (15–30mgC.m−2.d−1) after the upwelling was associated with increased vertical flux of chlorophyll a (1.8–2.1mg.m−2.d−1) and a decrease of the POC:PON molar ratio of the settled material from 9 to 6.4. Most of the pico-, nano-, and microplankton in the settled material were flagellates; diatoms were significant during the on shelf and dinoflagellates during the off shelf leg. Off shelf, the exponential attenuation of POC flux indicated a strong retention capacity of the plankton community between 40 and 75m. POC:PON ratio of the settled particulate matter decreased with depth and the relative portion of flagellates increased, suggesting a novel, flagellate and aggregate mediated particulate flux in these waters. Export of POC from the euphotic layer comprised 14–26% of the integrated primary production per day during the on shelf leg and 25–42% during the off shelf leg, which characterises the importance of sedimentation in the organic carbon budget of these waters.  相似文献   

18.
Mesoscale eddies may enhance primary production (PP) in the open ocean by bringing nutrient-rich deep waters into the euphotic zone, potentially leading to increased transport of particles to depth. This hypothesis remains controversial, however, due to a paucity of direct particle export measurements. In this study, we investigated particle dynamics using 234Th–238U disequilibria within a mesoscale cold-core eddy, Cyclone Opal, which formed in the lee of the Hawaiian Islands. 234Th samples were collected along two transects across Cyclone Opal as well as during a time-series within the eddy core during a decaying diatom bloom. Particulate carbon (PC), particulate nitrogen (PN) and biogenic silica (bSiO2) fluxes at 150 m varied spatially and temporally within the eddy and strongly depended on the 234Th model formulation used (e.g., steady state versus non-steady state, inclusion of upwelling, etc.). Particle fluxes estimated from a steady state model assuming an upwelling rate of 2 m day−1 yielded the best fit to sediment-trap data. These 234Th-derived particle fluxes ranged from 332±14 to 1719±53 μmol C m−2 day−1, 27±3 to 114±12 μmol N m−2 day−1, and 33±20 to 309±73 μmol Si m−2 day−1. Although PP rates within Cyclone Opal were elevated by a factor of 2–3, PC and PN fluxes were the same, within error, inside and outside of Cyclone Opal. The ratio of PC export to PP remained surprisingly low at <0.03 and similar to those measured in surrounding waters. In contrast, bSiO2 fluxes within the eddy core were three times higher. Detailed analyses of 234Th depth profiles consistently showed excess 234Th at 100–175 m, associated with the remineralization and possible accumulation of suspended and dissolved organic matter from the surface. We suggest that strong microzooplankton grazing facilitated particulate organic matter recycling and resulted in the export of empty diatom frustules. Thus, while eddies may increase PP, they do not necessarily increase PC and PN export to deep waters. This may be a general characteristic of wind-driven cyclonic eddies of the North Pacific Subtropical Gyre and suggests that eddies may preferentially act as a silica pump, thereby playing an important role in promoting silicic-acid limitation in the region.  相似文献   

19.
Seasonal new production (g C m−2) estimates obtained from dissolved oxygen and nitrate concentrations in surface waters (5 m depth) along a track between the UK (Portsmouth) and northern Spain (Bilbao) are compared. An oxygen flux method, in combination with a ship of opportunity (SOO), was tested on the northwest European shelf for its value in distinguishing high production in frontal regions. Dissolved oxygen, nitrate and chlorophyll a samples were collected monthly from February to July 2004, alongside continuous autonomous measurements of salinity, temperature and chlorophyll fluorescence. Depth integrated new production estimates for all the individually analysed hydrographic regions of the route were produced.Results from three widely used gas-exchange parameterizations gave seasonal (February–July) new production estimates of 54–68 g C m−2 for the Ushant region of the western English Channel and 31–40 g C m−2 for the shelf slope, averaging 24–31 g C m−2 for the route. This is double the route average obtained using the nitrate assimilation method (17 g C m−2) and within the ranges of previous estimates in the same region. The oxygen flux method gave a fivefold enhancement compared to the nitrate method in the Ushant frontal region and a threefold enhancement in the English Channel and shelf break regions. Determining oxygen fluxes to estimate new production may be more reliable than nitrate assimilation in active tidal or frontal regions of shelves where nitrate may be added to the system post-winter through advection or entrainment.  相似文献   

20.
Downward fluxes of labile organic matter (lipids, proteins and carbohydrates) at 200 (trap A) and 1515 m depth (trap B), measured during a 12 months sediment trap experiment, are presented, together with estimates of the bacterial and cyanobacterial biomasses associated to the particles. The biochemical composition of the settling particles was determined in order to provide qualitative and quantitative information on the flux of readily available organic carbon supplying the deep-sea benthic communities of the Cretan Sea. Total mass flux and labile carbon fluxes were characterised by a clear seasonality. Higher labile organic fluxes were reported in trap B, indicating the presence of resuspended particles coming from lateral inputs. Particulate carbohydrates were the major component of the flux of labile compounds (on annual average about 66% of the total labile organic flux) followed by lipids (20%) and proteins (13%). The biopolymeric carbon flux was very low (on annual average 0.9 and 1.2 gC m−2 y−1, at trap A and B). Labile carbon accounted for most of the OC flux (on annual average 84% and 74% in trap A and B respectively). In trap A, highest carbohydrate and protein fluxes in April and September, corresponded to high faecal pellet fluxes. The qualitative composition of the organic fluxes indicated a strong protein depletion in trap B and a decrease of the bioavailability of the settling particles as a result of a higher degree of dilution with inorganic material. Quantity and quality of the food supply to the benthos displayed different temporal patterns. Bacterial biomass in the sediment traps (on average 122 and 229 μgC m−2 d−1 in trap A and B, respectively) was significantly correlated to the flux of labile organic carbon, and particularly to the protein and carbohydrate fluxes. Cyanobacterial flux (on average, 1.1 and 0.4 μgC m−2 d−1, in trap A and B, respectively) was significantly correlated with total mass and protein fluxes only in trap A. Bacterial carbon flux, equivalent to 84.2 and 156 mgC m−2 y−1, accounted for 5–6.5% of the labile carbon flux (in trap A and B respectively) and for 22–41% protein pool of the settling particles. These results suggest that in the Cretan Sea, bacteria attached to the settling particles represent a potential food source of primary importance for deep-sea benthic communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号