首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Anthropogenic environmental degradation transforms mature vegetation into sites in succession, and actions to restore these altered environments must be based on ecological theories. Nucleation, promoted by facilitation, is an ecological process that can be applied to the restoration of altered environments. The original vegetation of many semi-arid regions has been profoundly altered, and is difficult to recuperate due to rigorous climates. Observations of secondary succession sites raise the following question: do some semi-arid plant species promote nucleation processes and can they therefore be considered nurse species? To address this question, vegetation surveys were undertaken in different environments: under the canopy of the shrub Combretum leprosum and in adjacent open areas. Shrubs in different stages were classified by canopy size: small, intermediate and large. Diversity and number of seedlings increased as the size of the C. leprosum canopies increased. Some of the environmental variables examined supported the role of C. leprosum as a facilitator species, such as the improvement in soil conditions under its canopy. Thus C. leprosum could be of significant importance in restoring degraded areas of the semi-arid region where it is present, by allowing the establishment of other plant species.  相似文献   

2.
Patterns in soil bacterial communities, and the factors that determine them, have been little explored in arid and semi-arid environments. It is unclear to what extent the diversity and community composition of arid-land soil bacterial communities follow vegetation habitats, or conversely other relatively independent soil variables. It is also unclear whether the factors (e.g. pH) that contribute to variation in bacterial communities in some moister environments also operate on a local scale in semi-arid environments. To identify the main factors in shaping bacterial community structure in semi-arid environments, we sampled a mosaic of habitats under different vegetation, landscape and edaphic conditions in central Mongolia, including steppe, forest-steppe, and abandoned wheat field. Soil DNA was extracted and pyrosequenced for 16S rRNA gene identification. NMDS results showed that bacterial community structures are slightly different from one habitat to another. However, the similarity between communities both within and between habitats is determined more strongly by soil texture than by vegetation type and drainage conditions. Moreover, the relative abundances of certain phyla are correlated with specific soil properties such as salinity and soil texture, in ways that have not previously been found in semi-arid environments. Actinobacteria, for example, show a negative correlation with salinity and Bacteroidetes display a positive relationship with percentage silt and clay. It also appears that the most important environmental variables (soil texture and salinity) affecting the bacterial community within this semi-arid environment are different from those found in moister environments, with no detectable effect of pH.  相似文献   

3.
黄河三角洲新生湿地植物群落分布格局   总被引:2,自引:0,他引:2  
为阐明黄河三角洲新生湿地植被群落的分布格局,以1996年后新淤积形成的湿地植被为研究对象,选取9个典型植被群落过渡带,测定分析其群落数量特征,以期能为更好的保护与管理黄河三角洲新生湿地提供数据支持。调查结果显示:黄河三角洲新生湿地植被群落沿河向海的方向呈同心环状发展,呈现出较明显的条带状。自河岸向海岸,植物的耐盐性逐渐提高。草本植物自河岸、海岸向中心陆地演替,而木本植物则由中心陆地向河岸、海岸演替。物种丰富度及香农-威纳(Shannon-Wiener)多样性指数自河岸向海岸,先升高后降低。土壤含盐量的变化与植物群落的组成结构之间具有密切关系,这说明土壤含盐量是影响黄河三角洲新生湿地植被分布格局的主要因子。  相似文献   

4.
Biogenic soil crusts (BSCs), consisting of different combinations of mosses, lichens, liverworts, fungi and cyanobacteria, are a widespread phenomenon in arid and semi-arid environments. BSCs are found throughout those areas unaffected by grazing and other anthropogenic activities. Current economic conditions in the newly Independent Central Asian States favor the development of BSCs, which may significantly influence plant communities. The data from 40-years of field observations in a protected area in the Karakum Desert, Turkmenistan, together with a sequence of aerial photographs of the same area may contribute to the study of the establishment of BSCs and understanding their role in vegetation communities. The fenced-off Karrykul area can serve as a model for the current processes in the vast desert areas in Central Asia, which are underused due to the financial constraints. It is hypothesized that after some 15 years, the role of BSCs changes from a positive (rehabilitating) effect on the first stages of protection, to a negative effect on the structure and biomass of vegetation communities. Therefore, undergrazing, as well as overgrazing, should be considered as a desertification factor.  相似文献   

5.
闫守刚  许清涛 《中国沙漠》2012,32(6):1611-1616
在半干旱沙区植物天然更新过程中,种子萌发、幼苗出土是植物种群维持和实现更新的关键阶段。通常认为,在这一阶段,土壤水分和土壤种子库是主要制约因素。分别对流动沙丘迎风坡与丘间低地过渡带的出土幼苗密度与土壤种子库密度和土壤水分进行二元相关分析。结果表明,生长季的出土幼苗密度与土壤种子库密度的相关性未达到显著水平(P>0.05);出土幼苗密度与土壤水分呈显著正相关(P<0.05),而且,幼苗密度随土壤水分呈对数增加。这说明,在植被入侵流动沙丘迎风坡与丘间低地过渡带裸沙的过程中,土壤水分是主要的制约因素,而土壤种子库的制约作用则没有表现出来,植被自然恢复更多地依赖于从沙丘附近植物群落传播来的种子。  相似文献   

6.
Nebkhas, discrete mounds of sand and vegetation, are a common landscape feature critical to the stability of desert ecosystems and supported by limited precipitation. Nebkha morphology and spatial pattern vary in landscapes, but it is unclear how they change along precipitation gradients in arid and semi-arid regions. In this study we determined morphology and soil nutrient patterns of nebkha from different regions of northwestern China. The objective of this study was to understand zonal differences among nebkhas and how morphological characteristics and soil nutrient patterns of nebkha change along a precipitation gradient in northwestern China. Our results shows that mean annual precipitation(MAP) had significant effects on morphological characteristics of nebkhas such as height, area, and volume which significantly decreased with an increase in MAP. MAP had significant positive effects on shrub cover and species richness of nebkha. Soil nutrients such as soil organic matter(SOM), total carbon(TC), total nitrogen(TN), and total phosphorus(TP) in the 0-10 cm layer increased with an increase of MAP, and soil nutrient content within nebkhas was higher than in inter-nebkha areas.We concluded that nebkhas are "fertile islands" with an important role in ecosystem dynamics in study regions. Further,MAP is a key factor which determined zonal differences, morphological, and soil nutrients patterns of nebkhas. However,disturbance, such as animal grazing, and planted sand-stabilizing vegetation accelerated the degeneration of nebkha landscapes. We recommend implementation of protective measures for nebkhas in arid and semi-arid areas of China.  相似文献   

7.
The Umm as Samim is a vast salt flat of central Oman, in which many wadis which flow south-westwards from the central sector of the northern mountains converge. Most of the area is devoid of vegetation due to extraordinary salinity (sabkha). Significant plant growth is possible chiefly on miniature dunes, called nabkhas, which enable the plants to prosper in an otherwise harsh environment.The site conditions are depicted by mapping of miniature dunes and vegetation, accompanied by an account of morphometric parameters, i.e. height of nabkha, height of plant growth, and status of plant life. Within the chosen sample plot, 12.3% of the sabkha is covered by nabkhas. The total plant cover amounts to 5.0%, but only 3.1% of it is alive, while 2.0% is dead or lifeless.Two nabkhas were longitudinally excavated to examine the salinity of soil samples in relation to dune structure and root and shoot system position. The salinity analysis was done via electrical conductivity (EC1:5 extract). Extremely high EC values were found on current or former sabkha surfaces and on the periphery of nabkhas, whereas central nabkha parts and bottom soil offer more favourable salinity values for plant and root growth.  相似文献   

8.
科尔沁沙质草甸土壤微生物数量的垂直分布及季节动态   总被引:5,自引:0,他引:5  
通过对中国农牧交错带科尔沁沙质草甸土壤微生物数量的垂直分布及其季节动态的研究分析表明:(1)微生物总数、细菌和放线菌数量均表现出与降雨量同步的季节动态,即6月份较5月份有所减少,7月份增至最多,7月份以后微生物数量逐渐下降,真菌则表现出从5月份到8月份一直增加,9月份开始回落;(2)土壤微生物具有明显的垂直分布差异.细菌和放线菌的垂直分布表现出随土壤深度增加逐渐减少的趋势,真菌数量表层最高,20 cm以下变化不够规律;(3)土壤微生物的层化比率均大于2(5月份放线菌除外);(4)不同土壤生态因子对微生物的影响不同,相同因子对不同微生物类群的影响也不相同.细菌受水分影响较大,真菌与地温的变化趋势相近,放线菌与水热条件的共同作用有关.土壤养分(有机碳和全氮)与微生物数量呈显著的正相关.  相似文献   

9.
Salinity is an environmental phenomenon that affects the world's arid and semi-arid regions, where it causes soil degradation and problems for agriculture. Salinity began to attract serious attention in the irrigated districts of the Murray Valley in south-eastern Australia in the 1960s. However, observations that the south-eastern Australian landscape was affected by naturally occurring salts predates this period of awareness by more than half a century. Drawing on documentary history, the present paper reveals what soil chemists in New South Wales in the 1890s already understood of the potential dangers of salinity. These scientists were aware of the experience of their colonial colleagues in British India, where the seriousness of the problem had been recognised by the 1870s. Using evidence from India and south-eastern Australia in the nineteenth and early-twentieth centuries, the paper outlines the opposing worldviews of scientists and engineers in New South Wales about the potential dangers of intensive irrigation. It offers an explanation as to why that understanding was insufficient to prevent the growth of the problem.  相似文献   

10.
通过对黄土丘陵沟壑区陕西延安羊圈沟小流域坡面上退耕还林还草后形成的林地(单一种植刺槐人工林)、草地(单一的撂荒草地)、草地-林地-草地(上坡位和下坡位撂荒草地,中坡位种植刺槐人工林)及林地-草地-林地(上坡位和下坡位种植刺槐人工林,中坡位为撂荒草地)四种不同的植被格局下植物物种多样性及土壤理化性质变化的研究,旨在揭示植被恢复过程中,坡面上植被不同的空间配置模式对植物物种的组成及土壤环境变化的影响.研究发现,4种植被格局下植物物种的多样性以单一的撂荒草地坡面最高,人工林的种植一定程度上影响了林下植物物种多样性的恢复,但整个灌木和草本的群落结构4种植被格局之间均未达到极不相似水平.土壤有机碳及总氮含量均以坡面上草地-林地-草地的空间配置格局最高且有机碳存在显著差异,而撂荒草地则在土壤水分的保持及改善土壤pH值上优于其他3种植被格局.  相似文献   

11.
Mapping soil salinity is difficult due to its large spatial and temporal variability. Remote sensing is widely used to lower survey costs, but existing studies usually analyze bare soils and make little reference to the halophytic plants and their role as salinity indicators.This paper aims to correlate soil characteristics (electric conductivity in saturation extract (ECe) and sodium absorption ratio (SAR) with the spectral response of plant species and bare soils, integrating an algorithm to allow multi-scale mapping using remote sensors.Ground radiance was measured on different plant species and bare soils. A Combined Spectral Response Index (COSRI) was calculated for bare soils and vegetation by adjusting the normalized difference vegetation index (NDVI). ECe and SAR were determined in surface soil samples. Correlation coefficients between COSRI and soil salinity were obtained and a model was adjusted to predict soil salinity. Landsat-ETM and airborne digital images were used to calculate raster maps of COSRI, and ECe and SAR were estimated using adjusted models. Correlation between COSRI and ECe and SAR was of −0.885 and −0.857, respectively. Variance accounted for by exponential models for ECe and SAR was of 82.6% and 75.1%, respectively. It may be concluded that the method is an easy, low-cost procedure to map salt-affected areas.  相似文献   

12.
荒漠植被影响土壤水文过程研究述评   总被引:39,自引:20,他引:19  
简要回顾了有关荒漠植被对土壤水文过程影响的试验研究,介绍了荒漠地区土壤水文过程研究的主要方法以及基本的土壤水分平衡方程,并对特定区域土壤水分动态与植被结构之间的关系进行分析,以期对今后从事该领域的研究与管理者有所启示。由于荒漠地区土壤水文特性具有极高的变异性,因此,阐明荒漠植被区土壤水分动态,确定这一特殊生态系统内植被格局与土壤水文过程的关系,可在理论上回答雨养型人工植被建设与荒漠地区生态恢复工程中,土壤水文过程影响植被结构与格局的基础性科学问题。  相似文献   

13.
This review summarizes the effects of vegetation on runoff and soil loss in three dimensions: vertical vegetation structures(aboveground vegetation cover, surface litter layer and underground roots), plant diversity, vegetation patterns and their scale characteristics. Quantitative relationships between vegetation factors with runoff and soil loss are described. A framework for describing relationships involving vegetation, erosion and scale is proposed. The relative importance of each vegetation dimension for various erosion processes changes across scales. With the development of erosion features(i.e., splash, interrill, rill and gully), the main factor of vertical vegetation structures in controlling runoff and soil loss changes from aboveground biomass to roots. Plant diversity levels are correlated with vertical vegetation structures and play a key role at small scales, while vegetation patterns also maintain a critical function across scales(i.e., patch, slope, catchment and basin/region). Several topics for future study are proposed in this review, such as to determine efficient vegetation architectures for ecological restoration, to consider the dynamics of vegetation patterns, and to identify the interactions involving the three dimensions of vegetation.  相似文献   

14.
This review summarizes the effects of vegetation on runoff and soil loss in three dimensions: vertical vegetation structures (aboveground vegetation cover, surface litter layer and underground roots), plant diversity, vegetation patterns and their scale characteristics. Quantitative relationships between vegetation factors with runoff and soil loss are described. A framework for describing relationships involving vegetation, erosion and scale is proposed. The relative importance of each vegetation dimension for various erosion processes changes across scales. With the development of erosion features (i.e., splash, interrill, rill and gully), the main factor of vertical vegetation structures in controlling runoff and soil loss changes from aboveground biomass to roots. Plant diversity levels are correlated with vertical vegetation structures and play a key role at small scales, while vegetation patterns also maintain a critical function across scales (i.e., patch, slope, catchment and basin/region). Several topics for future study are proposed in this review, such as to determine efficient vegetation architectures for ecological restoration, to consider the dynamics of vegetation patterns, and to identify the interactions involving the three dimensions of vegetation.  相似文献   

15.
地下水埋深对半干旱区典型植物群落土壤酶活性的影响   总被引:1,自引:0,他引:1  
土壤酶活性是反映土壤功能的关键指标,尤其在受到水分限制的半干旱区,土壤水分驱动的土壤酶活性生态功能的变化可以改变土壤养分周转并影响土壤碳质量。地下水埋深对半干旱区典型植物群落土壤酶活性的影响机制尚不明晰。以半干旱区科尔沁沙质草地两种典型植物群落(白草Pennisetum centrasiaticum和差巴嘎蒿Artemisia halodendron)为研究对象,开展地下水埋深模拟试验,地下水埋深分别为0.5、1.0、2.0 m。分析不同土层的土壤理化性质和土壤酶活性,探讨不同地下水位埋深深度下不同植被类型土壤酶活性的变化特征。结果表明:4种土壤水解酶(酸性磷酸酶(AP)、葡萄糖苷酶(βG)、乙酰氨基葡萄糖苷酶(NAG)和亮氨酸氨基肽酶(LAP))和2种氧化还原酶(过氧化氢酶(CL)和多酚氧化酶(POX))活性均受地下水位埋深和植被类型的影响。随着地下水埋深的增加,白草和差巴嘎蒿群落内土壤酶活性分别呈现不显著性和显著性的变化规律。同时,在各处理中土壤酶活性均随土层深度的增加而减小。地下水埋深对科尔沁沙质草地白草与差巴嘎蒿群落的土壤水解酶和氧化还原酶活性产生不同的影响。未来在半干旱区进行植被恢复时,建议考虑不同植物群落对地下水位变化的适应对策的差异,以更好地恢复半干旱区植物群落的地上地下生态系统功能。  相似文献   

16.
In the semi-arid steppe rangelands of Central Turkey, Festuca valesiaca and Thymus sipyleus ssp rosulans have become the dominant species on degraded pastures. We hypothesized that decreases in species richness and abundance are correlated with increasing prevalence of these two species. Therefore, our objectives were to determine whether there are patterns in examined vegetation; how dominant species contribute to these patterns; and how patterns differ between grazed and ungrazed vegetation. We determined that protection from grazing increased species richness. Grazing significantly changed composition through decreasing total plant, forb, grass and F. valesiaca covers, while substantially increasing T. sipyleus cover. Topography, soil and grazing appear to impact the dominance of plant communities where F. valesiaca and T. sipyleus prevail. These two dominant species had a significant effect in shaping vegetation patterns. Based on regression analysis, alterations in species richness with changes in cover of forbs and shrubs were evident, and spatial heterogeneity of F. valesiaca and T. sipyleus indicated unstable vegetative patterns in heavily grazed pastures and successional changes in protected pastures. Our study results identify F. valesiaca and T. sipyleus as indicator species of vegetation suppression in condition assessments of degraded steppe rangelands.  相似文献   

17.
对洪河湿地主要植被类型物种多样性特征、土壤性质特征及二者之间的相互关系进行了研究。结果表明:按沼泽—沼泽化草甸—湿草甸—灌丛草甸—岛状林的序列,物种丰富度呈逐渐增加的变化格局,物种多样性、均匀度呈先下降后上升的格局,优势度呈先上升后下降的格局;而土壤性质特征则呈不规则变化格局。植物物种多样性与土壤性质之间只有均匀度与速效氮之间存在着极显著正相关,其他均无显著相关。这说明在洪河湿地,土壤性质不是决定上述序列的植被类型的物种多样性的主要因素,而土壤速效氮含量是影响物种均匀度的关键因素,同时,对其他物种多样性特征也有一定影响。  相似文献   

18.
The Kent River flows from semi-arid headwaters in the agricultural (wheatbelt) region of Western Australia to a wetter and forested lower-catchment. It is set in an atypical fluvial environment, with rainfall decreasing inland towards a low-relief upper catchment. Replacement of native deep-rooted perennial vegetation with shallow-rooted seasonal crops has altered the hydrology of the upper catchment. Clearing for agriculture has also increased recharge of regional groundwater systems causing groundwater to rise and mobilise salt stores. This has increased stream salinity which has degradation riparian vegetation and decreased flow resistance. Elevated groundwater has also affected streamflow, increasing flow duration and annual discharge. The altered hydrological regime has affected geomorphic stability, resulting in channel responses that include incision and removal of uncohesive material. Channel response is variable, showing a high dependence on channel morphotype, channel boundary material and severity of salinity (degree of vegetation degradation). Response in confined reaches bounded by sandy material has been characterised by minor lateral bank erosion. In the fine-grained, wider, low-gradient reaches, mid-channel islands have been stripped of sandy sediment where vegetation has degraded. Following an initial period of high erosion rates in these reaches, the channel is now slowly adjusting to a new set of boundary conditions. The variable response has significant implications for management of salt affected rivers in southwestern Australia.  相似文献   

19.
Salt evaporation basins in south-eastern Australia, in contrast with natural saline lakes in this region, were not highly saline and exhibited little seasonal pattern in water depth and salinity over a 2-year sampling period. Lack of seasonality arose from either constant inflow (from continuous groundwater pumping) or erratic inflow (from unpredictable irrigation demands). Differences in zooplankton species composition between the salt evaporation basins and natural saline lakes might reflect the differences in temporal salinity patterns. Some typical saline lake zooplankton were not found in the evaporation basins. Salt evaporation basins therefore may represent additions to the inland water habitats of semi-arid Australia.  相似文献   

20.
Elevated soil salinity is often associated with Tamarix invasion; however, it's unclear whether soils are more saline because of Tamarix or other environmental factors. Surface soil salinity was investigated along a flow-regulated, arid river with dense Tamarix of varying age to determine which factors best explain soil salinity. Flooding was the most important predictor, reducing salinity by nearly 70%. Soils under Tamarix had lower salinity than adjacent areas without woody cover in non-flooded areas suggesting that evaporation in arid environments may contribute more surface salts than Tamarix or may exacerbate plant inputs. Under most conditions, higher salinities were found under Tamarix than natives. An exception to this pattern was that soils under the smallest trees were more saline for natives. Relationships between soil salinity and stem size suggest that salts increase over time under Tamarix unless they are removed by flooding. However, the most mature stands had lower salinity than expected, reflecting some additional mechanism. Soil texture and distance from the river were important, but interacted strongly with other factors. The observed relationships between surface soil salinity and Tamarix stem size, a predictor of aboveground age, suggest Tamarix plays an active role in floodplain salinization within the sampled area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号