首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract Fluids and sediments from Deep Sea Drilling Project/Ocean Drilling Program Legs (56, 57, 87 and 186) along a transect extending from the subducting plate, across the midslope and upper slope of the Japan Trench forearc were analyzed for B and B isotopes in order to assess their composition and fluid–sediment interaction. At the reference Site 436 on the subducting plate, changes in B contents and B isotopes are controlled by the lithology and diagenesis only. The midslope Sites 440 and 584 showed stronger variations in the B geochemistry, which can be related to diagenesis and tectonic dewatering along faults. The strongest changes in the B geochemistry were observed on the upper slope Sites 1150 and 1151, where profound down‐hole freshening (chlorinities as low as ~310 mmol) coincides with a B enrichment (up to 9.3 × seawater concentration). The B isotope pore fluid profile of Site 1150 displayed a bimodal variation with depth, first increasing to values more positive than seawater, then shifting to lower signatures typical for deep‐seated fluids, whereas Site 1151 showed a constant B decrease with depth. Sites 1150 and 1151 sediments showed B increases with depth to values as high as ~164 p.p.m. and isotopic compositions ranging from ~+4 to ?9‰. A linear decrease in Bsolid/Bfluid ratio, suggests that B geochemistry of the upper slope sites is controlled by fluid–rock interaction and deep‐seated fluid flow, whereas constant Bsolid/Bfluid ratios were observed at the reference site on the incoming plate. This fluid overprint is probably caused by normal faults in the sediment cover which might be interconnected to deep thrusts in the underlying Cretaceous accreted wedge. This suggests that the erosive Japan Trench margin is characterized by back‐flux of deep‐seated, B‐enriched fluids into the ocean, which is facilitated by extensional normal faulting as a result of tectonic erosion and subsidence.  相似文献   

2.
Abstract Interstitial pore waters from Ocean Drilling Program Site 1150, where ~1200 m of sub‐sea‐floor sediment from the upper Japan Trench forearc were recovered, were analyzed for element concentrations and Cl, Sr and B isotopes. Although chlorinity showed profound down‐hole freshening to values as low as ~310 mm (0.55 × seawater) in the deeper part of the claystone‐dominated succession, both Sr and B concentrations showed an overall increase. Sr reached concentrations of up to >250 µm (~3.00 × seawater), whereas B‐enrichment was even stronger (3920 µm; i.e. 9.30 × seawater). The strong variations in concentration correspond to fractionation reactions in the deep, tectonically deformed part of the forearc. The heavily fractured portion of Site 1150 (from ~700 m to the total depth of the hole) has two shear zones that very likely act as conduits that expel deep‐seated fluids to the sea floor. These fluids not only showed the strongest freshening of Cl, but were also characterized by low δ37Cl measurements (down to ?1.1‰), the heaviest δ11B measurements (~40–46‰) and the least radiogenic 87Sr/ 86Sr measurements. The profound isotope anomalies together with the excursions in element concentrations suggest that diagenetic processes operate at that depth. These include clay mineral diagenesis, alteration of tephra from the Japan and Izu Arcs, and possibly transformation of biogenic silica from abundant diatoms. Given the strong enrichment of some mobile elements (e.g. Sr, B, Li), enhanced fluid flow through permeable penetrative faults through the forearc (like the shear zones at Site 1150) could be an efficient mechanism for back‐flux of those elements from the deep forearc into the hydrosphere.  相似文献   

3.
Abstract The Japan Trench forearc offshore Honshu Island in northeast Japan, where the 130‐m.y.‐old Pacific oceanic plate is presently subducted, was drilled during the Ocean Drilling Program Leg 186. Results from mechanical and sedimentological studies of claystones recovered from Sites 1150 and 1151 in the overlying erosional forearc wedge are reported in the present study. Although many physical properties are similar in the seismic (Site 1150) and aseismic portion (Site 1151) of the shallow forearc, Site 1150 displayed a higher abundance of open fractures, two prominent fault zones and enigmatic pore fluid signatures in the claystones. The abundance of weak mineral phases, together with high smectite contents (from X‐ray diffraction), control the low friction coefficients of 0.33–0.39 of the claystones in ring‐shear experiments. Results from triaxial testing proposed overall low magnitudes of in situ effective vertical stress, with somewhat lower values at Site 1150 than at Site 1151. Similarly, samples from Site 1150 displayed slightly higher pore fluid pressures than those at Site 1151. The high sediment porosities, which are in part also a result of intact diatom tests (from scanning electron microscope), together with the anomalous fluid signatures and elevated pore fluid pressures, could very likely result from upward migration and influx of deep‐seated waters. Dewatering reactions at depth result in enhanced pore fluid pressure transients along out‐of‐sequence thrusts and consequently lower effective stress. At depths greater than that of Leg 186 drilling, elevated pressure–temperature conditions trigger mineral transformation and cementation, which result in increasing friction, unstable sliding and seismic rupture. Such earthquakes could have repeatedly disaggregated the consolidated claystone fabrics at the seismic site, and could be responsible for differences in yield strength and cementation when compared to the aseismic Site 1151.  相似文献   

4.
Abstract Magnetic measurements were carried out to investigate rock magnetic properties and paleomagnetic directions of late and middle Miocene sediments recovered from the land side of the Japan Trench during the Ocean Drilling Program Leg 186. Because the low coercive component in natural remanent magnetization (NRM) normalized by anhysteretic remanent magnetization shows that the drilling‐induced magnetization is severe in the sections obtained by the advanced hydraulic piston coring method, careful analyses of demagnetization of NRM using the ‘demagnetization plane’ were carried out to decompose the direction and intensity. Magnetostratigraphic correlation down to the upper Miocene, supplemented by biostratigraphic data, revealed that the sedimentation rates are characterized by drastic changes, with the early Pliocene having the highest rate. This high sedimentation rate is related to the subsidence of the southern deep‐sea terrace of the Japan Trench.  相似文献   

5.
Volcanic rocks of the Kyushu–Palau Ridge (KPR) from Deep Sea Drilling Project (DSDP) site 448 and from Belau comprise a low-to-medium-K arc tholeiitic series. Belau rocks include (probable) Mid-Eocene low-Ca type-3 boninite and pre-Early Oligocene–Early Miocene low-K arc tholeiitic basalt, basaltic andesite, andesite and dacite. Palau Trench samples include sparsely phyric high-Mg, -Cr and -Ni rocks which resemble the Belau boninite and Izu–Bonin – Mariana (IBM) system boninites. The high-Mg Palau Trench samples also resemble other primitive arc lavas (e.g. arc picrites). Their chemistry suggests an origin involving steep thermal gradients in multiply depleted mantle. Subduction of hot, young lithosphere under a young hot upper plate is postulated to explain this occurrence. The KPR is inferred to be the source of Eocene boninite and arc tholeiitic terranes presently in forearc regions of the IBM system. A model is presented here showing how many IBM boninites may have originated in a small area near Belau. These have migrated eastward by episodic back-arc opening accompanying eastward migration of arcs and trenches. Oldest known KPR rocks ( ca 47.5 Ma at DSDP site 296), and presumed KPR-derived exotic terranes of Guam ( ca 43.8 Ma), presage the postulated Eocene ( ca 42–43 Ma) change in Pacific plate motion invoked as the cause of subduction initiation at the KPR. The KPR has been rotated more than 40° clockwise since the Eocene, thus the age mismatch may indicate a different tectonic style, for example transtension or transpression, in earliest KPR history.  相似文献   

6.
The Taishu Group, a marine formation with a thickness of >5400 m, crops out on Tsushima Island, located in the southwestern Japan Sea. The group, which is generally regarded as early Eocene to early Miocene in age, provides important information about the tectonic setting of the Japan Sea. In this study, we present new SHRIMP U–Pb dates for igneous zircons from the Kunehama Tuff, which is in the basal part of the Taishu Group, and the Oobaura Tuff, which is in the uppermost part of the group. Results show that the Taishu Group was deposited rapidly, during the short interval of 17.9–15.9 Ma (early–middle Miocene), and is equivalent to other early–middle Miocene strata found in the Japan Sea region. Our results provide new constraints on the geological history of the Japan Sea and its islands.  相似文献   

7.
日本本州及其邻近区域的应力状态以及弧后盆地的演化机制一直是人们所关注的问题.本文对2011年3月11日东日本大地震地震序列(2011年3月11日至2012年3月15日)的哈佛双力偶解进行了聚类分析,得到五种类型的震源机制解:与主震类型一致的低倾角逆断层型地震;主张应力方向垂直于日本海沟走向的正断层型地震;主张应力方向平行于日本海沟走向的正断层型地震;主压应力方向平行于日本海沟走向的逆断层型地震;包括走滑型地震在内的其他类型地震.东日本大地震地震序列中发生在弧前增生楔地震的震源机制解与大地震发生之前地震的震源机制解特征有显著区别,反映出该地区的应力状态与震前相比有较大改变.东日本大地震及其前震释放了附近区域的累积弹性应力,主震破裂区附近太平洋板块和其上覆板块接近完全解耦,降低了日本海盆地、中国东北地区的近东西向挤压应力水平.不过,整个本州岛东部区域太平洋板块和其上覆板块并没有完全解耦,但应力水平并不高.我们认为,日本海及中国东北应力水平的降低会使该区域的近东西向挤压型地震的危险性降低,而使NNE-SSW走向的走滑型地震活动性增强.同时,火山活动性也会增强.尤其是本州岛地区,存在近期火山爆发的可能性.东日本大地震地震序列的震源机制解特征还提示我们,日本海的应力状态及日本海的演化可能在一定程度上取决于太平洋板块和上覆板块的耦合状态.持续的弱耦合将不仅使得弧后大范围的地区保持岩浆上涌所必须的拉伸应力环境,而且还会因弧前隆起区发育大量正断层型地震而向深部提供促使岩浆生成所必须的水,因而造成日本海的再次扩张.  相似文献   

8.
TAN Hao-yuan  WANG Zhi 《地震地质》2019,41(6):1366-1379
3-D VP and VS images of southern Philippines at the 0~100km depths are generated by inverting a large number of travel-time data from the International Seismological Centre(1960-2017)through seismic tomography method. The results show lateral variation exists in the crust and upper mantle:High VP and VS anomalies emerge in mid-west Mindanao and Bohol Island, which might be caused by the combined action of huge magmatism and ophiolite accretion in the lower crust; low velocity anomalies of the upper mantle in the west of Mindanao are consistent with locations of volcanoes on the surface. It, thus, could be inferred that the low velocity anomaly is closely related to magmatic activity. The dense earthquake distribution along plate margin extending to 100km coincides with the strong activity of the Philippine Sea Plate which is located in the northeast and southeast of Mindanao. Relative weak activity of Sulawesi Sea Basin is presented simultaneously. The subduction of the Philippine Sea Plate is mostly concentrated in the crust and the top of the uppermost mantle. Our tomographic images show that lateral heterogeneities exist in the crust and uppermost mantle of the southern Philippines. Low VP and VS anomalies emerge in Philippine Trench and Cotabato Trench, in contrast, high VP and VS anomalies appear in shallow crust of land area where a large number of earthquakes and magmatic activities develop. This may reflect strong tectonic processes between the Philippine Sea Plate and Philippine Mobile Belt. Low VP and VS anomalies in the crust of eastern Mindanao coinciding with the location of volcanoes on the surface may show partial melting of crust material caused by dehydration of the subducting Philippine Sea Plate. Such a similar phenomenon can be also seen in the south of Negros Island and Cotabato Trench. Thus we infer that active tectonic behaviors are constrained within the crust of the Philippine Sea Plate, Sulu Sea Basin and Sulawesi Basin.Low VP and VS anomalies of the mantle in the mid-west of Mindanao island are associated with magmatic activity which may be caused by a collision between the east and west part of Mindanao at 5Ma. The fracture system in the west of Mindanao provides the possible passage ways of mantle hot material upwelling, coinciding with the model of geothermal distribution in this area. According to the geochemical analysis, ophiolite observed in Sanbaoyan and the western part of Mindanao could indicate material composition from crust to upper mantle on Eurasian continental margin which may show the evidence of rapid expansion environment of mid-ocean ridge. High VP and VS anomalies in the mantle of northeast and southeast of Mindanao coinciding with the distribution of massive earthquake along boundaries show a well agreement with the shape of the Philippine Sea Plate. Dense earthquake distribution in south Mindanao at 100km shows the Philippine Sea Plate has strong activity and stress accumulation in the upper mantle. On the contrary, the seismicity in southwest Mindanao and Cotabato Trench reduces rapidly at the depth from 50km to 100km, revealing weak subduciton and stress release of Sulawesi Basin in the mantle.  相似文献   

9.
从认识日本9级大地震参数、震源机制、地震序列等基本信息入手,描述了日本东海岸9级大地震的主要特征,初步分析了该地震与日本海沟、南海海沟、千岛海沟地震带8级大震活动的时空关系及其成因,讨论了日本海沟、日本岛弧强震活动与中国强震活动的相关性。  相似文献   

10.
东海及琉球沟弧盆系的海底热流测量与热流分布   总被引:8,自引:3,他引:8  
利用钻井资料获得了东海陆架地区15个热流值,分析了海底热流测量的误差来源及数据精度,对东海及琉球沟弧盆系的热流值进行了分类整理,将海底热流分为可信热流值、较可信热流值和参考热流值,本文使用了前两类热流数据,共得305个,对研究区的热流站位进行了分析,发现热流测站分布很不均匀,冲绳海槽几个高热流异常区的热流测站总数占全部东海热流测站的一半多,仍有相当一些构造单元热流站住很少或者几乎没有热流值,总体上,研究区的热流分布明显地和沟弧盆系的构造特征相吻合,呈现北东向条带状分布,东海陆架为正常热流值区,冲绳海槽为高热流异常区,琉球群岛为正常热流值区,琉球海沟和菲律宾海都为低热流异常值区,根据热流推测冲绳海槽下存在深部热物质上拱,琉球海沟垭口之下存在海洋板块的俯冲,本研究区自东向西初步表现出长波长热流振荡现象,但由于测量数据稀少,目前还不能对此作更进一步的研究。  相似文献   

11.
The Okinoshima Formation crops out on Okinoshima Island and comprises a thick sequence (> 200 m) of pyroclastic rocks and alternating beds of sandstone and mudstone. Because Okinoshima Island is located between Honshu and Tsushima Island, the Okinoshima Formation potentially provides an important record of volcanism during the opening of the Japan Sea in northwest Kyushu, as well as a record of the formation of the present Genkai Sea region. In consideration of the lack of previous geochronological work, dating (fission‐track and U–Pb) of igneous zircons extracted from the Okinoshima Formation were undertaken and studied the clay mineral alteration in the pyroclastic material in order to reveal its thermal history. These data are used to constrain the age of the Okinoshima Formation and the present Genkai Sea region. Our results show that no thermal event has reset the fission‐track age after deposition of the pyroclastic rocks, and that the Okinoshima Formation was deposited at 16.2 Ma. The present Genkai Sea region is a deep‐sea basin, and its formation at 16.2 Ma was accompanied by submarine volcanism and rapid subsidence that marked the climactic stage of Japan Sea formation. After 16 Ma, the tectonic setting of the present Genkai Sea region changed from one of extension (related to the formation of the Japan Sea) to one of compression, with uplift occurring under the influence of the clockwise rotation of southwest Japan. Consequently, after 16 Ma the present Genkai Sea region became isolated from the forming processes of the Japan Sea.  相似文献   

12.
Abstract Extensional basin formation and subsequent basin inversion in the southern area of the eastern margin of the Japan Sea were studied on the basis of the interpretation of seismic profiles (total length approximately 15 000 km) and the fossil analyses of 77 sea-bottom samples. Rift (Early to Early Middle Miocene), post-rift (Middle to Late Miocene), pre-inversion (Late Miocene to Pliocene) and inversion stages (Pliocene to Quaternary) were differentiated by the extension and contraction of the crust. Many small-scale rifts were formed in the Sado Ridge and the Mogami Trough during the rift stage, simultaneous with back-are spreading of the Japan Sea. Most of the rifts were east- or southeast-facing, rotational half-grabens bounded by west-dipping normal faults at their eastern boundaries. The syn-rift sequence can be divided into lower and upper units by an erosional surface. The sequences are presumed to be composed mainly of fining-upward sediments. The trend of most rifts is north-northeast with the remainder being of east-northeast-bias. The north-northeast trending rifts are distributed widely in the Sado Ridge and Mogami Trough and do not show an en échelon arrangement, suggesting that they were formed mainly by pure extension nearly perpendicular to the arc. The east-northeast trending rifts are presumed to have been developed by a north-northwest extension in the late rift stage, which may have accompanied a right-lateral movement in the eastern margin of the Japan Sea. During the post-rift stage, the rifts and adjacent horsts subsided and became covered by the post-rift sequence, characterized by parallel and continuous reflections. This suggested no significant tectonic movements in this period. In the pre-inversion stage many of the rifts subsided again, presumably because of down-warping due to weak compressional stress. The normal faults reactivated as reverse faults during the inversion stage due to an increase in compressional stress. Many of the rifts have been uplifted and transformed into east-vergent asymmetric anticlines. The basin inversion is greatest in the Sado Ridges and in the Dewa Bank Chain, while it is least developed in the Mogami Trough and in the western slope of the Sado Ridge, in which some normal faults have not been reactivated. The increase and decrease of the inversion corresponds to the peak and trough of undulation at an interval of about 50 km trending parallel to the arc.  相似文献   

13.
We study earthquakes in and near the TTT type triple junction off Boso peninsula, central Honshu, to elucidate the plate interaction in this area. The Pacific, North America (northeast Japan) and Philippine Sea plates meet at the junction of the Japan and Izu-Bonin Trenches, and the Sagami Trough. We determine focal mechanisms using WWSSN data. We also determine accurate focal depths by modeling body-waves. There is no serious trade-off between focal depth and source time function for the events treated in this study.The earthquake mechanisms and their focal depths show two major modes of deformation of the Pacific slab at the junction. One mode is represented by nearly vertical normal faults with strikes perpendicular to the Bonin Trench. This mode of faulting is dominant in regions south of the junction and characteristically the southwest block is downthrown. The other mode is represented by nearly vertical normal faults that strike parallel to the Japan Trench and indicate the northwest block is downthrown. This latter mode is dominant in regions north of the junction. The former mode may represent the accommodation of the slab geometry to the change in dip angle between the northeast Japan and Izu-Bonin arcs; the Izu-Bonin slab has a larger dip than that of the northeast Japan slab. The latter mode shows that normal faults parallel to the trench strike, usually seen in trench axis-outer rise regions, continue to occur further landward of the trench axis in the area just north of the junction. This might be caused by the loading of the Philippine Sea slab which penetrates between northeast Japan and the Pacific slab north of the Sagami Trough.Further north of these normal faults north of the junction, we find earthquakes which represent the relative motion between the Pacific and North American plates. This means that the Philippine Sea slab does not exist there. With the aid of earthquakes which represent the Philippine Sea-Pacific and Philippine Sea-North America motions located northwest of the normal faults, we can depict a possible area where the Philippine Sea slab exists north of the Sagami Trough.  相似文献   

14.
Ritsuo Nomura 《Island Arc》2021,30(1):e12421
The lower part of the Josoji Formation, Shimane Peninsula, contains clues for figuring out changes in deep-water characteristics during the opening of the Japan Sea. The foraminiferal assemblage includes early to middle Miocene biostratigraphic index taxa such as planktonic foraminiferal Globorotalia zealandica and Globorotaloides suteri. The occurrence of these two species, together with the absence of praeorbulinids, suggests that the lower part of the Josoji Formation is assigned to the top of planktonic foraminiferal Zone N7/M4 (16.39 Ma). The benthic foraminiferal assemblage, which is characterized by Cyclammina cancellata and Martinottiella communis, clearly suggests that the lower Josoji Formation was deposited at bathyal depths, and that it developed in association with the abrupt appearance of deep-sea calcareous forms. Such bathyal taxa are the main constituents of the Spirosigmoilinella compressa–Globobulimina auriculata Zone of the Josoji Formation and also of the Gyrodina–Gyroidinoides Zone at Ocean Drilling Program Site 797 in the Japan Sea. The base of these benthic foraminiferal zones can be correlated with the base of the nannofossil Sphenolithus heteromorphus Base Zone (= CNM6/CN3); thus, its estimated age is 17.65 Ma. This biostratigraphic information suggests that the lower Josoji Formation was deposited from shortly before 17.65–16.39 Ma in upper limit age. Evidence that fresh to brackish and shallow-water basins formed in the rifting interval of 20–18 Ma in the Japan Sea borderland suggests that the abrupt appearance of deep-sea calcareous foraminifera occurred about 1 my earlier in this area than in other sedimentary basins and suggests that a significant paleoceanographic change occurred in the proto-Japan Sea at 17.65 Ma.  相似文献   

15.
Abstract In Japan and Korea, some Lower Cretaceous terrigenous clastic rocks yield detrital chromian spinels. These chromian spinels are divided into two groups: low-Ti and high-Ti. The Sanchu Group and the Yuno Formation in Japan have both groups, whereas the Nagashiba Formation in Japan and the Jinju Formation in Korea have only the low-Ti spinels. High-Ti spinels are thought to have originated in intraplate-type basalt. Low-Ti spinels (higher than 0.6 Cr#) were probably derived from peridotites, which are highly correlated with an arc setting derivation and possibly with a forearc setting derivation. Low-Ti spinels are seen in the Sanchu Group, the Nagashiba Formation and the Jinju Formation. Low-Ti spinels from the Yuno Formation are characterized by low Cr# (less than 0.6) and these chromian spinels appear to have been derived from oceanic mantle-type peridotite, including backarc. According to maps reconstructing the pre-Sea of Japan configuration of the Japanese Islands and the Korean Peninsula, the Korean Cretaceous basin was comparatively close to the Southwest Japan depositional basins. It is possible that these Lower Cretaceous systems were sediments mainly in the forearc and partly in the backarc regions. The peridotite might have infiltrated along major tectonic zones such as the Kurosegawa Tectonic Zone (= serpentinite melange zone) in which left lateral movement prevailed during the Early Cretaceous.  相似文献   

16.
孙文斌 《地震》1994,(5):65-70
利用日本海区丰富的震史资料,研究了该区强震活动时一空变化的某些特征。并以此为据,将1900年以来的地震活动划分了三个地震轮回。文中讨论了各幕的持续时间及其强震的频度分布,同时还分析了各轮回的强震地区分布,探讨了每个强震高潮主体活动区形成特点,这些结果可作为研究日本海区强震高潮到来和结束的标志以及为判断未来主体活动区等强震预测问题提供线索。此外,本文还分析了我国大陆强震高潮与日本海沟地震的相关关系。  相似文献   

17.
Abstract The Philippine Fault is a major left-lateral structure formed in an island arc setting. It accommodates a component of the oblique convergence between the Philippine Sea Plate and the Philippine archipelago. This observation is quantified through a series of global positioning satellite experiments between 1991 and 1996. The formation of the Fault marks the onset of a new geodynamic regime in the Philippine region. In the central Philippines, this event corresponds to the creation of a new tectonic boundary separating the Philippine Mobile Belt and the Philippine Sea Plate, following the latter's kinematic reorganization that occurred around 4 Ma ago. During this event, the Philippine Sea Plate changed its relative movement with respect to Eurasia from a northward to a north-westward motion, favoring the formation of a Philippine Fault–Philippine Trench system under a shear partitioning mechanism.  相似文献   

18.
The Neogene marine sedimentary rock area in the eastern marginal region of the Japan Sea is an area with some of the highest landslide densities in Japan. Some of the landslides in this area have been known to involve saline groundwater, which can be the cause of these landslides. In order to demonstrate the relationships between landslides and saline water, topographic, geological, groundwater, and electromagnetic surveys were performed in the eastern marginal region of the Japan Sea. Many landslides and gravitational slope deformations with linear depressions and small scarps were recognized in the study area. The resistivity profile obtained by an electromagnetic survey suggests that there is a wide zonal distribution of saline water with salt concentrations equivalent to seawater at depths of 50–100 m or more and that the groundwater shallower than 50 m has an electrical conductivity of less than 100 mS/m. The shallow resistive groundwater is inferred to be meteoric water that replaced the saline groundwater, which likely weakened the bedrock, resulting in landslides. A ridge of competent tuff overlying mudstone has many linear depressions from gravitational slope deformation and low‐resistivity water to a depth of 600 m, which suggests that the mudstone was weakened by water replacement and deformed under the tuff caprock. The saline groundwater is inferred to be fossil seawater trapped in pores during sediment deposition, which is brought near the ground surface along with rocks by tectonic movement in the hills. Thus, the saline water and its fresh water replacement are among the important basic causes of the landslides. The oil well data obtained in the eastern marginal region of the Japan Sea suggest that such saline water replacement has occurred widely and that replacement is likely one of the predispositions for the frequent landslides there.  相似文献   

19.
This paper presents the results of a detailed survey combining Seabeam mapping, gravity and geomagnetic measurements as well as single-channel seismic reflection observations in the Japan Trench and the juncture with the Kuril Trench during the French-Japanese Kaiko project (northern sector of the Leg 3) on the R/V “Jean Charcot”. The main data acquired during the cruise, such as the Seabeam maps, magnetic anomalies pattern, and preliminary interpretations are discussed. These new data cover an area of 18,000 km2 and provide for the first time a detailed three-dimensional image of the Japan Trench. Combined with the previous results, the data indicate new structural interpretations. A comparative study of Seabeam morphology, single-channel and reprocessed multichannel records lead to the conclusion that along the northern Japan Trench there is little evidence of accretion but, instead, a tectonic erosion of the overriding plate. The tectonic pattern on the oceanic side of the trench is controlled by the creation of new normal faults parallel to the Japan Trench axis, which is a direct consequence of the downward flexure of the Pacific plate. In addition to these new faults, ancient normal faults trending parallel to the N65° oceanic magnetic anomalies and oblique to the Japan trench axis are reactivated, so that two directions of normal faulting are observed seaward of the Japan Trench. Only one direction of faulting is observed seaward of the Kuril Trench because of the parallelism between the trench axis and the magnetic anomalies. The convergent front of the Kuril Trench is offset left-laterally by 20 km relative to those of the Japan Trench. This transform fault and the lower slope of the southernmost Kuril Trench are represented by very steep scarps more than 2 km high. Slightly south of the juncture, the Erimo Seamount riding on the Pacific plate, is now entering the subduction zone. It has been preceded by at least another seamount as revealed by magnetic anomalies across the landward slope of the trench. Deeper future studies will be necessary to discriminate between the two following hypothesis about the origin of the curvature between both trenches: Is it due to the collision of an already subducted chain of seamounts? or does it correspond to one of the failure lines of the America/Eurasia plate boundary?  相似文献   

20.
The Andaman–Sumatra margin displays a unique set‐up of extensional subduction–accretion complexes, which are the Java Trench, a tectonic (outer arc) prism, a sliver plate, a forearc, oceanic rises, inner‐arc volcanoes, and an extensional back‐arc with active spreading. Existing knowledge is reviewed in this paper, and some new data on the surface and subsurface signatures for operative geotectonics of this margin is analyzed. Subduction‐related deformation along the trench has been operating either continuously or intermittently since the Cretaceous. The oblique subduction has initiated strike–slip motion in the northern Sumatra–Andaman sector, and has formed a sliver plate between the subduction zone and a complex, right‐lateral fault system. The sliver fault, initiated in the Eocene, extended through the outer‐arc ridge offshore from Sumatra, and continued through the Andaman Sea connecting the Sagaing Fault in the north. Dominance of regional plate dynamics over simple subduction‐related accretionary processes led to the development and evolution of sedimentary basins of widely varied tectonic character along this margin. A number of north–south‐trending dismembered ophiolite slices of Cretaceous age, occurring at different structural levels with Eocene trench‐slope sediments, were uplifted and emplaced by a series of east‐dipping thrusts to shape the outer‐arc prism. North–south and east–west strike–slip faults controlled the subsidence, resulting in the development of a forearc basins and record Oligocene to Miocene–Pliocene sedimentation within mixed siliciclastic–carbonate systems. The opening of the Andaman Sea back‐arc occurred in two phases: an early (~11 Ma) stretching and rifting, followed by spreading since 4–5 Ma. The history of inner‐arc volcanic activity in the Andaman region extends to the early Miocene, and since the Miocene arc volcanism has been associated with an evolution from felsic to basaltic composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号