首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
在研究区已发表的渐新统资料的基础上,分析了青藏高原渐新世残留盆地的构造背景、岩石地层序列,并对青藏高原渐新世构造岩相古地理特征进行了讨论,该时期总体地势格局仍为东高西低,塔里木、柴达木、羌塘、可可西里、成都等地区主体表现为大面积的压陷湖盆沉积,冈底斯、喜马拉雅和喀喇昆仑等大面积隆升,沿雅鲁藏布江自东向西的古雅江河形成。渐新世构造岩相古地理的演化特征揭示出该时期青藏高原及邻区构造隆升与沉积响应的耦合关系,划分出2个强隆升期,分别是强隆升期A(34~30Ma)和强隆升期B(25~23Ma)。  相似文献   

2.
在系统分析青藏高原新生代98个残留盆地类型、形成构造背景、岩石地层序列的基础上, 对青藏高原古新世—始新世、渐新世、中新世及上新世构造岩相古地理演化特征进行了讨论: (1)古新世—始新世: 松潘—甘孜和冈底斯带为大面积构造隆起蚀源区.塔里木东部、柴达木、羌塘、可可西里地区主体表现为大面积的构造压陷湖盆-冲泛平原沉积.高原西部和南部为新特提斯海.(2)渐新世: 冈底斯—喜马拉雅和喀喇昆仑大范围沉积缺失, 指示上述地区大面积隆升.沿雅江自东向西古河形成(大竹卡砾岩).西昆仑和松潘—甘孜地区仍为隆起蚀源区.塔里木、柴达木、羌塘、可可西里地区主体表现为大面积构造压陷湖盆沉积.塔里木西南部为压陷盆地滨浅海沉积.渐新世末塔里木海相沉积结束.(3)中新世: 约23 Ma时高原及周边不整合面广布, 标志高原整体隆升.塔里木、柴达木及西宁—兰州、羌塘、可可西里等地区主体表现为大面积的构造压陷湖盆沉积; 约18~13 Ma高原及周边出现中新世最大湖泊扩张期.约13~10 Ma期间, 藏南南北向断陷盆地形成, 是高原隆升到足够高度开始垮塌的标志.(4)上新世: 除可可西里—羌塘、塔里木、柴达木等少数大型湖盆外, 大部分地区为隆起剥蚀区.由于上新世的持续隆升和强烈的断裂活动, 使大型盆地的基底抬升被分割为小盆地, 湖相沉积显著萎缩, 进入巨砾岩堆积期, 是高原整体隆升的响应.高原从古近纪的东高西低格局, 经历了新近纪全区的不均衡隆升和坳陷, 最终铸就了西高东低的地貌格局, 青藏作为一个统一的高原发生了重大的地貌反转事件.   相似文献   

3.
系统分析青藏高原新生代中新世50余个沉积盆地的类型、构造背景、岩石地层序列,对青藏高原中新世构造岩相古地理演化特征进行分析和探讨。中新世,青藏高原海相沉积已经全面退出,全部转为陆相沉积,约23Ma时高原及周边不整合面广布,标志高原整体隆升。塔里木、柴达木及西宁-兰州、羌塘、可可西里等地区主体表现为大面积的构造压陷湖盆沉积。约17.2Ma左右,阿尔金山显著隆升,使柴达木盆地西叉沟一带再无生物礁灰岩出现,且在盆地西部出现了短暂的沉积间断。这一时期,柴达木盆地西部开始进入湖退期,而东南部则快速湖进;同时,大约17.7Ma索尔库里山间盆地初始凹陷形成。另外,高原腹地五道梁-沱沱河盆地受南部唐古拉山的挤压抬升,在16Ma左右结束了五道梁组的沉积,在可可西里—唢呐湖一带则再次凹陷接受唢呐湖组沉积,形成高原腹地的大型压陷湖盆。13~10Ma期间,藏南南北向断陷盆地的形成,是高原隆升到足够高度开始垮塌的标志;约8Ma以来,高原东北部几乎所有湖盆均进入湖退期,普遍出现冲积扇、辫状河和水下扇砂砾岩堆积。  相似文献   

4.
位于青藏高原东北缘的西宁、贵德盆地的新生代沉积序列较完整的记录了盆地周围物源区构造变形过程。重矿物是碎屑物质的重要组成部分,是最直观、有效揭示源区母岩、构造-沉积过程的重要手段。通过重矿物的系统分析,结合沉积-构造变形,揭示出始新世-上新世末西宁-贵得盆地及其源区经历了几个构造活动阶段:古新世-始新世早期的隆升阶段、始新世中期-渐新世晚期的构造稳定阶段、渐新世末-中新世初的构造隆升阶段、中中新世构造稳定阶段和晚中新世以来的强烈隆升阶段。并结合特征矿物(绿泥石)及古水流分析,推断古近纪西宁-贵德盆地是东昆仑山前一个统一盆地。中新世早期青藏高原的扩张导致了拉脊山开始隆起,使原型盆地解体;约8.5 Ma以来拉脊山强烈隆升,两侧盆地逐渐转变为山间盆地。这为正确理解青藏高原东北缘盆山格局的形成和演化提供了重要依据。  相似文献   

5.
位于羌塘地体与拉萨地体之间的尼玛盆地包含有青藏高原演化过程中重要的沉积记录,恢复该地区的古地理特征及讨论其构造演化过程,具有重要地质意义。尼玛盆地南部古近系由古新世-始新世牛堡组与渐新世丁青湖组构成,主体为一套扇三角洲相与湖泊相碎屑沉积建造。采用沉积学、年代学方法,对该盆地南部古近系查昂巴剖面进行沉积特征、碎屑锆石U-Pb年代学及古地理研究,以确定其物源区,并分析构造作用对盆地的改造过程。从牛堡组到丁青湖组,稳定碎屑组分逐渐减少而不稳定组分增加,显示古近纪时盆地沉积过程中受到构造活动影响;碎屑锆石U-Pb年龄中存在36~70 Ma,100~130 Ma,500~550 Ma,750~900 Ma,1800~1900 Ma及~2500 Ma等年龄峰值。碎屑岩组分、锆石年龄特征及其他分析显示,拉萨地体、羌塘地体及缝合带内的逆冲带为其物源区,存在多向物源。在古近纪碰撞、挤压的构造条件下,伴随着地壳缩短、逆冲断层及造山系统的活动,尼玛盆地南部演化为一个受构造活动控制的独立沉积中心;挤压及逆冲变形决定了其古地理特征,沉积过程及物源与区域隆升、剥蚀活动联系密切。  相似文献   

6.
梁承华  徐先兵  李启铭  桂林  汤帅 《地球科学》2019,44(5):1761-1772
华南中-新生代构造演化受太平洋构造域和特提斯洋构造域的联合控制.以江南东段NE-SW向景德镇-歙县剪切带和球川-萧山断裂中发育的脆性断层为研究对象,利用野外交切关系和断层滑移矢量反演方法厘定了7期构造变形序列并反演了各期古构造应力场,讨论了断层活动的时代及其动力学.白垩纪至新生代研究区7期古构造应力场分别为:(1)早白垩世早期(136~125Ma)NW-SE向伸展;(2)早白垩世晚期(125~107Ma)N-S向挤压和E-W向伸展;(3)早白垩世末期至晚白垩世早期(105~86Ma)NW-SE向伸展;(4)白垩世中期(86~80Ma)NW-SE向挤压和NE-SW向伸展;(5)晚白垩世晚期至始新世末期(80~36Ma)N-S向伸展;(6)始新世末期至渐新世早期(36~30Ma)NE-SW向挤压和NW-SE向伸展;(7)渐新世早期至中新世中期(30~17Ma)NE-SW向伸展.结合区域地质研究表明,第1期至第4期古构造应力场与古太平洋构造域的板片后撤、俯冲以及微块体(菲律宾地块)间的碰撞作用有关;第5期伸展作用受控于新特提斯构造域俯冲板片后撤,而第6期和第7期古构造应力场主要与印-亚碰撞的远程效应有关.白垩纪至新生代,华南东部受伸展构造体制和走滑构造体制的交替控制.先存断裂的发育可能是导致华南晚中生代走滑构造体制的主要控制因素.  相似文献   

7.
中国大陆及邻区中生代—新生代大地构造与环境变迁   总被引:68,自引:12,他引:68  
万天丰  朱鸿 《现代地质》2002,16(2):107-120
在系统研究古地磁、周边板块的运动学特征、板内变形、构造应力场和沉积古地理资料的基础上 ,恢复了中国大陆及邻区中、新生代 6个时期的大地构造演化特征、构造古地理 ,并进而探讨了对环境变迁的影响。 6个时期的划分、构造特征及其古地理环境分别为 :印支期 (2 5 0~ 2 0 8Ma) ,NE -SW向缩短 ,中国大部分大陆完成拼合 ,南方以海为主 ,北方以陆地为主 ;燕山期 (2 0 8~ 135Ma) ,NW -SE向缩短 ,大陆地块逆时针旋转 2 0°~ 30° ,东部形成高地 ,西部为低地 ;四川期 (135~ 5 2Ma) ,NE -SW向缩短 ,以盆岭地形为主 ;华北期 (5 2~ 2 3 3Ma) ,太平洋板块第一次向西俯冲、挤压 ,中国东部形成 3条东西向山脉和 4个汇水盆地 ;喜马拉雅期 (2 3 3~ 0 78Ma) ,印度板块与欧亚大陆碰撞 ,青藏高原隆升 ,其他地块相对沉降 ;新构造期 (0 78Ma以来 ) ,周边各板块保持相对均衡状态 ,逐步构成现代地貌。研究表明 ,大地构造是古地理环境变化的主要控制因素。  相似文献   

8.
循化-化隆盆地新生代沉积及盆地基底和周缘山系磷灰石裂变径迹年代学分析揭示了青藏高原东北缘晚白垩世以来经历过3期隆升剥露事件: (1)盆地基底及拉脊山和西秦岭北缘构造带磷灰石裂变径迹年龄分析普遍记录了晚白垩世-始新世中期相对快速的区域性的隆升剥露事件, 西秦岭北缘快速抬升的起始时间为84Ma, 受控于向北的逆冲抬升; 向北到循化-化隆盆地中部的拉目峡抬升的起始时间为69Ma; 更北的拉脊山一带快速抬升期主要为40~50Ma, 从而反映晚白垩世-始新世中期的快速抬升由南向北逐渐扩展.这一期构造隆升事件导致循化-化隆盆地和临夏盆地缺失了北部西宁-民和盆地古近纪所具有的西宁群沉积.隆升剥露结束于31Ma左右, 此时化隆-循化盆地向东与同时期的临夏盆地相连为一个统一的大型西秦岭山前盆地, 两者具有相同的构造、沉积演化史, 因此循化-化隆盆地他拉组底部地层年龄最老不会超过临夏盆地最老地层的古地磁年龄, 即29Ma.(2)渐新世晚期约26Ma拉脊山开始双向逆冲隆升, 并可能延续到中新世早期约21Ma, 隆升作用使循化-化隆盆地成为挟持于拉脊山逆冲带和西秦岭构造带之间的山前挤压型前陆盆地, 循化-化隆盆地开始大规模沉积巨厚的他拉组冲积扇相粗碎屑岩.(3)通过循化-化隆盆地咸水河组和临夏组的沉积相分析、古流方向和砾石成分分析, 揭示出拉脊山构造带在中新世8Ma左右发生的最大规模的双向逆冲隆升事件, 这次事件直接导致循化-化隆盆地由前陆挤压盆地转变为山间盆地, 形成现今青藏高原东北缘的盆山地貌基本格局.   相似文献   

9.
贾丹  肖安成  唐永  吴磊  沈亚  徐波  吴占奎 《岩石学报》2013,29(8):2851-2858
阿尔金断裂是青藏高原最显著也是最重要的地质构造单元之一,其新生代起始活动时间的认定一直都是大家关注的热点,对研究高原的形成和应力传递均有着重要的意义.前人的研究成果证实阿尔金断裂新生代的开始活动时间大约在35.5Ma,在柴达木盆地其对应的沉积层位为下干柴沟组上段.本文以盆地内部近阿尔金断裂带的红柳泉-七个泉地区为例,开展了钻井约束下的三维地震资料属性提取及分析工作,并进行同期岩相古地理研究.结果表明在下干柴沟组上段从XG2时期起,研究区岩相古地理从深湖相开始分异,逐渐发育为控制岩性差异的同沉积水下隆起,这些隆起带渐次演化为与左旋剪切相关的雁列褶皱带,对应于与阿尔金早期隆升相关的构造演化过程.表明阿尔金断裂新生代活动的沉积响应最早在约40Ma开始,该方法对于和构造隆升相关的沉积记录识别比直接的地质学方法更为敏感.  相似文献   

10.
滇西新生代兰坪盆地和剑川盆地分别位于哀牢山–红河断裂带两侧,青藏高原东构造结内,其沉积过程和构造变形对青藏高原东南缘的构造演化有重要的启示意义。通过对这两个盆地古近纪沉积和构造过程的研究,我们发现兰坪盆地和剑川盆地及邻区的构造变形分为三期:始新世早期的强烈挤压变形、始新世中晚期的伸展变形、渐新世的走滑变形。始新世早期的挤压变形主要表现为兰坪地区的褶皱–冲断系统、哀牢山-红河断裂的逆冲活动和剑川盆地的宽缓褶皱。沉积方面,古新统勐野井组(E_1m)较为稳定的细粒滨湖相沉积转变为始新统宝相寺组(E_2b)较粗的具有前陆盆地性质的河流相沉积,特别是宝相寺组底部发育的一套快速堆积的磨拉石建造,可能是对始新世强烈挤压环境下的沉积响应。始新世中晚期伸展变形体现在盆地的构造环境由早期的挤压环境变为伸展环境和该时期大量富钾岩体和岩脉的侵入,沉积学上,下始新统宝相寺组的河流相转变为中始新统金丝厂组(E_2j)具有快速堆积磨拉石特征的曲流河沉积,极可能是对构造体制变革的沉积响应。渐新世的走滑变形则体现在渐新统的缺失和哀牢山–红河断裂的早期左行走滑。因此,我们认为剑川–兰坪地区在始新世中期和渐新世均发生了显著的运动学转换,这一认识也得到了始新世中期兰坪和剑川盆地物源明显变化的支持。结合青藏高原东南部始新世中晚期岩浆的活动,渐新世大型剪切带(崇山剪切带、高黎贡剪切带)的强烈走滑和保山块体的旋转,我们推测青藏高原东南缘古近纪的构造演化为古新世-始新世早期的挤压、始新世中晚期的伸展、渐新世的转换压缩。  相似文献   

11.
The thick, Eocene to Pliocene, sedimentary sequence in Qaidam Basin at the northern margin of the Tibetan Plateau records the surface uplift history of the northeastern Tibetan plateau. In this study, we present detailed geochemistry, heavy mineral, and clay mineralogy data of the well preserved sedimentary record in the Dahongou section in the northeast of the Qaidam Basin. The results suggest that the sedimentary sequence recorded a 30 Ma young uplift/unroofing event in the northern edge of the Qaidam Basin, which is characterized by high ZTR index value and chlorite content, and low CIW`. The results are consistent with previous sedimentological studies of the Qaidam Basin, which indicated rapid increase of the accumulation rates around 30 Ma. Based on past thermochronological data from the mountains around the Qaidam Basin and the accumulation rates of the Cenozoic basins in the northeastern Tibetan Plateau, we infer a regional uplift and denudation event along the northeastern Tibetan Plateau during early Oligocene (~30 Ma), indicating that the Tibetan Plateau had expanded north-eastward of the study area at that time.  相似文献   

12.
Early Cenozoic Tectonics of the Tibetan Plateau   总被引:1,自引:0,他引:1  
Geological mapping at a scale of 1:250000 coupled with related researches in recent years reveal well Early Cenozoic paleo-tectonic evolution of the Tibetan Plateau. Marine deposits and foraminifera assemblages indicate that the Tethys-Himalaya Ocean and the Southwest Tarim Sea existed in the south and north of the Tibetan Plateau, respectively, in Paleocene-Eocene. The paleooceanic plate between the Indian continental plate and the Lhasa block had been as wide as 900km at beginning of the Cenozoic Era. Late Paleocene transgressions of the paleo-sea led to the formation of paleo-bays in the southern Lhasa block. Northward subduction of the Tethys-Himalaya Oceanic Plate caused magma emplacement and volcanic eruptions of the Linzizong Group in 64.5-44.3 Ma, which formed the Paleocene-Eocene Gangdise Magmatic Arc in the north of Yalung-Zangbu Suture (YZS), accompanied by intensive thrust in the Lhasa, Qiangtang, Hoh Xil and Kunlun blocks. The Paleocene-Eocene depression of basins reached to a depth of 3500-4800 m along major thrust faults and 680-850 m along the boundary normal faults in central Tibetan Plateau, and the Paleocene-Eocene depression of the Tarim and Qaidam basins without evident contractions were only as deep as 300-580 m and 600-830 m, respectively, far away from central Tibetan Plateau. Low elevation plains formed in the southern continental margin of the Tethy-Himalaya Ocean, the central Tibet and the Tarim basin in Paleocene-Early Eocene. The Tibetan Plateau and Himalaya Mts. mainly uplifted after the Indian-Eurasian continental collision in Early-Middle Eocene.  相似文献   

13.
在前人研究成果的基础上,划分出青藏高原及邻区上新世残留盆地共95个,探讨了青藏高原及邻区上新世构造岩相古地理演化。青藏高原上新世总体构造地貌格局主要受控于印度板块与欧亚板块沿雅鲁藏布江缝合带的碰撞及持续挤压,影响着青藏高原广大范围内的构造抬升。东北部昆仑山、祁连山地区是两大构造隆起蚀源区,两大山系夹持的柴达木盆地是高原东北部最大的陆内盆地,祁连山以北和以东地区则以盆山相间的格局接受周围山系的剥蚀物质,直到晚上新世(青藏运动"A"幕)高原东北部进一步强烈隆升,山间盆地抬升成为剥蚀区。新疆塔里木和青藏高原东部羌塘、可可西里地区主体表现为大面积的构造压陷湖盆-冲泛平原沉积区。高原东南部为一系列走滑拉分断裂运动形成的拉分盆地,上新世早期堆积洪冲积相砾岩,中期为湖泊、三角洲沉积,晚期随着山体的进一步抬升,盆地又接受冲洪积扇相砾岩堆积,并被河流侵蚀剥露。高原南部上新世多分布一些近南北向盆地,是响应高原隆升到一定程度垮塌而成的断陷盆地,同东南部拉分盆地类似,上新世沉积相也由早至晚分为3个阶段。恒河地区上新世由于喜马拉雅山的快速抬升,沉积以粗碎屑为主,形成狭长的西瓦利克群堆积。上新世青藏高原总体地势继承了中新世西高东低、南高北低的地貌特征,但地势高差明显较中新世增大。  相似文献   

14.
We have studied the evolution of the tectonic lithofacies paleogeography of Paleocene–Eocene, Oligocene, Miocene, and Pliocene of the Qinghai–Tibet Plateau by compiling data regarding the type, tectonic setting, and lithostratigraphic sequence of 98 remnant basins in the plateau area. Our results can be summarized as follows. (1) The Paleocene to Eocene is characterized by uplift and erosion in the Songpan–Garzê and Gangdisê belts, depression (lakes and pluvial plains) in eastern Tarim, Qaidam, Qiangtang, and Hoh Xil, and the Neo-Tethys Sea in the western and southern Qinghai–Tibet Plateau. (2) The Oligocene is characterized by uplift in the Gangdisê–Himalaya and Karakorum regions (marked by the absence of sedimentation), fluvial transport (originating eastward and flowing westward) in the Brahmaputra region (marked by the deposition of Dazhuka conglomerate), uplift and erosion in western Kunlun and Songpan–Garzê, and depression (lakes) in the Tarim, Qaidam, Qiangtang, and Hoh Xil. The Oligocene is further characterized by depressional littoral and neritic basins in southwestern Tarim, with marine facies deposition ceasing at the end of the Oligocene. (3) For the Miocene, a widespread regional unconformity (ca. 23 Ma) in and adjacent to the plateau indicates comprehensive uplift of the plateau. This period is characterized by depressions (lakes) in the Tarim, Qaidam, Xining–Nanzhou, Qiangtang, and Hoh Xil. Lacustrine facies deposition expanded to peak in and adjacent to the plateau ca. 18–13 Ma, and north–south fault basins formed in southern Tibet ca. 13–10 Ma. All of these features indicate that the plateau uplifted to its peak and began to collapse. (4) Uplift and erosion occurred during the Pliocene in most parts of the plateau, except in the Hoh Xil–Qiangtang, Tarim, and Qaidam.  相似文献   

15.
通过青藏高原东缘甘孜地区7件砂岩磷灰石样品裂变径迹分析,取得了测试样品的表观年龄,运用模拟退火法对所有样品进行了热史模拟,获得了样品的热演化史;分析出甘孜地区在新生代古近纪以来经历了相似的构造演化过程,强构造隆升阶段分别发生在古近纪46~30 Ma间和新近记9 Ma以来,平均抬升速率和平均抬升量分别为1261 m/Ma、2634 m和388 m/Ma、1043 m;甘孜地区构造隆升具有不平衡性、阶段性、地区性差异,冷却速率、抬升速率和抬升幅度也存在偏差。  相似文献   

16.
The late Cenozoic sediments in the rift basins in the northern Himalaya Mountains document important information about the uplift and deformation of the most active tectonic region in the Tibetan Plateau. However, these sediments have not been precisely dated, hindering our ability to address the basin development and termination associated with a series of uplifts in the southern Tibetan Plateau. Here, we report a detailed magnetostratigraphic study on the fluvio - lacustrine sedimentary sequence of the Dati Formation bearing abundant Hipparion forstenae fossils in the Dati Basin in the northern frontal region of the Himalaya Mountains. The 195 m – thick section yielded six normal and seven reversed polarity zones that correlate well with Chrons C3An.1r to C4r.2r of the geomagnetic polarity time scale, constraining the section age to ~8.6 – ~6.2 Ma. Together with the magnetostratigraphic results from other rift basins in the region, these results indicate that the horizons bearing the Hipparion fossils were deposited during the age interval of 7.1–6.5 Ma in the northern Himalaya Mountains. The regional tectonic activity and comprehensive magnetostratigraphic and sedimentologic comparisons suggest that the evolution of the rift basins in the northern Himalaya Mountains has involved three major stages since the late Cenozoic, i.e., (1) ~10.0–8.0 Ma, onset of the basins with fan delta facies; (2) ~8.0–3.0 Ma, expansion of the basins with mainly lacustrine facies; (3) ~3.0–1.7 Ma, shrinking and termination of the basins with alluvial fans. The basin evolutionary history indicates an accelerated tectonic uplift of the Himalaya Mountains at ~10.0 Ma, and two deformational events at ~3.0 Ma and at ~1.7 Ma.  相似文献   

17.
青藏高原新生代隆升研究现状   总被引:5,自引:1,他引:4  
新生代青藏高原的隆升过程倍受世界关注。国内外学者从不同角度围绕青藏高原成为统一整体(印度-欧亚碰撞)的时限、隆升阶段性和空间差异性、青藏高原作为高海拔高原形成的时间、青藏高原隆升的动力机制等重大事件进行了深入的研究。对印度板块-欧亚板块的碰撞时间存在70Ma、65Ma、55Ma、50Ma、45Ma和40~34Ma等多种观点。印度板块与欧亚板块碰撞不是在某个时间点完成的,其碰撞持续时间约10~15Ma。碰撞方式存在由西向东迁移、由东向西迁移等多种观点。青藏高原的隆升过程具有强烈的时空差异性。青藏高原新生代隆升阶段存在多种划分方案,流行的有3阶段、4阶段和5阶段强隆升过程。青藏高原作为高海拔高原形成的时间可归纳为约3.6Ma以来、13~8Ma、26~20Ma、40~35Ma和55~45Ma 5类观点。青藏高原的形成机制模型存在较大分歧,流行的模式可分为碰撞、俯冲、挤出和拆沉-板片断离4类。青藏高原多阶段隆升及构造-岩浆演化造就了高原复杂多样的大陆成矿作用。高原隆升与环境和气候演变具耦合关系。  相似文献   

18.
碎屑组分变化是反映盆地物源演化历程的重要物质表现。路乐河地区作为柴达木盆地的重要组成部分,沉积地层记载着印度-欧亚板块碰撞以来青藏高原北缘造山带的构造隆升过程。高长石组分含量、物源方向及毗邻山脉岩性对比揭示,路乐河物源主要受南祁连和赛什腾山控制,其碎屑组分变化对毗邻造山带构造活动具有很好的耦合性。新生代53.5~2.9Ma期间,路乐河地区存在3次物源转换事件,发生时间依次同印度-欧亚板块碰撞及高原内部构造隆升事件相吻合。其中早期50.1~46.6Ma,南祁连山的快速抬升是对大陆初始碰撞的远程响应;44.5Ma,高原以垂向增生和推覆构造发育为特点,赛北断裂高速剥露,致使路乐河地区物源发生转变;渐新世末期(22.6Ma),青藏高原准同时整体隆升,赛什腾山和南祁连山协同为路乐河地区供给沉积物。所获认识为深入了解高原隆升演化和板块碰撞远程效应提供新的沉积依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号