首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Diatom and geochemical data from Crawford Lake, Ontario, have been used to document limnological responses to periods of cultural disturbance resulting from native Iroquoian occupation of the watershed (1268–1486 AD) and Euro-Canadian agriculture and deforestation (1867 AD–present). Here, we further develop the high-resolution nature of the Crawford Lake sediment record to examine the physical, chemical and biological aspects of limnological response to human disturbances in the lake catchment area with exceptional detail. We report detailed diatom abundance and flux data for individual taxa from Crawford Lake, and further describe the relationship between assemblage composition and environmental conditions using canonical correspondence analysis (CCA). Diatom assemblage data are used to calculate diatom inferred-total phosphorus (DI-TP) concentrations for the past ∼1,000 years. We also examine the diatom community response during and after periods of disturbance by Iroquoian and Euro-Canadian populations, and compare this response to existing geochemical proxies of lake production and new elemental geochemical indicators of catchment area erosion. In particular, we explore the differing limnological response to the two distinct periods of cultural eutrophication and examine the limnological processes that occurred during the period of␣low (or no) human activity (1487–1866 AD), when geochemical indicators of lake production recovered to pre-disturbance conditions, but diatom assemblages notably did not. Our results illustrate the highly susceptible nature of diatom communities to periods of anthropogenic disturbance, and emphasize that ecological indicators (such as diatom assemblages) should be included with other proxies (such as nutrient concentrations and physical characteristics) when assessing disturbance and recovery in lake systems.  相似文献   

2.
Evaluation of land-use effects on coastal and marine ecosystems requires better understanding of the role of rivers in regulating mass transport from terrestrial to oceanic environments. Here we take advantage of the presence of a riverine lake to use paleoecological techniques to quantify impacts of logging, European-style agriculture, urbanization and continued terrestrial disturbance on mass transport and water quality in the northern drainage of the Mississippi River. Two 2-m sediment-cores recovered in 1999 from Lake St. Croix, a natural impoundment of the St. Croix River, were dated using 210Pb and 137Cs, and analyzed for historical changes (c. 1840–present) in sediment magnetic susceptibility, inorganic and organic matter content, biogenic silica, fossil pigments, and diatom microfossils. Inorganic sediment accumulation increased threefold between the mid-1800s and present, whereas clear signs of eutrophication were only evident after the mid-twentieth century when biogenic silica accumulation increased sixfold, diatom accumulation rates increased 20- to 50- fold, and the diatom community shifted from predominantly benthic species to assemblages composed mainly of planktonic taxa. Similarly, fossil pigment concentrations increased during the 1960s, and diatom-inferred total phosphorus (DI-TP) increased from ~30 μg TP l−1 c. 1910 to ~60 μg l−1 since 1990, similar to historical records since 1980. Together, these patterns demonstrate that initial land clearance did not result in substantive declines in water quality or nutrient mass transport, instead, substantial degradation of downstream environments was restricted to the latter half of the twentieth century. This is one of eight papers dedicated to the “Recent Environmental History of the Upper Mississippi River” published in this special issue of the Journal of Paleolimnology. D. R. Engstrom served as guest editor of the special issue.  相似文献   

3.
A 72-lake diatom training set was developed for the Irish Ecoregion to examine the response of surface sediment diatom assemblages to measured environmental variables. A variety of multivariate data analyses was used to investigate environmental and biological data structure and their inter-relationships. Of the variables used in determining a typology for lakes in the Irish Ecoregion, alkalinity was the only one found to have a significant effect on diatom assemblages. A total of 602 diatom taxa were identified, with 233 recorded at three or more sites with abundances ≥1%. Generally diatom data displayed a high degree of heterogeneity at the species level and non-linear ecological responses. Both pH and total phosphorus (TP) (in the ranges of 5.1–8.5 and 4.0–142.3 μg l−1 respectively) were shown to be the most significant variables in determining the surface sediment diatom assemblages. The calibration models for pH and TP were developed using the weighted averaging (WA) method; data manipulation showed strong influences on model performances. The optima WA models based on 70 lakes produced a jack-knifed coefficient of determination (r 2 jack) of 0.89 with a root mean squared error (RMSEP) of 0.32 for pH and r 2 jack of 0.74 and RMSEP of 0.21 (log10 μg l−1) for TP. Both models showed strong performances in comparison with existing models for Ireland and elsewhere. Application of the pH and TP transfer functions developed here will enable the generation of quantitative water quality data from the expanding number of palaeolimnological records available for the Irish Ecoregion, and thus facilitate the use of palaeolimnological approaches in the reconstruction of past lake water quality, ecological assessment and restoration.  相似文献   

4.
Paleoecological reconstructions of Holocene sea-level changes in Argentinean coastal regions were based mainly on ecological data gathered from other regions, as there was a lack of information on modern estuarine diatom distributions. The aim of the present work was to assess the spatial variation of diatom assemblages in two representative estuaries of Argentina in order to gather ecological information for paleoecological reconstructions in the region. The two selected estuaries have different geomorphologic features and salinity regimes: Mar Chiquita Lagoon is shallow, which prevents the development of a stable salinity gradient as it occurs in the Quequén Grande River. Surface sediment samples were taken from selected stations representative of the environmental gradient from the inlet to the inner reaches of both estuaries. Cluster analysis defined three diatom zones at Mar Chiquita: marine/brackish assemblages dominate the inlet (zone I), where salinity, tidal range and current speed are higher. The brackish/freshwater tychoplankton Staurosira construens var. venter and Staurosirella pinnata dominate the inner lagoon (zone II), where environmental conditions are very variable and concentrations of suspended sediments are higher. Brackish/freshwater euryhaline diatoms dominate the headwaters (zone III). On the other hand, the Quequén Grande River was divided into three diatom zones: coastal taxa are distributed at the inlet (zone I), while the middle estuary (zone II) is dominated by brackish/freshwater euryhaline taxa. At the upper estuary region (zone III), freshwater diatoms dominate, and the halophobous Nitzschia denticula increased in abundance values. Diatom distributions were most closely related to the salinity gradient at Quequén Grande River than at Mar Chiquita Lagoon. Fossil data of a sequence from Mar Chiquita Lagoon (Las Gallinas Creek) were compared to the modern data set in order to search for analogies between fossil and modern diatom assemblages. DCA results showed that fossil diatom assemblages have modern counterparts. Most diatom assemblages of Las Gallinas Creek fall within Mar Chiquita zone III, representing a shallow brackish/freshwater environment, with low salinity fluctuations (~1–9‰) and no tidal influence. Therefore, our modern diatom data provide useful analogs to interpret paleoenvironments in the region.  相似文献   

5.
We present a high-resolution, multiproxy reconstruction of the depositional history of Lake Arreo, northern Spain, for the last 60 years. We conducted sedimentological, geochemical and diatom analyses in short cores and made a detailed comparison with regional instrumental climate data (1952–2007), limnological monitoring of the lake (1992–2008) and recent land use changes that affect the lake catchment. Chronology is based on “floating” discontinuous varve counts and 137Cs and 14C dates. Four periods were identified in the Lake Arreo recent history: (1) prior to 1963, varved facies intercalated with fine turbidite deposits, and diatom assemblages dominated by Cyclotella taxa indicate predominantly meromictic conditions, (2) from 1964 to 1978, permanent anoxia persisted in bottom waters, as shown by similar facies and diatom assemblages as before, though detrital layers were coarser, (3) from 1979 to 1994, sediment delivery to the lake increased and laminated, clastic facies were deposited, and (4) from 1995 to 2008, dominance of massive facies and an increase in Fragilaria tenera and Achnanthes minutissima reflect relatively lower lake levels, less frequent bottom anoxia with more frequent water column mixing, similar to modern conditions. The period 1952–1979 was a time of meromixis and varved facies deposition, and was characterized by higher rainfall and less intense agricultural pressure in the watershed. There were two short humid periods (1992–1993 and 1996–1998) when monitoring data show more anoxic weeks per year and relatively higher lake levels. Increased cultivation of small landholdings in 1963, and particularly after 1979, caused a large increase in sediment delivery to the lake. The inferred lake evolution is in agreement with monitoring data that suggest a transition from dominantly meromictic conditions prior to 1993–1994 to a predominantly monomictic pattern of circulation since then, particularly after 2000. The synergistic effects of intensive water extraction for irrigation and lower rainfall since 1979, and particularly since 1994, brought the long period of meromictic conditions in Lake Arreo to an end. Water balance and sediment delivery to the lake are dominant factors that control the limnological and mixing conditions in Lake Arreo and they must be considered in management and restoration plans.  相似文献   

6.
This study interprets the recent history of Lake Kivu, a tropical lake in the East African Rift Valley. The current gross sedimentation was characterized from a moored sediment trap array deployed over 2 years. The past net sedimentation was investigated with three short cores from two different basins. Diatom assemblages from cores were interpreted as reflecting changes in mixing depth, surface salinity and nutrient availability. The contemporary sediment trap data indicate seasonal variability, governed by diatom blooms during the annual mixing in the dry season, similar to Lakes Malawi and Tanganyika. The ratio of settling fluxes to net sediment accumulation rates implies mineralization rates of 80–90% at the sediment-water interface. The sediment cores revealed an abrupt change ~40 years ago, when carbonate precipitation started. Since the 1960s, deep-water methane concentrations, nutrient fluxes and soil mineral inputs have increased considerably and diatom assemblages have altered. These modifications probably resulted from a combination of three factors, commonly altering lake systems: the introduction of a non-native fish species, eutrophication, and hydrological changes inducing greater upwelling. Both the fish introduction and increased rainfall occurred at the time when the onset of carbonate precipitation was observed, whereas catchment population growth accompanied by intensified land use increased the flux of soil minerals already since the early twentieth century due to more intense erosion.  相似文献   

7.
We present a Holocene record of climate and environmental change in central New York (USA) inferred using lithologic and stable isotope data from two sediment cores recovered in Cayuga Lake. The record was divided into three intervals: (1) early Holocene (~11.6–8.8 ka), (2) Hypsithermal (~8.8–4.4 ka), and (3) Neoglacial (~4.4 ka to present). The early Holocene began abruptly, with rising lake level and relatively deep water. Between ~10.8 and 9.2 ka, cool and dry conditions prevailed at a time of maximum solar insolation. This anomaly has been referred to as the “post-Younger Dryas climate interval” and lasted ~1,600 years, the approximate length of one “Bond cycle.” The Hypsithermal was the warmest, wettest and most biologically productive interval of the Holocene in central New York. The Hypsithermal was characterized by centennial to multi-centennial-scale variability. The 8.2 ka event is one such variation. The Neoglacial was an interval of generally cooler and dryer conditions, falling lake levels, and several prominent climate anomalies. At approximately 2.4 ka, δ13C of bulk organic matter increased abruptly by 5‰ as lake level declined, and the lake flora was dominated by Chara sp. during the coldest interval of the Neoglacial. Numerous sediment variables display increased variability ~2.0 ka, which continues today. Archaeological data from the literature suggest that Native American populations may have been large enough to impact land cover by about 2.4 ka and we hypothesize that the “Anthropocene” began at about that time in central New York. We also found paleolimnological evidence for the Medieval Warm Period (~1.4–0.5 ka), which was warmer and wetter than today, and for the Little Ice Age (~500–150 years ago), a period with temperatures colder than today.  相似文献   

8.
9.
A knowledge of pre-disturbance conditions is important for setting realistic restoration targets for lakes. For European waters this is now a requirement of the European Council Water Framework Directive where ecological status must be assessed based on the degree to which present day conditions deviate from reference conditions. Here, we employ palaeolimnological techniques, principally inferences of total phosphorus from diatom assemblages (DI-TP) and classification of diatom composition data from the time slice in sediment cores dated to ~1850 AD, to define chemical and ecological reference conditions, respectively, for a range of UK lake types. The DI-TP results from 169 sites indicate that reference TP values for low alkalinity lakes are typically <10 μg L−1 and in many cases <5 μg L−1, whilst those for medium and high alkalinity lakes are in the range 10–30 and 20–40 μg L−1, respectively. Within the latter two alkalinity types, the deeper waters (>3 m mean depth) generally had lower reference TP concentrations than the shallow sites. A small group of shallow marl lakes had concentrations of ~30 μg L−1. Cluster analysis of diatom composition data from 106 lakes where the key pressure of interest was eutrophication identified three clusters, each associated with particular lake types, suggesting that the typology has ecological relevance, although poor cross matching of the diatom groups and the lake typology at type boundaries highlights the value of a site-specific approach to defining reference conditions. Finally the floristic difference between the reference and present day (surface sample) diatom assemblages of each site was estimated using the squared chord distance dissimilarity coefficient. Only 25 of the 106 lakes experienced insignificant change and the findings indicate that eutrophication has impacted all lake types with >50% of sites exhibiting significant floristic change. The study illustrates the role of the sediment record in determining both chemical and ecological reference conditions, and assessing deviation from the latter. Whilst restoration targets may require modification in the future to account for climate induced alterations, the long temporal perspective offered by palaeolimnology ensures that such changes are assessed against a sound baseline.  相似文献   

10.
Arctic aquatic systems are considered to be especially sensitive to anthropogenic disturbance, which can have cascading effects on biological communities as aquatic food-web structure is altered. Bio-indicators that respond to major limnological changes can be used to detect and infer major environmental change, such as climate warming, with the use of paleolimnological techniques. A multi-proxy approach was used to quantify recent environmental changes at Baker Lake, Nunavut, Arctic Canada. Analyses of fossilized remains of chironomids and diatoms were conducted on a sediment core of 20 cm in length sampled at 0.5-cm intervals. A new surface sediment training set of subfossil chironomid assemblages from 65 lakes across the eastern Canadian Arctic generated a robust (r jack2 = 0.79) surface water paleotemperature transfer function. The transfer function was applied to stratigraphic intervals from the Baker Lake sediment core to generate a paleotemperature reconstruction of sub-decadal resolution. The surface water temperature reconstruction inferred a 2°C increase in mid-summer surface water temperature for Baker Lake over the last 60 years, which was corroborated by the local instrumental record spanning the period of 1950–2007 AD. The chironomid record shows a recent decline of several cold-water taxa and appearance of warm-water indicators. This shift in community structure began circa 1906 AD, and intensified after 1940 AD. The corresponding fossil diatom record showed an increase in small planktonic Cyclotella taxa over the past 60 years, intensifying in the last 5 years, which also suggests a warmer climate and longer ice-free periods. The shifts in the diatom assemblages began later than the shifts in the chironomid assemblages, and were of lower magnitude, reflecting differences in the mechanisms in which these two indicators respond to environmental change.  相似文献   

11.
In order to assess the recent anthropogenic environmental changes in Lake Kitaura, central Japan, changes during the past few centuries were reconstructed from results of radiometric and tephrochlonological age determination, magnetic susceptibility measurements, total organic carbon analyses, total nitrogen analyses and fossil diatom analyses on a sediment core from the lake. A total of six major and sub-zones are recognized according to the diatom fossil assemblages, and we discuss aquatic environmental change in Lake Kitaura mainly based on these diatom assemblage change. Zone Ia and Zone Ib (older than AD 1707) are marine to brackish. In Zone IIa (AD␣1707–AD 1836), most of the brackish diatoms disappeared, and were replaced by freshwater species indicating a decrease in salinity. We interpret the salinity decrease in Zone I–IIa as a sea-level fall during the Little Ice Age. The salinity of the lake decreased to near freshwater conditions in Zone IIb (AD 1836–AD 1970), which could arise from alteration in River Tone or development of a sandspit in the mouth of River Tone in addition to sea-level change. In Zone IIIa (AD 1970–AD 1987), the diatom assemblage indicates a freshwater environment, and sedimentation rates increase rapidly. These changes reflect sedimentary environment change and an ecosystem transition due to the construction of the tide gate. In Zone IIIb (AD 1987–AD 2002), the diatom flux (valves cm−2 y−1) increased and species composition changed. The changes in Zone IIIb show a good agreement with limnological monitoring data gathered from the lake. These paleolimnological data suggest that the recent human-induced changes of the aquatic environment of the lake after the 1970s exceed rates during the period concerned in this study.  相似文献   

12.
Marine eutrophication of estuaries and coastal waters is considered to be a significant problem worldwide. In the semi-enclosed Baltic Sea, where the nutrient load has strongly increased from its natural level, this has led to marked changes in the coastal ecosystems. A key to successful management of coastal waters is reliable scientific evidence of their past state. The palaeolimnological record of subfossil diatoms was used to study the rate and magnitude of eutrophication over the last ca. 200 years in two urban and three rural sites. The urban sites showed marked increases in the percentage abundance of planktonic diatoms (from <50 to ca. 90% and from <5 to ca. 70%) and diatom-inferred total dissolved nitrogen (from <800 to ca. 3000 μg l−1 and from <400 to ca. 800 μg l−1), and a decrease in species richness starting in the 19th – early 20th century with increased urbanisation. At both sites a clear recovery was observed after the cessation of waste water loading by the mid 1980s. The present planktonic diatom assemblages of these embayments, however, show no change back to the pre-disturbance diverse benthic communities. In contrast, the changes observed in the rural sites were only moderate and occurred later starting in the 1940s. No marked increases in diatom-inferred total dissolved nitrogen were seen, however, all sites showed an increase in small planktonic taxa (from ca. 1–6% to 8–36%) indicating increased nutrient enrichment and turbidity. These small floristic changes could be seen as an early warning signal despite little change in the inferred nutrient concentrations. The results have implications for the European Water Framework Directive, which requires European surface waters to be of good ecological status, defined both by biological and chemical quality elements.  相似文献   

13.
Epiphytic diatoms as flood indicators   总被引:1,自引:0,他引:1  
The hydroecology of floodplain lakes is strongly regulated by flood events. The threat of climate warming and increasing human activities requires development of scientific methods to quantify changes in the frequency of short-lived flood events, because they remain difficult to identify using conventional paleolimnological and monitoring approaches. We developed an approach to detect floods in sediment records by comparing the abundance and composition of epiphytic diatom communities in flooded and non-flooded ponds of the Peace-Athabasca Delta (PAD), Canada, that grew on submerged macrophytes (Potamogeton zosteriformis, P. perfoliatus) and an artificial substrate (polypropylene sheets) during the open-water season of 2005. Analysis of similarity tests showed that epiphytic diatom community composition differs significantly between flooded and non-flooded ponds. After accounting for the “pond effect,” paired comparisons of the three substrates determined that variation in community composition between the artificial substrate and macrophytes was similar to that between the macrophyte taxa. Similarity percentage analysis identified diatom taxa that discriminate between flooded and non-flooded ponds. The relative abundance of ‘strong flood indicator taxa’ was used to construct an event-scale flood record spanning the past 180 years using analyses of sedimentary diatom assemblages from a closed-drainage pond (PAD 5). Results were verified by close agreement with an independent paleoflood record from a nearby flood-prone oxbow pond (PAD 54) and historical records. Comparison of epiphytic diatoms in flooded and non-flooded lakes in this study provides a promising approach to detect changes in flood frequency, and may have applications for reconstructing other pulse-type disturbances such as hurricanes and pollutant spills.  相似文献   

14.
Swan Lake is a small kettle lake located on the Oak Ridges Moraine; a moraine that is recognized as an important source of ground water for the nearby and rapidly expanding Greater Toronto Area. A paleolimnological reconstruction using pollen and diatoms from the lake sediments showed significant changes in biological community composition through the last ∼400 years. Alterations in the diatom and pollen assemblages were most dramatic ca. A.D. 1850, correlating with the highest sediment flux in the lake between the period ca. A.D. 1850 and A.D. 1870. These changes were directly linked to regional deforestation and agricultural activities associated with European settlement. The pollen record from ca. A.D. 1850 to present day indicated that tree species (e.g. Pinus spp., Tsuga canadensis) were declining, while grass (Poaceae) and invasive species (e.g. Ambrosia) were increasing. Around A.D. 1850, the diatom flora changed from an assemblage dominated by large, benthic species (e.g. Sellaphora pupula, Pinnularia cf. maior, and Stauroneis phoenicenteron) to an assemblage characterized by smaller, tychoplanktonic (e.g. Fragilaria tenera, Staurosirella pinnata) and epiphytic (e.g. Achnanthidium minutissimum, Rossithidium linearis) taxa. This diatom community change supports the intermediate disturbance hypothesis which predicts a high level of diversity and richness following an intermediate to intense disturbance of short duration. Phosphorus concentrations in Swan Lake were inferred using a diatom-based regional calibration model, and the results indicated marked changes in lake water chemistry through time (from below detection limits before land clearance and settlement to 19.3 μg l−1 in the current sediments), which were concurrent with episodes of regional deforestation and land-use change. Although the sediment and biological records indicate that the lake ecology has stabilized over the last 30–50 years, paleolimnological records show that the water quality and biology of Swan Lake has changed dramatically and not returned to pre-settlement conditions. Swan Lake presents a detailed record of the impact created by deforestation and urban development with a population of <50 individuals per km2. Detailed paleolimnological studies like Swan Lake, in tandem with global human footprint studies, can create realistic estimates of land-use impacts at the global scale.  相似文献   

15.
Twenty high Arctic lakes and ponds were sampled for water chemistry and modern diatom assemblages in two distinct physiographic sectors of Sirmilik National Park, Nunavut, Canada. Sites on southwestern Bylot Island were warmer, more alkaline, less dilute, and had higher concentrations of nutrients, DOC and Chl-a (mesotrophic to oligo-mesotrophic), whereas sites on Qorbignaluk Headland on northern Baffin Island were deeper, very dilute, mostly oligotrophic and had lower pH. Diatom assemblages differed markedly between these two regions as a consequence of limnological differences between them. Paleolimnological records, spanning > 200 years and dated by 210Pb activity, were produced from each region to compare biological responses to recent warming inferred from glaciological studies on Bylot Island and regional syntheses for the Arctic. Diatom assemblages began to change around AD 1900 at both sites. At Qorbignaluk Headland, marked shifts in diatom community composition occurred during the twentieth century, with large increases in the abundance of planktonic diatoms. At Bylot Island, diatom community changes began around the same time, and involved modest decreases in planktonic diatoms and increases in inferred specific conductance, likely because of a decrease in the areal extent of the small lake as a response to warming. The study confirms that responses of freshwater ecosystems to climate warming vary depending on local physiographic factors.  相似文献   

16.
Stimulated by the exceeding progress of information technology, the development of mineral exploration has entered a new period of digitization and quantification. The “three components” approach of mineral prediction is suggested as a new approach to the “digital mineral prospecting,” which is based on the geoanomaly analysis, directed by the research on the diversity of mineralization and on the spectrum of mineral deposits. Close combination of these three aspects of quantitative study makes a new starting point to the digital prospecting. In this paper, the basic theories of the “three components” approach of mineral prediction are discussed. In addition, based on the new achievements in the studies on the prediction and assessment of solid minerals and gas–oil resources, we have centered our discussion on the thought of analysis of geoanomaly evolution and on the “5P” method for approaching the target area in the “three components” approach of mineral prediction.  相似文献   

17.
Relationships between littoral surface-sediment diatom assemblages and ambient limnological conditions were examined in 186 lentic fresh waters throughout lower Belgium (Flanders). Most of these waters were small, unstratified, alkaline and rich in nutrients. Using weighted-averaging techniques, robust and accurate transfer functions were developed for median pH-values ranging from 3.4 to 9.3 and dissolved inorganic carbon concentrations from <1.6 to 63 mg l−1 (jackknifed r 2≈ 0.87, RMSEP <10% of the observed range), while a less precise model was obtained for sodium (2–571 mg l−1; jackknifed r 2 0.69, RMSEP 9.9% of the range). Restricting the data set to circumneutral and alkaline sites (pH≥6.5) revealed the importance of additional variables, including calcium, silica, chemical oxygen demand and potential gross oxygen production (a proxy for metabolic activity and phytoplankton abundance). Calibration models for these variables were strong enough to be useful (jackknifed r 2 0.57–0.59, RMSEP 13.1–16.4% of the observed range), although estimations should not always be considered entirely independent. Except for the predominant pH gradient, removal of all taxa with a distribution unrelated to the variable of interest improved model performance. In general, such taxa were proportionally represented among taxa classified according to their principal habitat. Application of the present models to diatom assemblages of shallow-water sediments obtained from historical samples and, most importantly, herbarium-macrophyte specimens, will improve hindsight into regional freshwater conditions and add to base-line setting of ecological quality standards in a highly impacted region. Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users.  相似文献   

18.
Quantitative reconstructions of mean July temperatures (T jul) based on new and previously published pollen-stratigraphical data covering the last 2000 years from 11 lakes in northern Fennoscandia and the Kola Peninsula are presented. T jul values are based on a previously published pollen-climate transfer function for the region with a root-mean-square error of prediction (RMSEP) of 0.99°C. The most obvious trend in the inferred temperatures from all sites is the general decrease in T jul during the last 2000 years. Pollen-inferred T jul values on average 0.18 ± 0.56°C (n = 91) higher than present (where “present” refers to the last three decades based on pollen-inferred T jul in core-top samples) are indicated between 0 and 1100 AD (2000–850 cal year BP), and temperatures −0.2 ± 0.47°C (n = 78) below present are inferred between 1100 and 1900 AD (850–50 cal year BP). No consistent temperature peak is observed during the ‘Medieval Warm Period’, ca. 900–1200 AD (1100–750 cal year BP), but the cooler period between 1100 and 1900 AD (850–50 cal year BP) corresponds in general with the ‘Little Ice Age’ (LIA). Consistently with independent stable isotopic data, the composite pollen-based record suggests that the coldest periods of the LIA date to 1500–1600 AD (450–350 cal year BP) and 1800–1850 AD (150–100 cal year BP). An abrupt warming occurred at about 1900 AD and the twentieth century is the warmest century since about 1000 AD (950 cal year BP).
A. E. BjuneEmail:
  相似文献   

19.
The sedimentary record from the paleolake at Les Echets in eastern France allowed a reconstruction of the lacustrine response to several abrupt climate shifts during the last glacial period referred to as Dansgaard–Oeschger (DO) cycles. The high-resolution diatom stratigraphy has revealed distinct species turnover events and large fluctuations in stable oxygen isotope values in diatom frustules, as a response to DO climate variability. More or less identical species compositions became re-established during each DO stadial and interstadial phases, respectively. However, the relative abundance of the most dominant species within these assemblages varies and might indicate differences in climatic conditions. Interstadial phases are characterized by identical species successions. Transitions from stadial to interstadial conditions show a distinct FragilariaCyclotella succession, which resembles the diatom regime shifts that have been recognized in some lakes in the Northern Hemisphere since the mid-nineteenth century.  相似文献   

20.
Paleoecological analysis of the sediment record of 12 Adirondack lakes reveals that the 8 clearwater lakes with current pH < 5.5 and alkalinity < 10 eq l-1 have acidified recently. The onset of this acidification occurred between 1920 and 1970. Loss of alkalinity, based on quanitative analysis of diatom assemblages, ranged from 2 to 35 eq l-1. The acidification trends are substantiated by several lines of evidence including stratigraphies of diatom, chrysophyte, chironomid, and cladoceran remains, Ca:Ti and Mn:Ti ratios, sequentially extracted forms of Al, and historical fish data. Acidification trends appear to be continuing in some lakes, despite reductions in atmospheric sulfur loading that began in the early 1970s. The primary cause of the acidification trend is clearly increased atmospheric deposition of strong acids derived from the combustion of fossil fuels. Natural processes and watershed disturbances cannot account for the changes in water chemistry that have occurred, but they may play a role. Sediment core profiles of Pb, Cu, V, Zn, S, polycyclic aromatic hydrocarbons, magnetic particles, and coal and oil soot provide a clear record of increased atmospheric input of materials associated with the combustion of fossil fuels beginning in the late 1800s and early 1900s. The primary evidence for acidification occurs after that period, and the pattern of water chemistry response to increased acid inputs is consistent with current understanding of lake-watershed acidification processes.This is the second of a series of papers to be published by this journal which is a contribution of the Paleoecological Investigation of Recent Lake Acidification (PIRLA) project. Drs. D.F. Charles and D.R. Whitehead are guest editors for this series.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号