首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Abstract

Changes to the Beaufort Sea shoreline occur due to the impact of storms and rising relative sea level. During the open‐water season (June to October), storm winds predominantly from the north‐west generate waves and storm surges which are effective in eroding thawing ice‐rich cliffs and causing overwash of gravel beaches. Climate change is expected to be enhanced in Arctic regions relative to the global mean and include accelerated sea‐level rise, more frequent extreme storm winds, more frequent and extreme storm surge flooding, decreased sea‐ice extent, more frequent and higher waves, and increased temperatures. We investigate historical records of wind speeds and directions, water levels, sea‐ice extent and temperature to identify variability in past forcing and use the Canadian Global Coupled Model ensembles 1 and 2 (CGCM1 and CGCM2) climate modelling results to develop a scenario forcing future change of Beaufort Sea shorelines. This scenario and future return periods of peak storm wind speeds and water levels likely indicate increased forcing of coastal change during the next century resulting in increased rates of cliff erosion and beach migration, and more extreme flooding.  相似文献   

2.
Assessing the Impact of Climate Change on the Great Lakes Shoreline Wetlands   总被引:12,自引:1,他引:11  
Great Lakes shoreline wetlands are adapted to a variable water supply. They require the disturbance of water level fluctuations to maintain their productivity. However, the magnitude and rate of climate change could alter the hydrology of the Great Lakes and affect wetland ecosystems. Wetlands would have to adjust to a new pattern of water level fluctuations; the timing, duration, and range of these fluctuations are critical to the wetland ecosystem response. Two "what if" scenarios: (1) an increased frequency and duration of low water levels and (2) a changed temporal distribution and amplitude of seasonal water levels were developed to assess the sensitivity of shoreline wetlands to climate change. Wetland functions and values such as wildlife, waterfowl and fish habitat, water quality, areal extent, and vegetation diversity are affected by these scenarios. Key wetlands are at risk, particularly those that are impeded from adapting to the new water level conditions by man-made structures or geomorphic conditions. Wetland remediation, protection and enhancement policies and programs must consider climate change as an additional stressor of wetlands.  相似文献   

3.
Coastal wetlands provide a range of valuable ecosystem services, including protecting coastal communities from storms. We estimated for the first time the global value of these storm protection services for all coastal wetlands for both damages avoided and lives saved. We used the historical tracks of 1,014 tropical cyclones since 1902 that recorded property damage and/or human casualties in 71 countries/regions. We used Bayesian and OLS statistical techniques to relate storm damages and lives lost to: wind speed, storm forward speed, the year of the storm, the volume of ocean water proximal to landfall, and GDP, population, and coastal wetlands in the swath of the storm. Based on current storm probabilities, we estimate the median annual global value of coastal wetlands for storm protection at $447 billion/yr (2015$US) ($213 - $837 billion/yr, 90% CI) and 4,620 lives saved per year (3,320 – 6,550, 90% CI). The 40 million hectares of coastal wetlands in storm prone areas provided an average of $11,000/ha/yr in avoided storm damages. The frequency and intensity of tropical cyclones has been increasing in recent decades and is projected to further increase with climate change. Consequently, the already significant benefits from protecting and restoring coastal wetlands will become increasingly important and valuable in the future. These results justify much larger investments in conservation and restoration of coastal wetlands.  相似文献   

4.
The magnitude and frequency of coastal storms are expected to increase with rising global sea levels, which necessitates evaluating coastal flood adaptation measures. This study examines an important issue in the context of coastal flood protection, namely, the decision when to adopt protection measures. For any given coastal region, our benefit-cost framework allows us to determine the optimal timing of initiating protection that maximizes expected net benefits. We present an application of this framework to a coastal area in Connecticut. Our results suggest that the optimal timing of adopting protection may vary across different census blocks within the study area. We find that using a relatively low discount rate in the benefit-cost analysis implies greater heterogeneity in the timing decisions and earlier overall adoption, whereas, with higher discount rates, the timing decisions are reduced to a choice between early protection and no protection at all. If possible negative environmental and aesthetic impacts of sea barriers are taken into account, delaying protection would become more desirable, with the extent of delay being sensitive to the relative magnitude of one-time costs (e.g., loss of ocean view and recreational opportunities) vs. continuous costs (e.g., shoreline erosion and loss of wetlands).  相似文献   

5.
 Wetland regions are important components of the local climate, with their own characteristic surface energy and moisture budgets. Realistic representation of wetlands, including the important vegetation component, may therefore be necessary for more accurate simulations of climate and climate change. However, many land-atmosphere coupled models either ignore wetlands or treat wetlands as bare, water-saturated soil, neglecting the vegetation present within wetland environments. This study investigates the possible response of the mid-Holocene climate of North Africa to changes in orbital forcing, both with and without the presence of wetlands. The location of these wetlands is guided by analysis of paleovegetation and wetland distribution. In this study, the wetland regime in the land surface component of a climate model was modified to incorporate vegetation. Field measurements have shown that vegetation affects water loss associated with evaporation (including transpiration) within a wetland area. Comparisons between non-vegetated wetland and vegetated wetland revealed an increase in local albedo that produced an associated decrease in net radiation, evaporation and precipitation in the vicinity of the wetlands regions. Based on an analysis of the model surface water balance, the calculated area of mid-Holocene wetland coverage for North Africa closely matches the observed. For the North African region as a whole, the effects of adding vegetation to the wetland produced relatively small changes in climate, but local recycling of water may have served to help maintain paleo wetland communities. Received: 16 March 1999 / Accepted: 17 May 2000  相似文献   

6.
Global Warming and Coastal Erosion   总被引:6,自引:0,他引:6  
One of the most certain consequences of global warming is an increase of global (eustatic) sea level. The resulting inundation from rising seas will heavily impact low-lying areas; at least 100 million persons live within one meter of mean sea level and are at increased risk in the coming decades. The very existence of some island states and deltaic coasts is threatened by sea level rise. An additional threat affecting some of the most heavily developed and economically valuable real estate will come from an exacerbation of sandy beach erosion. As the beach is lost, fixed structures nearby are increasingly exposed to the direct impact of storm waves, and will ultimately be damaged or destroyed unless expensive protective measures are taken. It has long been speculated that the underlying rate of long-term sandy beach erosion is two orders of magnitude greater than the rate of rise of sea level, so that any significant increase of sea level has dire consequences for coastal inhabitants. We present in this paper an analytical treatment that indicates there is a highly multiplicative association between long-term sandy beach erosion and sea level rise, and use a large and consistent data base of shoreline position field data to show that there is reasonable quantitative agreement with observations of 19th and 20th century sea levels and coastal erosion. This result means that the already-severe coastal erosion problems witnessed in the 20th century will be exacerbated in the 21st century under plausible global warming scenarios.  相似文献   

7.
One effect of climate change may be increased hurricane frequency or intensity due to changes in atmospheric and geoclimatic factors. It has been hypothesized that wetland restoration and infrastructure hardening measures may improve infrastructure resilience to increased hurricane frequency and intensity. This paper describes a parametric decision model used to assess the tradeoffs between wetland restoration and infrastructure hardening for electric power networks. We employ a hybrid economic input–output life-cycle analysis (EIO-LCA) model to capture: construction costs and life-cycle emissions for transitioning from the current electric power network configuration to a hardened network configuration; construction costs and life-cycle emissions associated with wetland restoration; and the intrinsic value of wetland restoration. Uncertainty is accounted for probabilistically through a Monte Carlo hurricane simulation model and parametric sensitivity analysis for the number of hurricanes expected to impact the project area during the project cycle and the rate of wetland storm surge attenuation. Our analysis robustly indicates that wetland restoration and undergrounding of electric power network infrastructure is not preferred to the “do-nothing” option of keeping all power lines overhead without wetland protection. However, we suggest a few items for future investigation. For example, our results suggest that, for the small case study developed, synergistic benefits of simultaneously hardening infrastructure and restoring wetlands may be limited, although research using a larger test bed while integrating additional costs may find an enhanced value of wetland restoration for disaster loss mitigation.  相似文献   

8.
Past research on the economic impacts of aclimate-induced sea level rise has been based on thegradual erosion of the shoreline, and humanadaptation. Erosion which is accelerated by sea levelrise may also increase the vulnerability to stormdamage by decreasing the distance between the shoreand structures, and by eroding protective coastalfeatures (dunes). We present methods of assessingthis storm damage in coastal regions where structuralprotection is not pursued. Starting from the boundingcases of no foresight and perfectforesight of Yohe et al. (1996), we use adisaggregated analysis which models the random natureof storms, and models market valuation and privateinvestor decisions dynamically. Using data from theNational Flood Insurance Program and a hypotheticalcommunity, we estimate that although the total stormdamage can be large, the increase in storm damageattributable to sea level rise is small (<5% oftotal sea level rise damages). These damages,however, could become more significant under otherreasonable assumptions or where dune erosion increasesstorm damage.  相似文献   

9.
An effectiveness of the storm wave attenuation by protective piers in the Sevastopol Bay of the Black Sea is studied on the basis of numerical simulation using the SWAN spectral model. Analyzed are the parameters of waves generated by winds of four main directions as well as by the southern cyclone during the storm on November 11, 2007. It is obtained that waves from the northwest part of the Black Sea penetrate most intensively into the Sevastopol Bay in case of western wind and, to a lesser degree, in case of northern and southern winds. A protective effect of the piers is observed in the west part of the bay only and the wave attenuation near the southern coast is more significant than near the northern one. The area of the southern coast directly behind the southern pier is completely protected from the storm waves and, as moving away from the pier, the danger of intensive wave effect on the coast is kept.  相似文献   

10.
Naturally-occurring wetlands perform such functions as flood control, pollution filtration, nutrient recycling, sediment accretion, groundwater recharge and water supply, erosion control, and plant and wildlife preservation. A large concentration of wetlands is located in Eastern Europe. A significant amount of Eastern European wetlands has been converted to agricultural use in the past, and remaining wetlands are subject to agricultural drainage. Drained wetlands are used as prime agriculture lands for a variety of food crops. Other agricultural uses of wetlands range from growing Phragmites australis (common reed) for thatch and livestock feed, to collecting peat for heating and cooking fuel. Altered hydrologic regimes due to global climate change could further exacerbate encroachment of agricultural land use into wetlands. The vulnerability and adaptation studies of the U.S. Country Studies Program are used to analyze where climate change impacts to agriculture may likewise impact wetland areas. Scenarios indicate higher temperatures and greater evapotranspiration altering the hydrologic regime such that freshwater wetlands are potentially vulnerable in Bulgaria, Czech Republic, and Russia, and that coastal wetlands are at risk in Estonia. Runoff is identified as a key hydrological parameter affecting wetland function. Since wetland losses may increase as a result of climate-change-induced impacts to agriculture, precautionary management options are reviewed, such as establishing buffer areas, promoting sustainable uses of wetlands, and restoration of farmed or mined wetland areas. These options may reduce the extent of negative agricultural impacts on wetlands due to global climate change.  相似文献   

11.
《大气与海洋》2013,51(4):415-427
Abstract

An Mw = 7.2 earthquake occurred on 15 June 2005 (utc) seaward of northern California off the west coast of North America. Based on the earthquake location and source parameters, the West Coast and Alaska Tsunami Warning Center issued a tsunami warning for the region extending from the California‐Mexico border to northern Vancouver Island, British Columbia (the first tsunami warning for this region since the 1994 Mw = 8.2 Shikotan earthquake). Six tide gauges on the west coast recorded tsunami waves from this event, with a maximum trough‐to‐crest wave height of 27.7 cm observed at Crescent City, California. Waves of 2.5 to 6.5 cm were measured at the five other sites: Port Orford (Oregon), North Spit and Arena Cove (California), and Tofino and Bamfield (British Columbia). The open‐ocean Deep‐ocean Assessment and Reporting of Tsunami (DART) buoys, 46404 and 46405, recorded tsunami waves of 0.5 and 1.5 cm, respectively, closely matching wave heights derived from numerical models. Incoming tsunami wave energy was mainly at periods of 10 to 40 min. The observed tsunami wave field is interpreted in terms of edge (trapped) and leaky (non‐trapped) waves and a “trapping coefficient” is introduced to estimate the relative contribution of these two wave types. Due to the high (3000 m) water depth in the source area, approximately two‐thirds of the total tsunami energy went to leaky wave modes and only one‐third to edge wave modes. The improved response to and preparedness for the 2005 California tsunami compared to the 1994 Shikotan tsunami is attributable, in part, to the operational capability provided by the open‐ocean bottom‐pressure recorder (DART) system, higher quality coastal tide gauges, and the effective use of numerical models to simulate real‐time tsunamis.  相似文献   

12.
To develop improved estimates of (1) flooding due to storm surges, and (2) wetland losses due to accelerated sea-level rise, the work of Hoozemans et al. (1993) is extended to a dynamic analysis. It considers the effects of several simultaneously changing factors, including: (1) global sea-level rise and subsidence; (2) increasing coastal population; and (3) improving standards of flood defence (using GNP/capita as an “ability-to-pay” parameter). The global sea-level rise scenarios are derived from two General Circulation Model (GCM) experiments of the Hadley Centre: (1) the HadCM2 greenhouse gas only ensemble experiment and (2) the more recent HadCM3 greenhouse gas only experiment. In all cases there is a global rise in sea level of about 38 cm from 1990 to the 2080s. No other climate change is considered. Relative to an evolving reference scenario without sea-level rise, this analysis suggests that the number of people flooded by storm surge in a typical year will be more than five times higher due to sea-level rise by the 2080s. Many of these people will experience annual or more frequent flooding, suggesting that the increase in flood frequency will be more than nuisance level and some response (increased protection, migration, etc.) will be required. In absolute terms, the areas most vulnerable to flooding are the southern Mediterranean, Africa, and most particularly, South and South-east Asia where there is a concentration of low-lying populated deltas. However, the Caribbean, the Indian Ocean islands and the Pacific Ocean small islands may experience the largest relative increase in flood risk. By the 2080s, sea-level rise could cause the loss of up to 22% of the world's coastal wetlands. When combined with other losses due to direct human action, up to 70% of the world's coastal wetlands could be lost by the 2080s, although there is considerable uncertainty. Therefore, sea-level rise would reinforce other adverse trends of wetland loss. The largest losses due to sea-level rise will be around the Mediterranean and Baltic and to a lesser extent on the Atlantic coast of Central and North America and the smaller islands of the Caribbean. Collectively, these results show that a relatively small global rise in sea level could have significant adverse impacts if there is no adaptive response. Given the “commitment to sea-level rise” irrespective of any realistic future emissions policy, there is a need to start strategic planning of appropriate responses now. Given that coastal flooding and wetland loss are already important problems, such planning could have immediate benefits.  相似文献   

13.
Coastal communities experience increased vulnerability during storm surge events through the risk of damage to coastal infrastructure, erosion/deposition, and the endangerment of human life. Policy and planning measures attempt to avoid or mitigate storm surge consequences through building codes and setbacks, beach stabilization, insurance rates, and coastal zoning. The coastal emergency management community and public react and respond on shorter time scales, through temporary protection, emergency stockpiling, and evacuation. This study utilizes time series analysis, the Kolmogorov-Smirnov (K-S) test, Pearson’s correlation, and the generalized extreme value (GEV) theorem to make the connection between climate oscillation indices and storm surge characteristics intra-seasonally to inter-annually. Results indicate that an El Niño (+ENSO), negative phase of the NAO, and positive phase of the PNA pattern all support longer duration and hence more powerful surge events, especially in winter. Increased surge duration increases the likelihood of extensive erosion, inland inundation, among other undesirable effects of the surge hazard.  相似文献   

14.
北冰洋地区海浪的生成和发展会受到海冰范围变化的显著影响.本文介绍了近年来基于浮标、潜标和走航观测,以及卫星遥感和数值模拟等方法开展的不同海冰覆盖度下北冰洋海浪的研究进展,包括海冰覆盖区海浪的传播机制等.北冰洋夏季开阔海域的平均有效波高可达3 m,在风暴期间,波弗特海有效波高可达5 m.除大西洋一侧,夏季北冰洋大部分海域...  相似文献   

15.
Coral reefs and other coastal ecosystems such as seagrasses and mangroves are widely recognized to provide protection against the devastating effects of strong waves associated with tsunamis and storms. The predicted warming climate brings to fore the role of these ecosystems in providing protection against stronger typhoons that can result in more devastating waves of greater amplitude. We performed a model simulation of storm generated waves on a Philippine reef, which is located along the path of tropical storms, i.e., at least 10 typhoons on the average pass through the study site yearly. A model to simulate wave propagation was developed using Simulating Waves Nearshore (SWAN) and DELFT3D-WAVE computer simulation software. Scenarios involving local monsoonal wind forcing and storm conditions were simulated. In addition, as climate change may also result to increased relative sea level, a 0.3 m and 1 m rise in sea level scenarios were also used in the wave model simulations. Results showed that the extensive reef system in the site helped dissipate wave energy that in turn reduced wave run-up on land. A significant reduction in wave energy was observed in both climate change, i.e., stronger wind and higher sea level, and non-climate change scenarios. This present study was conducted in a reef whose coral cover is in excellent condition (i.e., 50 to 80% coral cover). Estimates of coral reef growth are in the same order of magnitude as estimates of relative sea level rise based on tide gauge and satellite altimeter data, thus it is possible that the role of reefs in attenuating wave energy may be maintained if coral reef growth can keep up with the change in sea level. Nonetheless, to maintain reef growth, it is imperative to manage coral reef ecosystems sustainably and to eliminate the stressors that are within human control. Minimizing activities such as illegal and destructive blast and poison fishing methods, pollution and siltation, is crucial to minimize the impacts of high-energy waves that may increase with climate change.  相似文献   

16.
选取了一组代表性的南海海啸源,并分别使用COMCOT海啸模式,以数值模拟的方法对南海局地海啸源进行了数值模拟,从海啸的传播影响时间、波高和能量分布等角度,分析了如果南海发生地震海啸,不同海啸源将会对我国南海沿岸地区和南海岛礁造成的影响。通过敏感性试验证实,海啸波的强度受地震震级变化影响较大,因此,如果南海发生强震引发局地海啸,不同海啸源将会给我国南海周边及岛礁等不同区域造成严重损害。  相似文献   

17.
California coastal management with a changing climate   总被引:2,自引:0,他引:2  
With over 2,000 miles (3,218 km) of ocean and estuarine coastline, California faces significant coastal management challenges as a result of climate change-induced sea level rise. Under high emission scenarios, recent models predict 1.4 m or more of sea level rise by 2100, accompanied by increasing storm surges. This article investigates the most important issues facing coastal managers, explores the policy tools available for adapting to the impacts of climate change, assesses institutional constraints to adaptation, and identifies priorities for future research and policy action. We find that adaptation tools exist for dealing with anticipated increases in coastal erosion and flooding, but they involve significant costs and tradeoffs. In particular, coastal armoring, such as seawalls, can protect developed coastal lands, but destroys beaches and habitat. Although California already has policies and institutions that aim to balance the competing objectives for coastal development, management agencies are at the early stages of understanding how to facilitate adaptation. Research priorities to inform coastal adaptation planning include: (i) inventorying coastal resources to provide a firmer basis for balancing decisions on property and habitat protection, (ii) identifying opportunities for coastal habitat migration, (iii) assessing the vulnerabilities of existing and planned coastal infrastructure, and (iv) experimenting with alternatives to armoring as a way of managing the changing coastline.  相似文献   

18.
Summary A coastal ocean model capable of modelling tides, storm surge and the overland flow of floodwaters has been further developed to include the flux of water from tributaries and the forcing from wave breaking that leads to wave setup in the nearshore zone. The model is set up over the Gold Coast Broadwater on the east coast of Australia. This complex region features a coastal lagoon into which five tributaries flow and is subject to flooding from extreme oceanic conditions such as storm surge and wave setup as well as terrestrial runoff. Weather conditions responsible for storm surge, waves and flooding include cyclones of both tropical and mid-latitude origin. Two events are modelled. The first is an east coast low event that occurred in April 1989. This event verified well against available observations and analysis of the model simulations revealed that wave setup produced a greater contribution to the elevated water levels than the storm surge. The second case to be modelled was tropical cyclone Wanda, responsible for the 1974 floods. Modelled water levels in the Broadwater were reasonably well captured. Sensitivity experiments showed that storm surge and wave setup were only minor contributors to the elevated sea levels and their contribution was confined to the earlier stage of the event before the runoff reached its peak. The contribution due solely to runoff exhibited a tidal-like oscillation that was 180° out-of-phase with the tide and this was attributed to the greater hydraulic resistance that occurs at high tide. A simulation of this event with present day bathymetry at the Seaway produced sea levels that were 0.3–0.4 m lower than the simulation with 1974 bathymetry highlighting the effectiveness of deepened Seaway channel to reduce the impact of severe runoff events in the Broadwater. Received October 16, 2001 Revised December 28, 2001  相似文献   

19.
采用理想的大陆架地形和台风模型计算了不同方向登陆的台风所激发的海洋响应。结果表明,岸边的潮位变化主要是由于台风引起的强迫振动造成的。而对于登陆型台风来说,在远离台风路径的地方,潮位的变化则是由于边缘波效应。对地平直海岸和二维大陆架,自由边缘波的振幅远小于强迫波的振幅。平行海岸移行台风在岸边产生随台风一起移动的强制波,其中当台风沿着与Kelvin波相同的方向移行时,岸边有陆架波产生,反之则没有陆架波。此外,还讨论了与风暴潮相关的近岸环流。  相似文献   

20.
The results of wind wave hindcast for the Caspian Sea for the period of 1979–2017 are presented. The WAVEWATCHIII wave model and wind forcing from the NCEP/CFSR reanalysis are used. The modeling is performed on the unstructured grid with the spacing to 1 km in the coastal zone. Mean and extreme values of wave height, length, and period are provided. It is shown that the maximum height of waves of 3% probability of exceedance is 11.7 m. The interannual variability of wave parameters is analyzed. No unambiguous trend towards increase or decrease in the storm activity was revealed over the hindcasting period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号