首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The active growth of a fault-and-thrust belt in frontal zones of Himalaya is a prominent topographical feature, extending 2500 km from Assam to Pakistan. In this paper, kinematical analysis of frontal anticlines and spatial mapping of active faults based on geomorphological features such as drainage pattern development, fault scarps and uplifted Quaternary alluvial fans are presented. We analyse the geomorphic and hydrographic expressions of the Chandigarh and the Janauri active anticlines in the NW India Siwaliks. To investigate the morphological scenario during the folding process, we used spatial imagery, geomorphometric parameters extracted from digital elevation models and fieldwork. Folding between the Beas and Sutlej Rivers gives clear geomorphological evidence of recent fold growth, presumably driven by movements of blind thrust faults. Structural style within the Janauri and Chandigarh anticlines is highly variable (fault-propagation folds, pop-up structures and transfer faults). The approach presented here involves analysis of topography and drainage incision of selected landforms to detect growth of active anticlines and transfer faults. Landforms that indicate active folding above a southwest-dipping frontal thrust and a northeast-dipping back-thrust are described. Along-strike differences in ridge morphology are measured to describe the interaction of river channel patterns with folds and thrust faults and to define history of anticline growth. The evolution of the apparently continuous Janauri ridge has occurred by the coalescence of independent segments growing towards each other. By contrast, systematic drainage basin asymmetry shows that the Chandigarh anticline ridge has propagated laterally from NW to SE.  相似文献   

2.
Extensional faults and folds exert a fundamental control on the location, thickness and partitioning of sedimentary deposits on rift basins. The connection between the mode of extensional fault reactivation, resulting fault shape and extensional fold growth is well‐established. The impact of folding on accommodation evolution and growth package architecture, however, has received little attention; particularly the role‐played by fault‐perpendicular (transverse) folding. We study a multiphase rift basin with km‐scale fault displacements using a large high‐quality 3D seismic data set from the Fingerdjupet Subbasin in the southwestern Barents Sea. We link growth package architecture to timing and mode of fault reactivation. Dip linkage of deep and shallow fault segments resulted in ramp‐flat‐ramp fault geometry, above which fault‐parallel fault‐bend folds developed. The folds limited the accommodation near their causal faults, leading to deposition within a fault‐bend synclinal growth basin further into the hangingwall. Continued fold growth led to truncation of strata near the crest of the fault‐bend anticline before shortcut faulting bypassed the ramp‐flat‐ramp structure and ended folding. Accommodation along the fault‐parallel axis is controlled by the transverse folds, the location and size of which depends on the degree of linkage in the fault network and the accumulated displacement on causal faults. We construct transverse fold trajectories by tracing transverse fold hinges through space and time to highlight the positions of maximum and minimum accommodation and potential sediment entry points to hangingwall growth basins. The length and shape of the constructed trajectories relate to the displacement on their parent faults, duration of fault activity, timing of transverse basin infill, fault linkage and strain localization. We emphasize that the considerable wavelength, amplitudes and potential periclinal geometry of extensional folds make them viable targets for CO2 storage or hydrocarbon exploration in rift basins.  相似文献   

3.
In order to better understand the evolution of rift‐related topography and sedimentation, we present the results of a numerical modelling study in which elevation changes generated by extensional fault propagation, interaction and linkage are used to drive a landscape evolution model. Drainage network development, landsliding and sediment accumulation in response to faulting are calculated using CASCADE, a numerical model developed by Braun and Sambridge, and the results are compared with field examples. We first show theoretically how the ‘fluvial length scale’, Lf, in the fluvial incision algorithm can be related to the erodibility of the substrate and can be varied to mimic a range of river behaviour between detachment‐limited (DL) and transport‐limited (TL) end‐member models for river incision. We also present new hydraulic geometry data from an extensional setting which show that channel width does not scale with drainage area where a channel incises through an area of active footwall uplift. We include this information in the coupled model, initially for a single value of Lf, and use it to demonstrate how fault interaction controls the location of the main drainage divide and thus the size of the footwall catchments that develop along an evolving basin‐bounding normal fault. We show how erosion by landsliding and fluvial incision varies as the footwall area grows and quantify the volume, source area, and timing of sediment input to the hanging‐wall basin through time. We also demonstrate how fault growth imposes a geometrical control on the scaling of river discharge with downstream distance within the footwall catchments, thus influencing the incision rate of rivers that drain into the hanging‐wall basin. Whether these rivers continue to flow into the basin after the basin‐bounding fault becomes fully linked strongly depends on the value of Lf. We show that such rivers are more likely to maintain their course if they are close to the TL end member (small Lf); as a river becomes progressively more under supplied, i.e. the DL end member (large Lf), it is more likely to be deflected or dammed by the growing fault. These model results are compared quantitatively with real drainage networks from mainland Greece, the Italian Apennines and eastern California. Finally, we infer the calibre of sediments entering the hanging‐wall basin by integrating measurements of erosion rate across the growing footwall with the variation in surface processes in space and time. Combining this information with the observed structural control of sediment entry points into individual hanging‐wall depocentres we develop a greater understanding of facies changes associated with the rift‐initiation to rift‐climax transition previously recognised in syn‐rift stratigraphy.  相似文献   

4.
The evolution from Late Cretaceous to early Eocene of the well dated Amiran foreland basin in the NW Iranian Zagros Mountains is studied based on the reconstruction of successive thickness, palaeobathymetry and subsidence maps. These maps show the progressive forelandwards migration of the mixed carbonate‐siliciclastic system associated with a decrease in creation of accommodation. Carbonate facies variations across the basin suggest a structural control on the carbonate distribution in the Amiran foreland basin, which has been used as initial constraint to study the control exerted by syndepositional folding in basin architecture and evolution by means of stratigraphic numerical modelling. Modelled results show that shallow bathymetries on top of growing folds enhance carbonate production and basin compartmentalization. As a consequence, coarse clastics become restricted to the internal parts of the basin and only the fine sediments can by‐pass the bathymetric highs generated by folding. Additionally, the development of extensive carbonate platforms on top of the anticlines favours the basinwards migration of the depositional system, which progrades farther with higher fold uplift rates. In this scenario, build‐ups on top of anticlines record its growth and can be used as a dating method. Extrapolation of presented modelling results into the Amiran foreland basin is in agreement with an early folding stage in the SE Lurestan area, between the Khorramabad and Kabir Kuh anticlines. This folding stage would enhance the development of carbonate platforms on top of the anticlines, the south‐westward migration of the system and eventually, the complete filling of the basin north of the Chenareh anticline at the end of the Cuisian. Incremental thickness maps are consistent with a thin (0.4–2 km) ophiolite complex in the source area of the Amiran basin.  相似文献   

5.
ABSTRACT Fluvial megafans chronicle the evolution of large mountainous drainage networks, providing a record of erosional denudation in adjacent mountain belts. An actualistic investigation of the development of fluvial megafans is presented here by comparing active fluvial megafans in the proximal foreland basin of the central Andes to Tertiary foreland‐basin deposits exposed in the interior of the mountain belt. Modern fluvial megafans of the Chaco Plain of southern Bolivia are large (5800–22 600 km2), fan‐shaped masses of dominantly sand and mud deposited by major transverse rivers (Rio Grande, Rio Parapeti, and Rio Pilcomayo) emanating from the central Andes. The rivers exit the mountain belt and debouch onto the low‐relief Chaco Plain at fixed points along the mountain front. On each fluvial megafan, the presently active channel is straight in plan view and dominated by deposition of mid‐channel and bank‐attached sand bars. Overbank areas are characterized by crevasse‐splay and paludal deposition with minor soil development. However, overbank areas also contain numerous relicts of recently abandoned divergent channels, suggesting a long‐term distributary drainage pattern and frequent channel avulsions. The position of the primary channel on each megafan is highly unstable over short time scales. Fluvial megafans of the Chaco Plain provide a modern analogue for a coarsening‐upward, > 2‐km‐thick succession of Tertiary strata exposed along the Camargo syncline in the Eastern Cordillera of the central Andean fold‐thrust belt, about 200 km west of the modern megafans. Lithofacies of the mid‐Tertiary Camargo Formation include: (1) large channel and small channel deposits interpreted, respectively, as the main river stem on the proximal megafan and distributary channels on the distal megafan; and (2) crevasse‐splay, paludal and palaeosol deposits attributed to sedimentation in overbank areas. A reversal in palaeocurrents in the lowermost Camargo succession and an overall upward coarsening and thickening trend are best explained by progradation of a fluvial megafan during eastward advance of the fold‐thrust belt. In addition, the present‐day drainage network in this area of the Eastern Cordillera is focused into a single outlet point that coincides with the location of the coarsest and thickest strata of the Camargo succession. Thus, the modern drainage network may be inherited from an ancestral mid‐Tertiary drainage network. Persistence and expansion of Andean drainage networks provides the basis for a geometric model of the evolution of drainage networks in advancing fold‐thrust belts and the origin and development of fluvial megafans. The model suggests that fluvial megafans may only develop once a drainage network has reached a particular size, roughly 104 km2– a value based on a review of active fluvial megafans that would be affected by the tectonic, climatic and geomorphologic processes operating in a given mountain belt. Furthermore, once a drainage network has achieved this critical size, the river may have sufficient stream power to prove relatively insensitive to possible geometric changes imparted by growing frontal structures in the fold‐thrust belt.  相似文献   

6.
A central question in structural geology is whether, and by what mechanism, active faults (and the folds often associated with them) grow in length as they accumulate displacement. An obstacle in our understanding of these processes is the lack of examples in which the lateral growth of active structures can be demonstrated definitively, as geomorphic indicators of lateral propagation are often difficult, or even impossible to distinguish from the effects of varying lithology or non‐uniform displacement and slip histories. In this paper we examine, using the Zagros mountains of southern Iran as our example, the extent to which qualitative analysis of satellite imagery and digital topography can yield insight into the growth, lateral propagation, and interaction of individual fold segments in regions of active continental shortening. The Zagros fold‐and‐thrust belt contains spectacular whaleback anticlines that are well exposed in resistant Tertiary and Mesozoic limestone, are often >100 km in length, and which contain a large proportion of the global hydrocarbon reserves. In one example, Kuh‐e Handun, where an anticline is mantled by soft Miocene sediments, direct evidence of lateral fold propagation is recorded in remnants of consequent drainage patterns on the fold flanks that do not correspond to the present‐day topography. We suggest that in most other cases, the soft Miocene and Pliocene sediments that originally mantled the folds, and which would have recorded early stages in the growth histories, have been completely stripped away, thus removing any direct geomorphic evidence of lateral propagation. However, many of the long fold chains of the Zagros do appear to be formed from numerous segments that have coalesced. If our interpretations are correct, the merger of individual fold segments that have grown in length is a major control on the development of through‐going drainage and sedimentation patterns in the Zagros, and may be an important process in other regions of crustal shortening as well. Abundant earthquakes in the Zagros show that large seismogenic thrust faults must be present at depth, but these faults rarely reach the Earth's surface, and their relationship to the surface folding is not well constrained. The individual fold segments that we identify are typically 20–40 km in length, which correlates well with the maximum length of the seismogenic basement faults suggested from the largest observed thrusting earthquakes. This correlation between the lengths of individual fold segments and the lengths of seismogenic faults at depth suggest that it is possible, at least in some cases, that there may be a direct relationship between folding and faulting in the Zagros, with individual fold segments underlain by discrete thrusts.  相似文献   

7.
The thickness and distribution of early syn‐rift deposits record the evolution of structures accommodating the earliest phases of continental extension. However, our understanding of the detailed tectono‐sedimentary evolution of these deposits is poor, because in the subsurface, they are often deeply buried and below seismic resolution and sparsely sampled by borehole data. Furthermore, early syn‐rift deposits are typically poorly exposed in the field, being buried beneath thick, late syn‐rift and post‐rift deposits. To improve our understanding of the tectono‐sedimentary development of early syn‐rift strata during the initial stages of rifting, we examined quasi‐3D exposures in the Abura Graben, Suez Rift, Egypt. During the earliest stage of extension, forced folding above blind normal fault segments, rather than half‐graben formation adjacent to surface‐breaking faults, controlled rift physiography, accommodation development and the stratigraphic architecture of non‐marine, early syn‐rift deposits. Fluvial systems incised into underlying pre‐rift deposits and were structurally focused in the axis of the embryonic depocentre, which, at this time, was characterized by a fold‐bound syncline rather than a fault‐bound half graben. During this earliest phase of extension, sediment was sourced from the rift shoulder some 3 km to the NE of the depocentre, rather than from the crests of the flanking, intra‐basin extensional forced folds. Fault‐driven subsidence, perhaps augmented by a eustatic sea‐level rise, resulted in basin deepening and the deposition of a series of fluvial‐dominated mouth bars, which, like the preceding fluvial systems, were structurally pinned within the axis of the growing depocentre, which was still bound by extensional forced folds rather than faults. The extensional forced folds were eventually locally breached by surface‐breaking faults, resulting in the establishment of a half graben, basin deepening and the deposition of shallow marine sandstone and fan‐delta conglomerates. Because growth folding and faulting were coeval along‐strike, syn‐rift stratal units deposited at this time show a highly variable along‐strike stratigraphic architecture, locally thinning towards the growth fold but, only a few kilometres along‐strike, thickening towards the surface‐breaking fault. Despite displaying the classic early syn‐rift stratigraphic motif recording net upward‐deepening, extensional forced folding rather than surface faulting played a key role in controlling basin physiography, accommodation development, and syn‐rift stratal architecture and facies development during the early stages of extension. This structural and stratigraphic observations required to make this interpretation are relatively subtle and may go unrecognized in low‐resolution subsurface data sets.  相似文献   

8.
Along‐strike structural linkage and interaction between faults is common in various compressional settings worldwide. Understanding the kinematic history of fault interaction processes can provide important constraints on the geometry and evolution of the lateral growth of segmented faults in the fold‐and‐thrust belts, which are important to seismic hazard assessment and hydrocarbon trap development. In this study, we study lateral structural geometry (fault displacement and horizon shortening) of thrust fault linkages and interactions along the Qiongxi anticline in the western Sichuan foreland basin, China, using a high‐resolution 3D seismic reflection dataset. Seismic interpretation suggests that the Qiongxi anticline can be related to three west‐dipping, hard‐linked thrust fault segments that sole onto a regional shallow detachment. Results reveal that the lateral linkage of fault segments limited their development, affecting the along‐strike fault displacement distributions. A deficit between shortening and displacement is observed to increase in linkage zones where complex structural processes occur, such as fault surface bifurcation and secondary faulting, demonstrating the effect of fault linkage process on structural deformation within a thrust array. The distribution of the geometrical characteristics shows that thrust fault development in the area can be described by both the isolated fault model and the coherent fault model. Our measurements show that new fault surfaces bifurcate from the main thrust ramp, which influences both strain distribution in the relay zone and along‐strike fault slip distribution. This work fully describes the geometric and kinematic characteristics of lateral thrust fault linkage, and may provide insights into seismic interpretation strategies in other complex fault transfer zones.  相似文献   

9.
The Turkana rifted zone in northern Kenya is a long‐lived and polyphased rift system where the lack of well‐marked rift morphology makes it difficult to identify the zone of active deformation. A high‐density river network is exceptionally well developed over the study area and shows evidence of drainage anomalies that suggest recent fault‐induced movements at various scales. Correlation of surface drainage anomalies with Landsat remote sensing and deep seismic reflection data permits to characterize the deep geometry of the inferred fault structures. Seismic stratigraphy further allows distinction between the inherited (Oligocene–Pliocene) and the newly formed (<3.7 Ma) origin of the recent deformation. Evidence for neotectonics are observed (1) along a large‐scale transverse (EW) fault rooted at depth along a steep basement discontinuity (Turkwell), (2) along a rift‐parallel (NS) fault zone probably emplaced during the Pliocene–Pleistocene and currently bounding the Napedet volcanic plateau to the west and (3) over a round‐shaped uplifted zone caused by positive inversion tectonics (Kalabata). The major contribution of this work is the recognition of a broad (80 km wide) zone of recent/active extensional deformation in the Turkana Rift in contrast with the narrow (20 km wide) N10°E‐trending axial trough forming the Suguta valley to the south, and the Chew Bahir faulted basin to the north. These along‐strike variations in structural style are partly controlled by the occurrence of rejuvenated Oligocene–Miocene rift faults and long‐lived transverse discontinuities in the Turkana Rift area. More generally, this study has implications for the use of river drainage network about recent/active extensional domains with subdued topography and slow deformation rate.  相似文献   

10.
In order to better understand the development of thrust fault‐related folds, a 3D forward numerical model has been developed to investigate the effects that lateral slip distribution and propagation rate have on the fold geometry of pre‐ and syn‐tectonic strata. We consider a fault‐propagation fold in which the fault propagates upwards from a basal decollement and along‐strike normal to transport direction. Over a 1 Ma runtime, the fault reaches a maximum length of 10 km and accumulates a maximum displacement of 1 km. Deformation ahead of the propagating fault tip is modelled using trishear kinematics while backlimb deformation is modelled using kink‐band migration. The applicability of two different lateral slip distributions, namely linear‐taper and block‐taper, are firstly tested using a constant lateral propagation rate. A block‐taper slip distribution replicates the geometry of natural fold‐thrusts better and is then used to test the sensitivity of thrust‐fold morphology to varied propagation rates in a set of fault‐propagation folds that have identical final displacement to length (Dmax/Lmax) ratios. Two stratigraphic settings are considered: a model in which background sedimentation rates are high and no topography develops, and a model in which a topographic high develops above the growing fold and local erosion, transport and deposition occur. If the lateral propagation rate is rapid (or geologically instantaneous), the fault tips quickly become pinned as the fault reaches its maximum lateral extent (10 km), after which displacement accumulates. In both stratigraphic settings, this leads to strike‐parallel rotation of the syn‐tectonic strata near the fault tips; high sedimentation rates relative to rates of uplift result in along‐strike thinning over the structural high, while low sedimentation rates result in pinchout against it. In contrast, slower lateral propagation rates (i.e. up to one order of magnitude greater than slip rate) lead to the development of along‐strike growth triangles when sedimentation rates are high, whereas when sedimentation rates are low, offflap geometries result. Overall we find that the most rapid lateral propagation rates produce the most realistic geometries. In both settings, time‐equivalent units display both nongrowth and growth stratal geometries along‐strike and the transition from growth to nongrowth has the potential to delineate the time of fault/fold growth at a given location. This work highlights the importance of lateral fault‐propagation and fault tip pinning on fault and fold growth in three dimensions and the complex syn‐tectonic geometries that can result.  相似文献   

11.
The Zagros fold and thrust belt is a seismically active orogen that has accommodated the N–S shortening between the Arabian and Eurasian plates since the Miocene. Whereas the southeast parts of the belt have been studied in detail, the northwest extent has received considerably less attention, being part of the Republic of Iraq. In this study, we investigate fold growth in the area NE of Erbil (Kurdistan, Iraq). In particular, we focus on the interaction of the transient development of drainage patterns along growing antiforms, as this directly reflects the kinematics of progressive fold growth. Detailed geomorphological studies of the Bana Bawi‐, Permam‐ and Safeen‐fold trains show that these anticlines did not develop from a single embryonic fold but by lateral linkage of several different fold segments. These segments, with length between 5 and 25 km, have been detected by mapping ancient and modern river courses; these initially cut the nose of growing folds until eventually defeated, leaving curved wind gaps behind. Depending on the alignment of the initial embryonic folds, the segments can either record a linear‐ or an en‐echelon linkage. Comparison of natural examples from the Zagros fold and thrust belt in Iraq with published numerically modelled fold growth suggests that both linear‐linkage and en‐echelon linkage are mechanically feasible and are common processes during progressive shortening and fold growth.  相似文献   

12.
A transition from supradetachment to rift basin signature is recorded in the ~1,500 m thick succession of continental to shallow marine conglomerates, mixed carbonate‐siliciclastic shallow marine sediments and carbonate ramp deposits preserved in the Bandar Jissah Basin, located southeast of Muscat in the Sultanate of Oman. During deposition, isostatically‐driven uplift rotated the underlying Banurama Detachment and basin fill ~45° before both were cut by the steep Wadi Kabir Fault as the basin progressed to a rift‐style bathymetry that controlled sedimentary facies belts and growth packages. The upper Paleocene to lower Eocene Jafnayn Formation was deposited in a supradetachment basin controlled by the Banurama Detachment. Alluvial fan conglomerates sourced from the Semail Ophiolite and the Saih Hatat window overlie the ophiolitic substrate and display sedimentary transport directions parallel to tectonic transport in the Banurama Detachment. The continental strata grade into braidplain, mouth bar, shoreface and carbonate ramp deposits. Subsequent detachment‐related folding of the basin during deposition of the Eocene Rusayl and lower Seeb formations marks the early transition towards a rift‐style basin setting. The folding, which caused drainage diversion and is affiliated with sedimentary growth packages, coincided with uplift‐isostasy as the Banurama Detachment was abandoned and the steeper Marina, Yiti Beach and Wadi Kabir faults were activated. The upper Seeb Formation records the late transition to rift‐style basin phase, with fault‐controlled sedimentary growth packages and facies distributions. A predominance of carbonates over siliciclastic sediments resulted from increasing near‐fault accommodation, complemented by reduced sedimentary input from upland catchments. Hence, facies distributions in the Bandar Jissah Basin reflect the progression from detachment to rift‐style tectonics, adding to the understanding of post‐orogenic extensional basin systems.  相似文献   

13.
Interactions of growing folds and coeval depositional systems   总被引:7,自引:0,他引:7  
Responses of both modern and ancient fluvial depositional systems to growing folds can be interpreted in terms of interactions among competing controlling variables which can be incorporated into simple conceptual models. The ratio of the rate of sediment accumulation to the rate of structural uplift determines whether a fold develops a topographic expression above local base level. The balance between (a) stream power and rates of upstream deposition vs. (b) bedrock resistance and rates of crestal uplift and of fold widening determines whether an antecedent stream maintains its course or is defeated by a growing structure. Modern drainage configurations in actively folding landscapes can often be interpreted in terms of these competing variables, and through analysis of digital topography, detailed topographic characteristics of these folds can be quantified. Modern examples of growing folds display both defeated and persistent antecedent rivers, deflected drainages and laterally propagating structures. The topography associated with a defeated antecedent river at Wheeler Ridge, California, is consistent with a model in which defeat results from forced aggradation in the piggyback basin, without the need to vary discharge or uplift rate. Reconstruction of the long-term interplay between a depositional system and evolving folds requires a stratigraphic perspective, such as that provided by syntectonic strata which are directly juxtaposed with ancient folds and faults. Analysis of Palaeogene growth strata bounding the Catalan Coastal Ranges of NE Spain demonstrates the synchronous growth and the kinematic history of multiple folds and faults in the proximal foreland basin. Although dominated by transverse rivers which crossed fold crests, palaeovalleys, interfan lows, structural re-entrants and saddles, and rising anticlines diverted flow and influenced local deposition. In the ancient record, drainage-network events, such as avulsion or defeat of a transverse stream, usually cannot be unambiguously attributed to a single cause. Examination of ancient syntectonic strata from a geomorphological perspective, however, permits successive reconstructions of synorogenic topography, landscapes and depositional systems.  相似文献   

14.
The Dzereg Basin is an actively evolving intracontinental basin in the Altai region of western Mongolia. The basin is sandwiched between two transpressional ranges, which occur at the termination zones of two regional‐scale dextral strike‐slip fault systems. The basin contains distinct Upper Mesozoic and Cenozoic stratigraphic sequences that are separated by an angular unconformity, which represents a regionally correlative peneplanation surface. Mesozoic strata are characterized by northwest and south–southeast‐derived thick clast‐supported conglomerates (Jurassic) overlain by fine‐grained lacustrine and alluvial deposits containing few fluvial channels (Cretaceous). Cenozoic deposits consist of dominantly alluvial fan and fluvial sediments shed from adjacent mountain ranges during the Oligocene–Holocene. The basin is still receiving sediment today, but is actively deforming and closing. Outwardly propagating thrust faults bound the ranges, whereas within the basin, active folding and thrusting occurs within two marginal deforming belts. Consequently, active fan deposition has shifted towards the basin centre with time, and previously deposited sediment has been uplifted, eroded and redeposited, leading to complex facies architecture. The geometry of folds and faults within the basin and the distribution of Mesozoic sediments suggest that the basin formed as a series of extensional half‐grabens in the Jurassic–Cretaceous which have been transpressionally reactivated by normal fault inversion in the Tertiary. Other clastic basins in the region may therefore also be inherited Mesozoic depocentres. The Dzereg Basin is a world class laboratory for studying competing processes of uplift, deformation, erosion, sedimentation and depocentre migration in an actively forming intracontinental transpressional basin.  相似文献   

15.
ABSTRACT This contribution deals with the External Sierras and a part of the foreland Ebro Basin related to the southern Pyrenean thrust front. The structure of the External Sierras consists of a south‐verging thrust system developed from middle Eocene to early Miocene times. Since the end of the early Oligocene, a regional‐scale detachment anticline (the Santo Domingo anticline) developed, folding the original thrust system and creating new thrust units. The molassic fill in this part of the Ebro Basin (Uncastillo Formation) mainly corresponds to an extensive, composite distributary fluvial system, termed the Luna system, which drained the uplifted Gavarnie Unit to the north. Small, marginal alluvial fans originated along the External Sierras and coalesced in the proximal‐middle portions of the Luna system. Three tecto‐sedimentary units (TSU), late Oligocene to early Miocene in age, comprise the Uncastillo Formation. Lateral relationships and areal distribution of lithofacies through time have been used to establish sedimentary models for the marginal alluvial fans and the Luna fluvial system. Their sedimentary evolution was controlled by tectonics affecting the drainage basins, and based on mapping and stratigraphic relationships of the TSU, the temporal succession of the marginal alluvial fans and their relationships with each thrust system in the south Pyrenean front can be shown. Alluvial fan formation evolved through time from west to east, in accord with the progressive eastward growth of the Santo Domingo anticline as a conical fold. The fluvial network of the Luna system appears to have been mainly radial, but near the basin margin its architecture was influenced by the syndepositional Fuencalderas and Uncastillo anticlines developed within the Ebro Basin. These low‐amplitude folds originated by layer‐parallel shearing caused by rotation of the southern flank of the Santo Domingo anticline. Progressive uplift of these anticlines constrained part of the fluvial discharge to synclinal areas parallel to the basin margin; these areas where characterized by meandering sandy channels. At the peripheral tips of the anticlines the channel system flowed basinward.  相似文献   

16.
Although fault growth is an important control on drainage development in modern rifts, such links are difficult to establish in ancient basins. To understand how the growth and interaction of normal fault segments controls stratigraphic patterns, we investigate the response of a coarse-grained delta system to evolution of a fault array in a Miocene half-graben basin, Suez rift. The early Miocene Alaqa delta complex comprises a vertically stacked set of footwall-sourced Gilbert deltas located in the immediate hangingwall of the rift border fault, adjacent to a major intrabasinal relay zone. Sedimentological and stratigraphic studies, in combination with structural analysis of the basin-bounding fault system, permit reconstruction of the architecture, dispersal patterns and evolution of proximal Gilbert delta systems in relation to the growth and interaction of normal fault segments. Structural geometries demonstrate that fault-related folds developed along the basin margin above upward and laterally propagating normal faults during the early stages of extension. Palaeocurrent data indicate that the delta complex formed a point-sourced depositional system developed at the intersection of two normal fault segments. Gilbert deltas prograded transverse into the basin and laterally parallel to faults. Development of the transverse delta complex is proposed to be a function of its location adjacent to an evolving zone of fault overlap, together with focusing of dispersal between adjacent fault segments growing towards each other. Growth strata onlap and converge onto the monoclinal fold limbs indicating that these structures formed evolving structural topography. During fold growth, Gilbert deltas prograded across the deforming fold surface, became progressively rotated and incorporated into fold limbs. Spatial variability of facies architecture is linked to along-strike variation in the style of fault/fold growth, and in particular variation in rates of crestal uplift and fold limb rotation. Our results clearly show that the growth and linkage of fault segments during fault array evolution has a fundamental control on patterns of sediment dispersal in rift basins.  相似文献   

17.
Fault throw gradients create transverse folding, and this can influence accommodation creation and sedimentary routing and infill patterns in extensional half-graben basin. The Fanja half-graben basin (Oman) offers an excellent outcrop of an alluvial fan succession displaying cyclical stacking and basin-scale growth-fold patterns. These unique conditions allow for an investigation of fault-timing and accommodation development related to fault-transverse folding. Our study combines geological mapping, structural analysis, sedimentary logging and correlation, and bulk mineralogical compositions. Mapping reveals that the basin is bounded by a regional-scale fault, with local depocentres changing position in response to transverse syncline and anticline development ascribed to fault-displacement gradients. The alluvial Qahlah Formation (Late Cretaceous) is unconformably overlying the Semail Ophiolite, and is in turn overlain by the marine Jafnayn Formation (Late Palaeocene). Facies and stratigraphic analysis allows for subdivision of the Qahlah Formation into four informal units, from base to top: (i) laterite in topographic depressions of the ophiolite, (ii) greenish pebbly sandstones, deriving from axially draining braided streams deposited in the low-relief half-graben basin. This green Qahlah grades vertically into the red Qahlah, formed by alluvial fanglomerates and floodplain mudstones, with drainage patterns changing from fault-transverse to fault-parallel with increasing distance to the main fault. The red Qahlah can be divided into (iii) the Wadi al Theepa member, found in a western basin depocentre, with higher immaturity and sand: mud ratio, suggesting a more proximal source, and (iv) the Al Batah member, located in the eastern part of the basin. The latter shows better sorting, a lower sand: mud ratio, and more prominent graded sub-units. It also shows eastward expansion from an orthogonal monocline, ascribed to accommodation developed in a relay ramp. Changes in sedimentary facies and depositional patterns are consistent with differential mineralogical composition. The Green Qahlah is composed of quartz and lithic mafic rock fragments, sourced from the ophiolite and schists of the metamorphic basement. The Red Qahlah is composed of chert and kaolinite sourced from the Hawasina Nappe succession in the footwall of the master fault. These changes in source area are linked to unroofing of fault-footwalls and domal structures during the extensional collapse of the Semail Ophiolite. The novelty of this study resides in linking sedimentology and fault-displacement events controlling fault-perpendicular folding, and its influence on depocentre generation and stratigraphic architecture. This is an approach seldom considered in seismic analysis, and rarely analysed in outcrop studies, thus placing the results from this study among the key outcrop-based contributions to the field.  相似文献   

18.
Through the investigation of crustal heterogeneities, sedimentary basin architecture and seismic stratigraphy, we demonstrate how a crust‐scale anisotropy controls the initiation of rifting and the subsequent structural and sedimentological evolution of the Mesozoic Gamtoos Basin, southern South Africa. The results demonstrate that the >90‐km‐long Gamtoos Fault established its length very early in its syn‐rift phase (within ~5 Ma of rift initiation) before accruing over 6 s (two‐way‐travel time (TWT)), or >12 km, of displacement without any significant subsequent increase in length. In addition, there is no evidence at the resolution of the data of fault segmentation, isolated depocentres nor of intra‐basin faults progressively coalescing during the syn‐rift interval. The early establishment of length resulted in a rapid transition from a terrestrial depositional environment to anoxic, deep marine conditions. The Gamtoos Fault has a 90° bend in the fault trace that we propose is inherited from the underlying structure. Immediately adjacent to the bend the basin‐fill is significantly deformed and a high‐amplitude (>1.7s TWT) monoclinal fold is observed. Previous workers proposed that the fold was a consequence of a complex interplay between compression and extension. Through a restoration of the basin‐fill deformation we produce a model that suggests that the fold is a consequence of the accommodation of extension by the unusual plan‐view trace of the fault. The evolution of the basin does not conform to current fault growth models and it is proposed that its unusual and complex development can be attributed to the underlying crustal‐scale anisotropy, a fact that is likely to be important in other areas in which crustal stretching is superimposed on heterogeneous continental crust.  相似文献   

19.
Alvarez 《Basin Research》1999,11(3):267-284
Anticlinal ridges of the actively deforming Umbria–Marche Apennines fold-thrust belt are transected by deep gorges, accommodating a drainage pattern which almost completely ignores the presence of pronounced anticlinal mountains. Because the region was below sea level until the folds began to form, simple antecedence cannot explain these transverse canyons. In addition, the fold belt is too young for there to have been a flat-lying cover from which the rivers could have been superposed.
In 1978, Mazzanti & Trevisan proposed an explanation for these gorges which deserves wider recognition. They suggested that the Apennine fold ridges emerged from the sea in sequence, with the erosional debris from each ridge piling up against the next incipient ridge to emerge, gradually extending the coastal plain seaward. The new coastal plain adjacent to each incipient anticline provided a flat surface on which a newly elongated river could cross the fold, positioning it to cut a gorge as the fold grew. Their mechanism is thus a combination of antecedence and superposition in which folds, overlying sedimentary cover and downstream elongations of the rivers all form at the same time.
A study of Apennine drainage, using the sequence of older-to-younger transected Apennine folds as a proxy for the historical evolution of drainage cutting through a single fold, shows that transverse drainage forms when sedimentation dominates at the advancing coastline. Longitudinal drainage forms when uplift dominates, the folds first emerge as offshore islands and the Mazzanti–Trevisan mechanism is suppressed.
Complicating factors include several departures from steady-state growth of the fold-thrust belt, a possible case of precursory submarine drainage, early emergence of anticlinal culminations and the location of several transverse canyons at the structurally highest point along anticlinal axes.  相似文献   

20.
Extensional fault‐propagation folds are now recognised as being an important part of basin structure and development. They have a very distinctive expression, often presenting an upward‐widening monocline, which is subsequently breached by an underlying, propagating fault. Growth strata, if present, are thought to provide a crucial insight into the manner in which such structures grow in space and time. However, interpreting their stratigraphic signal is neither straightforward nor unique. Both analogue and numerical models can provide some insight into fold growth. In particular, the trishear kinematic model has been widely adopted to explain many aspects of the evolution and geometry of such fault‐propagation folds. However, in some cases the materials/rheologies used to represent the cover do not reproduce the key geometric/stratigraphic features of such folds seen in nature. This appears to arise from such studies not addressing adequately the very heterogenous mechanical stratigraphy seen in many sedimentary covers. In particular, flexural slip between beds/layers is often not explicitly modelled but, paradoxically, it appears to be an important deformation mechanism operative in such settings. Here, I present a 2D discrete element model of extensional fault‐propagation folding which explicitly includes flexural slip between predefined sedimentary units or layers in the cover. The model also includes growth strata and shows how they may reflect the various evolutionary stages of fold and fault growth. When flexural slip is included in the modelling scheme, the resultant breached monoclines and their growth strata are strikingly similar to some of those seen in nature. Results are also compared with those obtained using simple, homogeneous, frictional‐cohesive and elastic cover materials. Both un‐lithified and lithified growth strata are considered and clearly show that, rather than just being passive recorders of structural evolution, growth strata can themselves have an important effect on fault‐related fold growth. Implications for the evolution of and strain within, the resultant growth structures are discussed. A final focus of this study is the relationship that trishear might have with the upward‐widening zone of flexural slip activation away from a fault tip singularity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号