首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Rainfall-induced landslides have occurred frequently in Southwestern China since the Wenchuan earthquake,resulting in massive loss of people''s life and property. Fortunately,landslide early-warning is one of the most important tools for landslide hazard prevention and mitigation. However, the accumulation of historical data of the landslides induced by rainfall is limited in many remote mountain areas and the stability of the slope is easily affected by human engineering activities and environmental changes, leading to difficulties to accurately realize early warning of landslide hazards by statistical methods. The proposed warning method is divided into rainfall warning component and deformation warning component because the deformation induced by rainfall has the characteristic of hysteretic nature. Rainfall, tilted angle and crack width are chosen as monitoring indexes. Rainfall grade level that contains rainfall intensity and duration information is graded according to the variation of the safety factor calculated by 3-D finite difference numerical simulation method, and then is applied using the strength reduction method and unascertained information theory to obtain the deformation grade level of several monitored points. Finally, based on the system reliability theory, we establish a comprehensive landslide warning level method that provides four early warning levels to reflect the safety factor reductions during and post rainfall events. The application of this method at a landslide site yield generally satisfactory results and provide a new method for performing multi-index and multi-level landslide early warnings.  相似文献   

2.
A model for topographic correction and land surface reflectance estimation for optical remote sensing data in rugged terrian is presented.Considering a directional-directional reflectance that is used for direct solar irradiance correction and a hemispheric-directional reflectance that is used for atmospheric diffuse irradiance and terrain background reflected irradiance correction respectively,the directional reflectance-based model for topographic effects removing and land surface reflectance calculation is developed by deducing the directional reflectance with topographic effects and using a radiative transfer model.A canopy reflectance simulated by GOMS model and Landsat/TM raw data covering Jiangxi rugged area were taken to validate the performance of the model presented in the paper.The validation results show that the model presented here has a remarkable ability to correct topography and estimate land surface reflectance and also provides a technique method for sequently quantitative remote sensing application in terrain area.  相似文献   

3.
玉树地震滑坡分布调查及其特征与形成机制   总被引:2,自引:2,他引:0  
On April 14, 2010 at 07:49 (Beijing time), a catastrophic earthquake with MS7.1 occurred at the central Qinghai-Tibetan Plateau. The epicenter was located at Yushu county, Qinghai Province, China. A total of 2036 landslides were determined from visual interpretation of aerial photographs and high resolution remote sensing images, and verified by selected field investigations. These landslides covered a total area of about 1.194km2. Characteristics and failure mechanisms of these landslides are listed in this paper, including the fact that the spatial distribution of these landslides is controlled by co-seismic main surface fault ruptures. Most of the landslides were small scale, causing rather less hazards, and often occurring close to each other. The landslides were of various types, including mainly disrupted landslides and rock falls in shallows and also deep-seated landslides, liquefaction induced landslides, and compound landslides. In addition to strong ground shaking, which is the direct landslide triggering factor, geological, topographical, and human activity also have impact on the occurrence of earthquake triggered landslides. In this paper, five types of failure mechanisms related to the landslides are presented, namely, the excavated toes of slopes accompanied by strong ground shaking; surface water infiltration accompanied by strong ground shaking; co-seismic fault slipping accompanied by strong ground shaking; only strong ground shaking; and delayed occurrence of landslides due to snow melt or rainfall infiltration at sites where slopes were weakened by co-seismic ground shaking. Besides the main co-seismic surface ruptures, slope fissures were also delineated from visual interpretation of aerial photographs in high resolution. A total of 4814 slope fissures, with a total length up to 77.1km, were finally mapped. These slope fissures are mainly distributed on the slopes located at the southeastern end of the main co-seismic surface rupture zone, an area subject to strong compression during the earthquake.  相似文献   

4.
There is a certain degree of ambiguity associated with remote sensing as a means of performing earth observations.Using interval-valued data to describe clustering prototype features may be more suitable for handling the fuzzy nature of remote sensing data,which is caused by the uncertainty and heterogeneity in the surface spectral reflectance of ground objects.After constructing a multi-spectral interval-valued model of source data and defining a distance measure to achieve the maximum dissimilarity between intervals,an interval-valued fuzzy c-means(FCM)clustering algorithm that considers both the functional characteristics of fuzzy clustering algorithms and the interregional features of ground object spectral reflectance was applied in this study.Such a process can significantly improve the clustering effect;specifically,the process can reduce the synonym spectrum phenomenon and the misclassification caused by the overlap of spectral features between classes of clustering results.Clustering analysis experiments aimed at land cover classification using remote sensing imagery from the SPOT-5 satellite sensor for the Pearl River Delta region,China,and the TM sensor for Yushu,Qinghai,China,were conducted,as well as experiments involving the conventional FCM algorithm,the results of which were used for comparative analysis.Next,a supervised classification method was used to validate the clustering results.The final results indicate that the proposed interval-valued FCM clustering is more effective than the conventional FCM clustering method for land cover classification using multi-spectral remote sensing imagery.  相似文献   

5.
The research for the land surface fluxes has madea quiet great progress for its breakthroughs in the fieldof regional or global interactions between land surfaceand atmosphere. However, many remote sensing mod-els for estimating the land surface fluxes need the pa-rameters of surface momentum, heat, resistance ofwater vapor at a referenced height, which are the func-tion of aerodynamic surface roughness zad. It hasbeen validated that the retrieval of the land surfacefluxes is very sensitive to…  相似文献   

6.
Introduction China is a country with many landslides and debris flows. These disasters bring out a large amount of losses of life and property. It is significant to predict landslide incident by monitoring the deformations of these landslides. At past, triangulation and trilateration are traditional tools, but it is very difficult for them to realize real-time monitoring, and it is more dangerous for obser- vation workers when the deformation becomes larger. Because of many advantages such as…  相似文献   

7.
SBAS-InSAR technology is characterized by the advantages of reducing the influence of terrain-simulation error, time-space decorrelation, atmospheric error, thereby improving the reliability of surface-deformation monitoring. This paper studies the early landslide identification method based on SBAS-InSAR technology. Selecting the Jiangdingya landslide area in Zhouqu County, Gansu Province as the research area, 84 ascending-orbit Sentinel-1A SAR images from 2015 to 2019 are collected. In addition, using SBAS-InSAR technology, the rate and time-series results of surface deformation of the landslide area in Jiangdingya during this period are extracted, and potential landslides are identified. The results show that the early landslide identification method based on SBAS-InSAR technology is highly feasible and is a better tool for identifying potential landslides in large areas.  相似文献   

8.
Remote sensing based land cover mapping at large scale is time consuming when using either supervised or unsupervised classification approaches. This article used a fast clustering method—Clustering by Eigen Space Transformation(CBEST) to produce a land cover map for China. Firstly, 508 Landsat TM scenes were collected and processed. Then, TM images were clustered by combining CBEST and K-means in each pre-defined ecological zone(50 in total for China). Finally, the obtained clusters were visually interpreted as land cover types to complete a land cover map. Accuracy evaluation using 2159 test samples indicates an overall accuracy of 71.7% and a Kappa coefficient of 0.64. Comparisons with two global land cover products(i.e., Finer Resolution Observation and Monitoring of Global Land Cover(FROM-GLC) and GlobCover 2009) also indicate that our land cover result using CBEST is superior in both land cover area estimation and visual effect for different land cover types.  相似文献   

9.
Satellite observations of atmospheric CO2 are able to truly capture the variation of global and regional CO2 concentration.The model simulations based on atmospheric transport models can also assess variations of atmospheric CO2 concentrations in a continuous space and time,which is one of approaches for qualitatively and quantitatively studying the atmospheric transport mechanism and spatio-temporal variation of atmospheric CO2 in a global scale.Satellite observations and model simulations of CO2 offer us two different approaches to understand the atmospheric CO2.However,the difference between them has not been comprehensively compared and assessed for revealing the global and regional features of atmospheric CO2.In this study,we compared and assessed the spatio-temporal variation of atmospheric CO2 using two datasets of the column-averaged dry air mole fractions of atmospheric CO2(XCO2)in a year from June 2009 to May 2010,respectively from GOSAT retrievals(V02.xx)and from Goddard Earth Observing System-Chemistry(GEOS-Chem),which is a global 3-D chemistry transport model.In addition to the global comparison,we further compared and analyzed the difference of CO2 between the China land region and the United States(US)land region from two datasets,and demonstrated the reasonability and uncertainty of satellite observations and model simulations.The results show that the XCO2 retrieved from GOSAT is globally lower than GEOS-Chem model simulation by 2 ppm on average,which is close to the validation conclusion for GOSAT by ground measures.This difference of XCO2 between the two datasets,however,changes with the different regions.In China land region,the difference is large,from 0.6 to 5.6 ppm,whereas it is 1.6 to 3.7 ppm in the global land region and 1.4 to 2.7 ppm in the US land region.The goodness of fit test between the two datasets is 0.81 in the US land region,which is higher than that in the global land region(0.67)and China land region(0.68).The analysis results further indicate that the inconsistency of CO2concentration between satellite observations and model simulations in China is larger than that in the US and the globe.This inconsistency is related to the GOSAT retrieval error of CO2 caused by the interference among input parameters of satellite retrieval algorithm,and the uncertainty of driving parameters in GEOS-Chem model.  相似文献   

10.
A complete landslide inventory and attribute database is the importantly fundamental for the study of the earthquake-induced landslide. Substantial landslides were triggered by the MW7.9 Wenchuan earthquake on May 12th, 2008. Google Earth images of pre- and post-earthquakes show that 52 194 co-seismic landslides were recognized and mapped, with a total landslides area of 1 021 km2.Based on the statistics,we assigned all landslide parameters and established the co-seismic landslides database, which includes area, length, and width of landslides, elevation of the scarp top and foot edge, and the top and bottom elevations of each located slope. Finally, the spatial distribution and the above attribute parameters of landslides were analyzed. The results show that the spatial distribution of the co-seismic landslides is extremely uneven. The landslides that mainly occur in a rectangular area (a width of 30 km of the hanging wall of the Yingxiu-Beichuan fault and a length of 120 km between Yingxiu and Beichuan) are obviously controlled by surface rupture, terrain, and peak ground acceleration. Meanwhile, a large number of small landslides (individual landslide area less than 10 000 m2)contribute less to the total landslides area. The number of landslides larger than 10 000 m2 accounts for 38.7% of the total number of co-seismic landslides, while the area of those landslides account for 88% of the total landslides area. The 52 194 co-seismic landslides are caused by bedrock collapse that usually consists of three parts:source area, transport area, and accumulation area. However, based on the area-volume power-law relationship, the resulting regional landslide volume may be much larger than the true landslide volume if the landslide volume is calculated using the influenced area from each landslide.  相似文献   

11.
An empirical simulation method to simulate the possible position of shallow rainfall-induced landslides in China has been developed. This study shows that such a simulation may be operated in real-time to highlight those areas that are highly prone to rainfall-induced landslides on the basis of the landslide susceptibility index and the rainfall intensity-duration (I-D) thresholds. First, the study on landslide susceptibility in China is introduced. The entire territory has been classified into five categories, among which high-susceptibility regions (Zone 4- ‘High’ and 5-‘Very high’) account for 4.15% of the total extension of China. Second, rainfall is considered as an external triggering factor that may induce landslide initiation. Real-time satellite-based TMPA 3B42 products may provide real rainfall spatial and temporal patterns, which may be used to derive rainfall duration time and intensity. By using a historical record of 60 significant past landslides, the rainfall I-D equation has been calibrated. The rainfall duration time that may trigger a landslide has resulted between 3 hours and 45 hours. The combination of these two aspects can be exploited to simulate the spatiotemporal distribution of rainfall-induced landslide hazards when rainfall events exceed the rainfall I-D thresholds, where the susceptibility category is ‘high’ or ‘very high’. This study shows a useful tool to be part of a systematic landslide simulation methodology, potentially providing useful information for a theoretical basis and practical guide for landslide prediction and mitigation throughout China.  相似文献   

12.
This study constructs a preliminary inventory of landslides triggered by the MS 6.8 Luding earthquake based on field investigation and human-computer interaction visual interpretation on optical satellite images. The results show that this earthquake triggered at least 5 007 landslides, with a total landslide area of 17.36 ?km2, of which the smallest landslide area is 65 ?m2 and the largest landslide area reaches 120 747 ?m2, with an average landslide area of about 3 500 ?m2. The obtained landslides are concentrated in the IX intensity zone and the northeast side of the seismogenic fault, and the area density and point density of landslides are 13.8%, and 35.73 ?km?2 peaks with 2 ?km as the search radius. It should be noted that the number of landslides obtained in this paper will be lower than the actual situation because some areas are covered by clouds and there are no available post-earthquake remote sensing images. Based on the available post-earthquake remote sensing images, the number of landslides triggered by this earthquake is roughly estimated to be up to 10 000. This study can be used to support further research on the distribution pattern and risk evaluation of the coseismic landslides in the region, and the prevention and control of landslide hazards in the seismic area.  相似文献   

13.
《国际泥沙研究》2022,37(5):601-618
Landslides are considered as one among many phenomena jeopardizing human beings as well as their constructions. To prevent this disastrous problem, researchers have used several approaches for landslide susceptibility modeling, for the purpose of preparing accurate maps marking landslide prone areas. Among the most frequently used approaches for landslide susceptibility mapping is the Artificial Neural Network (ANN) method. However, the effectiveness of ANN methods could be enhanced by using hybrid metaheuristic algorithms, which are scarcely applied in landslide mapping. In the current study, nine hybrid metaheuristic algorithms, genetic algorithm (GA)-ANN, evolutionary strategy (ES)-ANN, ant colony optimization (ACO)-ANN, particle swarm optimization (PSO)-ANN, biogeography based optimization (BBO)-ANN, gravitational search algorithm (GHA)-ANN, particle swarm optimization and gravitational search algorithm (PSOGSA)-ANN, grey wolves optimization (GWO)-ANN, and probability based incremental learning (PBIL)-ANN have been used to spatially predict landslide susceptibility in Algiers’ Sahel, Algeria. The modeling phase was done using a database of 78 landslides collected utilizing Google Earth images, field surveys, and six conditioning factors (lithology, elevation, slope, land cover, distance to stream, and distance to road). Initially, a gamma test was used to decrease the input variable numbers. Furthermore, the optimal inputs have been modeled by the mean of hybrid metaheuristic ANN techniques and their performance was assessed through seven statistical indicators. The comparative study proves the effectiveness of the co-evolutionary PSOGSA-ANN model, which yielded higher performance in predicting landslide susceptibility compared to the other models. Sensitivity analysis using the step-by-step technique was done afterward, which revealed that the distance to the stream is the most influential factor on landslide susceptibility, followed by the slope factor which ranked second. Lithology and the distance to road have demonstrated a moderate effect on landslide susceptibility. Based on these findings, an accurate map has been designed to help land-use managers and decision-makers to mitigate landslide hazards.  相似文献   

14.
Landslide susceptibility estimates are essential for reducing the risk posed by landslides to social and economic well-being. However, estimates of landslide susceptibility depend on reliable landslide inventories whose production requires extensive field or remote sensing efforts. Further, most inventories are not updated through time and thus may not capture the influence of changes in climate and/or land use. Inventories based on citizen reports of landslide occurrence, have the potential to overcome these limitations. Such an inventory can be produced from citizen reports to a 311-phone and online system, a nationwide database that updates real-time and records reported landslides location and timing. Whereas this landslide inventory is promising, it has not used for landslide susceptibility analyses and may be associated with spatial uncertainties and reporting biases. In this study we explore the use of 311-based landslide inventory for landslide susceptibility estimates in Pittsburgh, PA, USA, where landslide risk is among the highest in the nation. We compare the 311-based inventory to field-validated inventories through a multi-pronged approach that combines field validation of 311-reported landslides, probabilistic analysis of the association between landslides and the underlying topographic and geologic factors, and spatial filtering. Our results show that: (a) approximately 70% of the 311-reported landslides are associated with an identifiable landslide in the field; (b) the spatial uncertainty of the 311-reported landslides is 104 ± 25 m; (c) 311-reported landslides differ from other inventories in that they are primarily associated with proximity to roads, however, field-correction of 311-reported landslide locations rectifies this anomaly; (d) a simple spatial filter, scaled by the uncertainty in location as determined from a subset of the 311-data, can increase the consistency between the 311-reported inventory and field-validated inventories. These results suggest that 311-based landslide inventories can improve susceptibility estimates at a relatively low cost and high temporal resolution.  相似文献   

15.
Landslides threaten lives and property throughout the United States, causing in excess of $2 billion in damages and 25–50 deaths annually. In regions subjected to urban expansion caused by population growth and/or increased storm intensities caused by changing climate patterns, the economic and society costs of landslides will continue to rise. Using a geographic information system (GIS), this paper develops and implements a multivariate statistical approach for mapping landslide susceptibility. The presented susceptibility maps are intended to help in the design of hazard mitigation and land development policies at regional scales. The paper presents (a) a GIS‐based multivariate statistical approach for mapping landslide susceptibility, (b) several dimensionless landslide susceptibility indexes developed to quantify and weight the influence of individual categories for given potential risk factors on landslides and (c) a case study in southern California, which uses 11 111 seismic landslide scars collected from previous efforts and 5389 landslide scars newly digitized from local geologic maps. In the case study, seven potential risk factors were selected to map landslide susceptibility. Ground slope and event precipitation were the most important factors, followed by land cover, surface curvature, proximity to fault, elevation and proximity to coastline. The developed landslide susceptibility maps show that areas classified as having high or very high susceptibilities contained 71% of the digitized landslide scars and 90% of the seismic landslide scars while only occupying 26% of the total study area. These areas mostly have ground slopes higher than 46% and 2‐year, 6‐hour precipitation greater than 51 mm. Only 12% of digitized landslides and less than 1% of recorded seismic landslides were located in areas classified as low or very low susceptibility, while occupying 42% of the total study region. These areas mostly have slopes less than 27% and 2‐year, 6‐hour precipitation less than 41 mm. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
The increasing availability and reliability of satellite remote sensing products [e.g., precipitation (P), evapotranspiration (ET), and the total water storage change (TWSC)] make it feasible to estimate the global terrestrial water budget at fine spatial resolution. In this study, we start from a reference water budget dataset that combines all available data sources, including satellite remote sensing, land surface model (LSM) and reanalysis, and investigate the roles of different non-satellite remote sensing products in closing the terrestrial water budget through a sensitivity analysis by removing/replacing one or more categories of products during the budget estimation. We also study the differences made by various satellite products for the same budget variable. We find that the gradual removal of non-satellite data sources will generally worsen the closure errors in the budget estimates, and remote sensing retrievals of P, ET, and TWSC together with runoff (R) from LSM give the worst closure errors. The gauge-corrected satellite precipitation helps to improve the budget closure (4.2–9 % non-closure errors of annual mean precipitation) against using the non-gauge-corrected precipitation (7.6–10.4 % non-closure errors). At last, a data assimilation technique, the constrained Kalman filter, is applied to enforce the water balance, and it is found that the satellite remote sensing products, though with worst closure, yield comparable budget estimates in the constrained system to the reference data. Overall, this study provides a first comparison between the water budget closure using the satellite remote sensing products and a full combination of remote sensing, LSM, and reanalysis products on a quasi-global basis. This study showcases the capability and potential of the satellite remote sensing in closing the terrestrial water budget at fine spatial resolution if properly constrained.  相似文献   

17.
Landslides are one of the most serious geological disasters in the world and happen quite frequently in the Three Gorges. Landslide prediction is a very important measure of landslide prevention and cure in the Three Gorges. Traditional methods lack in sufficiently mining the various complex information from a landslide system. They often need much manual intervention and possess poor intelligence and accuracy. An intelligent method proposed in this paper for landslide prediction based on an object-oriented method and knowledge driving is hopeful to solve the above problem. The method adopted Landsat ETM+ images, 1:50,000 geological map and 1:10,000 relief map in the Three Gorges as the data origins. It firstly produced the key factors influencing landslide development and used multi-resolution segmentation algorithm to segment the image objects based on the key landslide factors of engineering rock group, reservoir water fluctuation, slope structure and slope level. Secondly, the method chose some sample objects and adopted the decision tree algorithm C5.0 to mine the landslide forecast criteria according to the factor values of each sample object. Finally, under knowledge driving the method classified the image objects and realized landslide susceptibility analysis and intelligent prediction in the Three Gorges. The method proposed in this paper is object-oriented. Results of a real-world example show that: (1) the object-oriented method possesses much more compact knowledge representation, higher efficiency, more continuous classifying result and higher prediction accuracy compared with the pixel-oriented method; (2) it possesses the overall accuracy of 87.64% and kappa coefficient of 0.8305 and is more accurate than the other seven methods (such as the pixel-oriented methods of Parallelpiped, Minimum Distance, Maximum Likelihood, Mahalanobis Distance, K-means and Isodata and the object-oriented method of Nearest Neighbor); (3) about 46.97% landslides lie in the high susceptibility region, 24.24% landslides lie in the moderate susceptibility region, 27.27% landslides lie in the low susceptibility region and 1.52% landslides lie in the very low susceptibility region. Therefore the method can effectively realize landslide susceptibility analysis and provides a new idea for landslide intelligent and accurate prediction.  相似文献   

18.
A new method for spatio-temporal prediction of rainfall-induced landslide   总被引:2,自引:0,他引:2  
1 Introduction The landslides influences on the human society have become an environment difficult problem not able to be neglected, and according to the priority of harms, harms of landslides are only smaller than those from earthquakes in all sorts of natural hazards[1]. Landslide is part of rock mass, soil mass or their compound mass slides downward along a certain slid- ing surface under the actions of inner and external dy- namics, and it is one severe instability phenomenon of rock and s…  相似文献   

19.
In Japan, landslides triggered by heavy rainfall tend to occur during the annual rainy season from early June until the middle of July; these landslides constitute a major hazard causing significant property damage and loss of life. This paper proposes the use of back propagation neural networks (BPNN) to predict the probability of landslide occurrence for a scenario of heavy rainfall in the Minamata area of southern Kyushu Island, Japan. All of the landslides were detected from aerial photographs taken in 1999, 2001 and 2003, and a geospatial database of lithology, topography, soil characteristics, land use and precipitation was constructed using geographical information systems (GIS). The training sample consists of 602 cells that include landslide activity and 1600 cells in stable areas. Using the trained BPNN with 49 input nodes, three hidden layers, and one output node, 239 589 cells were processed to produce a map of landslide probability for a maximum daily precipitation of 329 mm and a maximum cumulative precipitation of 581 mm for an incessant, intense rainfall event in the future. The resultant hazard map was classified into four hazard levels; it can be referenced for land‐use planning and decision‐making for community development. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
The large slow‐moving landslide of Maca is located in the upper Colca valley (southern Peru), a region characterized by a well pronounced rainy period, and intense and recurrent sustained seismicity. The landslide, developed in deep lacustrine deposits, has recently accelerated, threatening the Maca village. This work aims at understanding the rupture mechanism and the causes of the recent landslide reactivation/acceleration. We present a multidisciplinary characterization of the Maca landslide that includes: (i) geological and morphological mapping in the field; (ii) remote sensing analysis using an historical aerial photograph of 1955 and the Pléiades satellite images (2013); (iii) global positioning system (GPS) including time‐series of surveys over 13 years, and continuous measurements over 14 months; (iv) a geophysical campaign with deep electrical resistivity tomography profiles acquired across the landslide mass. Our study shows that this 60 Mm3 landslide, which can be classified as a clay/silt compound landslide, moved by 15 m between 2001 and 2014 with a large inter‐annual velocity variation (up to a factor of 500) depending on the rainfall intensity. We suggest that these dramatic changes in velocity are the result of the combination of a threshold mechanism and the short intense rainy season in Peru. This study reveals three main driving factors acting at different timescales: (i) over several decades, the river course has significantly changed, causing the Maca landslide reactivation in the 1980s due to the erosion of its toe; (ii) at the year scale, a minimum amount of rainfall is required to trigger the motion and this amount controls the landslide velocity; (iii) transient changes in slide velocity may occur anytime due to earthquakes. This study particularly highlights the non‐linear behaviour of the motion with rainfall. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号