首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We study spectral variability of 11 ultraluminous X-ray sources (ULX) using archived XMM–Newton and Chandra observations. We use three models to describe the observed spectra: a power law, a multicolour disc (MCD) and a combination of these two models. We find that seven ULXs show a correlation between the luminosity L X and the photon index Γ. Furthermore, four out of these seven ULXs also show spectral pivoting in the observed energy band. We also find that two ULXs show an   L X–Γ  anticorrelation. The spectra of four ULXs in the sample can be adequately fitted with a MCD model. We compare these sources to known black hole binaries (BHB) and find that they follow similar paths in their luminosity–temperature diagrams. Finally, we show that the 'soft excess' reported for many of these ULXs at ∼0.2 keV seems to roughly follow a trend   L soft∝ T −3.5  when modelled with a power law plus a 'cool' MCD model. This is contrary to the   L ∝ T 4  relation that is expected from theory and what is seen for many accreting BHBs. The observed trend could instead arise from disc emission beamed by an outflowing wind around a  ∼10 M  black hole.  相似文献   

2.
We report on a comprehensive and consistent investigation into the X-ray emission from GX 339−4. All public observations in the 11 year RXTE archive were analysed. Three different types of model – single power law, broken power law and a disc + power law – were fitted to investigate the evolution of the disc, along with a fixed Gaussian component at 6.4 keV to investigate any iron line in the spectrum. We show that the relative variation in flux and X-ray colour between the two best sampled outbursts are very similar. The decay of the disc temperature during the outburst is clearly seen in the soft state. The expected decay is   S Disc∝ T 4  ; we measure   T 4.75±0.23  . This implies that the inner disc radius is approximately constant in the soft state. We also show a significant anticorrelation between the iron line equivalent width (EW) and the X-ray flux in the soft state while in the hard state the EW is independent of the flux. This results in hysteresis in the relation between X-ray flux and both line flux and EW. To compare the X-ray binary outburst to the behaviour seen in active galactic nuclei (AGN), we construct a disc fraction luminosity diagram for GX 339−4, the first for an X-ray binary. The shape qualitatively matches that produced for AGN. Linking this with the radio emission from GX 339−4 the change in radio spectrum between the disc and power-law-dominated states is clearly visible.  相似文献   

3.
Using RXTE /PCA data, we study the fast variability of the reflected emission in the soft spectral state of Cyg X-1 by means of Fourier frequency-resolved spectroscopy. We find that the rms amplitude of variations of the reflected emission has the same frequency dependence as the primary radiation down to time-scales of ≲30–50 ms. This might indicate that the reflected flux reproduces, with nearly flat response, variations of the primary emission. Such behaviour differs notably from that of the hard spectral state, in which variations of the reflected flux are significantly suppressed in comparison with the primary emission, on time-scales shorter than ∼0.5–1 s.
If related to the finite light-crossing time of the reflector, these results suggest that the characteristic size of the reflector, presumably an optically thick accretion disc, in the hard spectral state is larger by a factor of ≳5–10 than in the soft spectral state. Modelling the transfer function of the disc, we estimate the inner radius of the accretion disc to be R in∼100 R g in the hard state and R in≲10 R g in the soft state for a 10-M black hole.  相似文献   

4.
We have undertaken an extensive study of X-ray data from the accreting millisecond pulsar XTE J1751 − 305 observed by RXTE and XMM–Newton during its 2002 outburst. In all aspects this source is similar to the prototypical millisecond pulsar SAX J1808.4 − 3658, except for the higher peak luminosity of 13 per cent of Eddington, and the optical depth of the hard X-ray source, which is larger by a factor ∼2. Its broad-band X-ray spectrum can be modelled by three components. We interpret the two soft components as thermal emission from a colder  ( kT ∼ 0.6 keV)  accretion disc and a hotter (∼1 keV) spot on the neutron star surface. We interpret the hard component as thermal Comptonization in plasma of temperature ∼40 keV and optical depth ∼1.5 in a slab geometry. The plasma is heated by the accretion shock as the material collimated by the magnetic field impacts on to the surface. The seed photons for Comptonization are provided by the hotspot, not by the disc. The Compton reflection is weak and the disc is probably truncated into an optically thin flow above the magnetospheric radius. Rotation of the emission region with the star creates an almost sinusoidal pulse profile with an rms amplitude of 3.3 per cent. The energy-dependent soft phase lags can be modelled by two pulsating components shifted in phase, which is naturally explained by a different character of emission of the optically thick spot and optically thin shock combined with the action of the Doppler boosting. The observed variability amplitude constrains the hotspot to lie within 3°–4° of the rotational pole. We estimate the inner radius of the optically thick accreting disc to be about 40 km. In that case, the absence of emission from the antipodal spot, which can be blocked by the accretion disc, gives the inclination of the system as ≳70°.  相似文献   

5.
We present a study of the X-ray spectral properties of the highly variable X-ray emitting black hole in a globular cluster in the elliptical galaxy NGC 4472. The X-ray Multiple Mirror–Newton ( XMM–Newton ) spectrum of the source in its bright epoch is well described by a multiple blackbody model with a characteristic temperature   kT in≈  0.2 keV. The spectrum of an archival Chandra observation of the source obtained 3.5 yr before the XMM data gives similar estimates for the blackbody parameters. We confirm that the fainter interval of the XMM–Newton observation has a spectrum that is consistent with the brighter epoch, except for an additional level of foreground absorption. We also consider other possible mechanisms for the variability. Based on the time-scale of the X-ray flux decline and the estimated size of the X-ray emission region, we argue that an eclipsing companion is highly unlikely. We find the most likely means of producing the absorption changes on the observed time-scale is through partial obscuration by a precessing warped accretion disc.  相似文献   

6.
We model the optical to X-ray continuum spectrum of the narrow-line Seyfert 1 galaxy RE J1034+396. We show that the flat optical spectrum is consistent with emission from an irradiated accretion disc. The X-ray emission can be modelled with a disc blackbody and a Comptonized component. The temperature at the inner edge of the disc     Using this constraint, we show that the flat optical spectrum is consistent with emission from the irradiatively heated outer part of the accretion disc. We constrain the outer radius of the optically thick disc     and the inner radius of the irradiation-dominated region     . Our optical and X-ray spectral fits indicate a mass     , and do not rule out a low (i.e. face-on) inclination angle for the system.  相似文献   

7.
We compare standard models of accretion discs around black holes (BHs) that include the appropriate zero-torque inner boundary condition and relativistic effects on the emission and propagation of radiation. The comparison is performed adopting the multicolour disc blackbody model (MCD) as reference and looking for the parameter space in which it is in statistical agreement with 'more physical' accretion disc models. We find simple 'recipes' that can be used for adjusting the estimates of the physical inner radius of the disc, the BH mass and the accretion rate inferred using the parameters of the MCD fits. We applied these results to four ultraluminous X-ray sources for which MCD spectral fits of their X-ray soft spectral components have been published and find that, in three cases (NGC 1313 X-1, X-2 and M 81 X-9), the BH masses inferred for a standard disc around a Schwarzschild BH are in the interval  ∼100–200 M  . Only if the BH is maximally rotating are the masses comparable to the much larger values previously derived in the literature.  相似文献   

8.
We analysed simultaneous archival XMM–Newton and Rossi X-ray Timing Explorer observations of the X-ray binary and black hole candidate Swift J  1753.5−0127  . In a previous analysis of the same data, a soft thermal component was found in the X-ray spectrum, and the presence of an accretion disc extending close to the innermost stable circular orbit was proposed. This is in contrast with the standard picture in which the accretion disc is truncated at large radii in the low/hard state. We tested a number of spectral models and found that several of them fit the observed spectra without the need of a soft disc-like component. This result implies that the classical paradigm of a truncated accretion disc in the low/hard state cannot be ruled out by these data. We further discovered a broad iron emission line between 6 and 7 keV in these data. From fits to the line profile we found an inner disc radius that ranges between ∼6 and 16 gravitational radii, which can be in fact much larger, up to ∼250 gravitational radii, depending on the model used to fit the continuum and the line. We discuss the implications of these results in the context of a fully or partially truncated accretion disc.  相似文献   

9.
Recent VLBA observation indicates the existence of an elongated (jet) structure in the compact radio source Sgr A*. This is hard to explain in the context of advection-dominated accretion flow (ADAF) model for this source. On the other hand, the mass accretion rate favoured by ADAF is 10–20 times smaller than that favoured by the hydrodynamical simulation based on Bondi capture. If the latter were adopted, the predicted radio flux would significantly exceed the observation. A similar situation exists in the case of nearby giant ellipticals, where the canonical ADAF model – the widely assumed standard model for these sources – also significantly overpredicts the radio flux. Based on these facts, in this paper we propose a truncated ADAF model for Sgr A* and three ellipticals M87, NGC 4649 and NGC 4636. We assume that the accretion disc is truncated at a certain radius R tr within which the jet forms by extracting the energy of the disc. The radio flux is greatly suppressed owing to the radiative truncation of the disc and the fits to the observational data are excellent. For example, for Sgr A*, the model fits the observational spectrum very well from radio including the 'excess' below the break frequency to hard X-ray under a high accretion rate near the simulation value, and the predicted size-frequency relationship is also in excellent agreement with the observation; for M87, the predicted upper limit of the jet location is 24 R g, in excellent agreement with the observational result that the jet is formed on scales smaller than 30 R g, and the ≈20 per cent variability at ∼1 keV – which is hard to explain in another model that succeeded in explaining the low radio flux of M87 – is also marginally interpreted. The success of the model supplies possible evidence for the disc rather than the hole origin for the powering of jets.  相似文献   

10.
We analyse the non-linear propagation and dissipation of axisymmetric waves in accretion discs using the ZEUS-2D hydrodynamics code. The waves are numerically resolved in the vertical and radial directions. Both vertically isothermal and thermally stratified accretion discs are considered. The waves are generated by means of resonant forcing, and several forms of forcing are considered. Compressional motions are taken to be locally adiabatic  ( γ =5/3)  . Prior to non-linear dissipation, the numerical results are in excellent agreement with the linear theory of wave channelling in predicting the types of modes that are excited, the energy flux by carried by each mode, and the vertical wave energy distribution as a function of radius. In all cases, waves are excited that propagate on both sides of the resonance (inwards and outwards). For vertically isothermal discs, non-linear dissipation occurs primarily through shocks that result from the classical steepening of acoustic waves. For discs that are substantially thermally stratified, wave channelling is the primary mechanism for shock generation. Wave channelling boosts the Mach number of the wave by vertically confining the wave to a small cool region at the base of the disc atmosphere. In general, outwardly propagating waves with Mach numbers near resonance  ℳr≳0.01  undergo shocks within a distance of order the resonance radius.  相似文献   

11.
LMC X-1 and LMC X-3 are the only known persistent stellar-mass black-hole candidates that have almost always shown spectra that are dominated by a soft, thermal component. We present here results from 170-ks-long Rossi X-ray Timing Explorer ( RXTE ) observations of these objects, taken in 1996 December, where their spectra can be described by a disc blackbody plus an additional soft     high-energy power law (detected up to energies of 50 keV in LMC X-3). These observations, as well as archival Advanced Satellite for Cosmology and Astrophysics ( ASCA ) observations, constrain any narrow Fe line present in the spectra to have an equivalent width ≲90 eV. Stronger, broad lines (≈150 eV EW,     are permitted. We also study the variability of LMC X-1. Its X-ray power spectral density (PSD) is approximately proportional to     between 10−3 and 0.3 Hz with a root-mean-square (rms) variability of ≈7 per cent. At energies >5 keV, the PSD shows evidence of a break at     possibly indicating an outer disc radius of ≲1000  GM c 2 in this likely wind-fed system. Furthermore, the coherence function     a measure of the degree of linear correlation between variability in the >5 keV band and variability in the lower energy bands, is extremely low (≲50 per cent). We discuss the implications of these observations for the mechanisms that might be producing the soft and hard X-rays in these systems.  相似文献   

12.
With extensive monitoring data spanning over 30 years from Vela 5B , Ariel 5 , Ginga , Compton Gamma Ray Observatory , Rossi X-ray Timing Explorer and BeppoSAX , we find evidence for long-term X-ray variability on time-scales     from the black hole low-mass X-ray binary system     . Such variability resembles the outburst cycle of Z Cam-type dwarf novae, in which the standard disc instability model plays a crucial role. If such a model is applicable to     , then the observed variability might be due to the irradiation of an unstable accretion disc. We show that within the framework of the X-ray irradiation model, when the accretion rate exceeds a critical value,     enters a 'flat-topped' high/soft state, such as seen in 1998, which we suggest corresponds to the 'standstill' state of Z Cam systems.  相似文献   

13.
We examine the physical processes of radiatively driven mass accretion on to galactic nuclei, owing to intensive radiation from circumnuclear starbursts. The radiation from a starburst not only causes the inner gas disc to contract via radition flux force, but also extracts angular momentum owing to relativistic radiation drag, thereby inducing an avalanche of the surface layer of the disc. To analyse such a mechanism, the radiation–hydrodynamical equations are solved, including the effects of the radiation drag force as well as the radiation flux force. As a result, it is found that the mass accretion rate owing to the radiative avalanche is given by M ˙ ( r )= η ( L */ c 2)( r / R )2 (Δ R / R )(1 −  e −τ) at radius r , where the efficiency η ranges from 0.2 up to 1, L * and R are respectively the bolometric luminosity and the radius of the starburst ring, Δ R is the extent of the emission regions, and τ is the face-on optical depth of the disc. In an optically thick regime, the rate depends upon neither the optical depth nor the surface mass density distribution of the disc. The present radiatively driven mass accretion may provide a physical mechanism which enables mass accretion from 100-pc scales down to ∼ parsec scales, and it may eventually be linked to advection-dominated viscous accretion on to a massive black hole. The radiation–hydrodynamical and self-gravitational instabilities of the disc are briefly discussed. In particular, the radiative acceleration possibly builds up a dusty wall, which 'shades' the nucleus in edge-on views. This provides another version of the model for the formation of an obscuring torus.  相似文献   

14.
We argue that the quiescent value of the viscosity parameter of the accretion disc in WZ Sge may be  αcold∼ 0.01  , in agreement with estimates of αcold for other dwarf novae. Assuming the white dwarf in WZ Sge to be magnetic, we show that, in quiescence, material close to the white dwarf can be propelled to larger radii, depleting the inner accretion disc. The propeller therefore has the effect of stabilizing the inner disc and allowing the outer disc to accumulate mass. The outbursts of WZ Sge are then regulated by the (magnetically determined) evolution of the surface density of the outer disc at a radius close to the tidal limit. Numerical models confirm that the recurrence time can be significantly extended in this way. The outbursts are expected to be superoutbursts since the outer disc radius is forced to exceed the tidal (3:1 resonance) radius. The large, quiescent disc is expected to be massive, and to be able to supply the observed mass accretion rate during outburst. We predict that the long-term spin evolution of the white dwarf spin will involve a long cycle of spin-up and spin-down phases.  相似文献   

15.
We report the results of spectral and temporal variability studies of the ultraluminous X-ray sources (ULXs) contained within the interacting pair of galaxies NGC 4485/4490, combining Chandra and XMM–Newton observations. Each of the four separate observations provide at least modest quality spectra and light curves for each of the six previously identified ULXs in this system; we also note the presence of a new transient ULX in the most recent observation. No short-term variability was observed for any ULX within our sample, but three out of five sources show correlated flux/spectral changes over longer time-scales, with two others remaining stable in spectrum and luminosity over a period of at least 5 yr. We model the spectra with simple power-law and multicolour disc blackbody models. Although the data are insufficient to statistically distinguish models in each epoch, those better modelled (in terms of their  χ2  fit) by a multicolour disc blackbody appear to show a disc-like correlation between luminosity and temperature, whereas those modelled by a power-law veer sharply away from such a relationship. The ULXs with possible correlated flux/spectral changes appear to change spectral form at  ∼2 × 1039 erg s−1  , suggestive of a possible change in spectral state at high luminosities. If this transition is occurring between the very high state and a super-Eddington ultraluminous state, it indicates that the mass of the black holes in these ULXs is around  10–15 M  .  相似文献   

16.
The key aspect of the very successful truncated disc model for the low/hard X-ray spectral state in black hole binaries is that the geometrically thin disc recedes from the last stable orbit at the transition to this state. This has recently been challenged by direct observations of the low/hard state disc from CCD data. We reanalyse the Swift and RXTE campaign covering the 2006 outburst of XTE J1817−330, and show that these data actually strongly support the truncated disc model as the transition spectra unambiguously show that the disc begins to recede as the source leaves the disc-dominated soft state. The disc radius inferred for the proper low/hard state is less clear-cut, but we show that the effect of irradiation from the energetically dominant hot plasma leads to an underestimate of the disc radius by a factor of 2–3 in this state. This may also produce the soft excess reported in some hard-state spectra. The inferred radius becomes still larger when the potential difference in stress at the inner boundary, increased colour temperature correction from incomplete thermalization of the irradiation, and loss of observable disc photons from Comptonization in the hot plasma is taken into account. We conclude that the inner disc radius in XTE J1817−330 in the low/hard spectral state is at least six to eight times that seen in the disc-dominated high/soft state, and that recession of the inner disc is the trigger for the soft-hard-state transition, as predicted by the truncated disc models.  相似文献   

17.
Gas falling quasi-spherically on to a black hole forms an inner accretion disc if its specific angular momentum l exceeds l ∗∼ r g c , where r g is the Schwarzschild radius. The standard disc model assumes l ≫ l ∗. We argue that, in many black hole sources, accretion flows have angular momenta just above the threshold for disc formation, l ≳ l ∗, and assess the accretion mechanism in this regime. In a range l ∗< l < l cr, a small-scale disc forms in which gas spirals fast into the black hole without any help from horizontal viscous stresses. Such an 'inviscid' disc, however, interacts inelastically with the feeding infall. The disc–infall interaction determines the dynamics and luminosity of the accretion flow. The inviscid disc radius can be as large as 14 r g, and the energy release peaks at 2 r g. The disc emits a Comptonized X-ray spectrum with a break at ∼100 keV. This accretion regime is likely to take place in wind-fed X-ray binaries and is also possible in active galactic nuclei.  相似文献   

18.
19.
We present an analysis of X-ray and ultraviolet (UV) data of the dwarf nova VW Hyi that were obtained with XMM–Newton during the quiescent state. The X-ray spectrum indicates the presence of an optically thin plasma in the boundary layer that cools as it settles on to the white dwarf. The plasma has a continuous temperature distribution that is well described by a power law or a cooling flow model with a maximum temperature of 6–8 keV. We estimate from the X-ray spectrum a boundary layer luminosity of  8 × 1030 erg s-1  , which is only 20 per cent of the disc luminosity. The rate of accretion on to the white dwarf is  5 × 10−12 M yr−1  , about half of the rate in the disc. From the high-resolution X-ray spectra, we estimate that the X-ray emitting part of the boundary layer is rotating with a velocity of 540 km s−1, which is close to the rotation velocity of the white dwarf but is significantly smaller than the Keplerian velocity. We detect a 60-s quasi-periodic oscillation of the X-ray flux, which is likely to be due to the rotation of the boundary layer. The X-ray and the UV flux show strong variability on a time-scale of ∼1500 s. We find that the variability in the two bands is correlated and that the X-ray fluctuations are delayed by ∼100 s. The correlation indicates that the variable UV flux is emitted near the transition region between the disc and the boundary layer and that accretion rate fluctuations in this region are propagated to the X-ray emitting part of the boundary layer within ∼100 s. An orbital modulation of the X-ray flux suggests that the inner accretion disc is tilted with respect to the orbital plane. The elemental abundances in the boundary layer are close to their solar values.  相似文献   

20.
We build a simple model of the optical/ultraviolet (UV) emission from irradiation of the outer disc by the inner disc and coronal emission in black hole binaries. We apply this to the broad-band Swift data from the outburst of the black hole binary XTE J1817−330 to confirm previous results that the optical/UV emission in the soft state is consistent with a reprocessing a constant fraction of the bolometric X-ray luminosity. However, this is very surprising as the disc temperature drops by more than a factor of 3 in the soft state, which should produce a marked change in the reprocessing efficiency. The easiest way to match the observed constant reprocessed fraction is for the disc skin to be highly ionized (as suggested 30 yr ago by van Paradijs), so that the bulk of the disc flux is reflected and only the hardest X-rays heat the disc. The constant reprocessed fraction also favours direct illumination of the disc over a scattering origin as the optical depth/solid angle of any scattering material (wind/corona) over the disc should decrease as the source luminosity declines. By contrast, the reprocessed fraction increases very significantly (by a factor of ∼6) as the source enters the hard state. This dramatic change is not evident from X-ray/UV flux correlations as it is masked by bandpass effects. However, it does not necessarily signal a change in emission, for example, the emergence of the jet dominating the optical/UV flux as the reflection albedo must change with the dramatic change in spectral shape.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号