首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Simultaneous measurements of peroxy and nitrate radicals at Schauinsland   总被引:3,自引:0,他引:3  
We present simultaneous field measurements of NO3 and peroxy radicals made at night in a forested area (Schauinsland, Black Forest, 48° N, 8° N, 1150 ASL), together with measurements of CO, O3, NO x , NO y , and hydrocarbons, as well as meteorological parameters. NO2, NO3, HO2, and (RO2) radicals are detected with matrix isolation/electron spin resonance (MIESR). NO3 and HO2 were found to be present in the range of 0–10 ppt, whilst organic peroxy radicals reached concentrations of 40 ppt. NO3, RO2, and HO2 exhibited strong variations, in contrast to the almost constant values of the longer lived trace gases. The data suggest anticorrelation between NO3 and RO2 radical concentrations at night.The measured trace gas set allows the calculation of NO3 and peroxy radical concentrations, using a chemical box model. From these simulations, it is concluded that the observed anthropogenic hydrocarbons are not sufficient to explain the observed RO2 concentrations. The chemical budget of both NO3 and RO2 radicals can be understood if emissions of monoterpenes are included. The measured HO2 can only be explained by the model, when NO concentrations at night of around 5 ppt are assumed to be present. The presence of HO2 radicals implies the presence of hydroxyl radicals at night in concentrations of up to 105 cm–3.  相似文献   

2.
The kinetics of the reaction of nitrous acid (HONO) with nitric acid (HNO3), nitrate radicals (NO3) and dinitrogen pentoxide (N2O5) have been studied using Fourier transform infrared spectroscopy. Experiments were performed at 700 torr total pressure using synthetic air or argon as diluents. From the observed decay of HONO in the presence of HNO3 a rate constant of k<7×10-19 cm3 molecule-1 s-1 was derived for the reaction of HONO with HNO3. From the observed decay of HONO in the presence of mixtures of N2O5 and NO2 we have also derived upper limits for the rate constants of the reactions of HONO with NO3 and N2O5 of 2×10-15 and 7×10-19 cm3 molecule-1 s-1, respectively. These results are discussed with respect to previous studies and to the atmospheric chemistry of HONO.  相似文献   

3.
In situ aircraft measurements of O3, CO,HNO3, and aerosol particles are presented,performed over the North Sea region in the summerlower stratosphere during the STREAM II campaign(Stratosphere Troposphere Experiments by AircraftMeasurements) in July 1994. Occasionally, high COconcentrations of 200-300 pbbv were measured in thelowermost stratosphere, together with relatively highHNO3 concentrations up to 1.6 ppbv. The particlenumber concentration (at standard pressure andtemperature) between 0.018-1 m decreased acrossthe tropopause, from >1000 cm-3 in the uppertroposphere to <500 cm-3 in the lowermoststratosphere. Since the CO sources are found in thetroposphere, the elevated CO mixing ratios areattributed to mixing of polluted tropospheric air intothe lowermost extratropical stratosphere. Further wehave used a chemical model to illustrate that nitrogenoxide reservoir species (mainly HNO3) determinethe availability of NOx (=NO + NO2) andtherefore largely control the total net O3production in the lower kilometers of thestratosphere. Model simulations, applying additionalNOx perturbations from aircraft, show that theO3 production efficiency of NOx is smallerthan previously assumed, under conditions withrelatively high HNO3 mixing ratios, as observedduring STREAM II. The model simulations furthersuggest a relatively high O3 productionefficiency from CO oxidation, as a result of therelatively high ambient HNO3 and NOxconcentrations, implying that upward transport of COrich air enhances O3 production in the lowermoststratosphere. Analysis of the measurements and themodel calculations suggest that the lowermoststratosphere is a transition region in which thechemistry deviates from both the upper troposphere andlower stratosphere.  相似文献   

4.
Atmospheric nitric acid measurements by ACIMS (Active Chemical Ionization Mass Spectrometry) are based on ion-molecule reactions of CO3 -(H2O) n and NO3 -(H2O) n with HNO3. We have studied these reactions in the laboratory using a flow tube apparatus with mass spectrometric detection of reactant and product ions. Both product ion distributions and rate coefficients were measured. All reactions were investigated in an N2-buffer (1–3 hPa) at room temperature. The reaction rate coefficients of OH-, O2 -, O3 -, CO4 -, CO3 -, CO3 -H2O, NO3 -, and NO3 -H2O were measured relative to the known rate k=3.0×10-9 cm3 s-1 for the reaction of O- with HNO3. The main product ion of the reaction of CO3 -H2O with HNO3 was found to be (CO3HNO3)- supporting a previous suggestion made on the basis of balloon-borne ACIMS measurements. For the reaction of bare CO3 - with HNO3 three product ions were observed, namely NO3 -, (NO3OH)-, and (CO3HNO3)-. The reaction rate coefficients for CO3 -H2O (1.7×10-9 cm3 s-1) and NO3 -H2O (1.6×10-9 cm3 s-1) were found to be close to the collision rate. The measured k values for bare CO3 - (1.3×10-9 cm3 s-1) and NO3 - (0.7×10-9 cm3 s-1) are somewhat smaller. The collisional dissociations of CO3 -(H2O) n , NO3 -(H2O) n (n=1, 2), (CO3HNO3)- and (NO3HNO3)-, occasionally influencing ACIMS measurements, were also studied. Fragment ion distributions were measured using a triple quadrupole mass spectrometer. The results showed that previous stratospheric nitric acid measurements were unimpaired from collisional dissociation processes whereas these processes played a major role during previous tropospheric measurements leading to an underestimation of nitric acid concentrations. Previous ACIMS HNO3 detection was also affected by the conversion of CO3 -(H2O) n to NO3 -(H2O) n due to ion source-produced neutral radicals. A novel ACIMS ion source was developed in order to avoid these problems and to improve the ACIMS method.  相似文献   

5.
Rate constants for the gas-phase reactions of OH radicals, NO3 radicals and O3 with the C7-carbonyl compounds 4-methylenehex-5-enal [CH2=CHC(=CH2)CH2CH2CHO], (3Z)- and (3E)-4-methylhexa-3,5-dienal [CH2=CHC(CH3)=CHCH2CHO] and 4-methylcyclohex-3-en-1-one, which are products of the atmospheric degradations of myrcene, Z- and E-ocimene and terpinolene, respectively, have been measured at 296 ± 2 K and atmospheric pressure of air using relative rate methods. The rate constants obtained (in cm3 molecule–1 s–1 units) were: for 4-methylenehex-5-enal, (1.55 ± 0.15) × 10–10, (4.75 ± 0.35) × 10–13 and (1.46 ± 0.12) × 10–17 for the OH radical, NO3 radical and O3 reactions, respectively; for (3Z)-4-methylhexa-3,5-dienal: (1.61 ± 0.35) × 10–10, (2.17 ± 0.30) × 10–12, and (4.13 ± 0.81) × 10–17 for the OH radical, NO3 radical and O3 reactions, respectively; for (3E)-4-methylhexa-3,5-dienal: (2.52 ± 0.65) × 10–10, (1.75 ± 0.27) × 10–12, and (5.36 ± 0.28) × 10–17 for the OH radical, NO3 radical and O3 reactions, respectively; and for 4-methylcyclohex-3-en-1-one: (1.10 ± 0.19) × 10–10, (1.81 ± 0.35) × 10–12, and (6.98 ± 0.40) × 10–17 for the OH radical, NO3 radical and O3 reactions, respectively. These carbonyl compounds are all reactive in the troposphere, with daytime reaction with the OH radical and nighttime reaction with the NO3 radical being predicted to dominate as loss processes and with estimated lifetimes of about an hour or less.  相似文献   

6.
Simultaneous measurements of ozone and ozoneprecursors were made during a field campaign atSchauinsland in the Black Forest and in the valleynorth of Schauinsland that channels the flow ofpolluted air from the city of Freiburg to the site.From the decay of hydrocarbons and NOx between the twomeasuring sites and the known rate coefficients, theconcentration of OH radicals was calculated. From abudget analysis of OH and HOx it is concluded that therelatively high OH concentrations (5–8 ×106cm-3) in the presence of high NO2concentrations cannot be explained by the knownprimary sources. The budget can be closed if efficientrecycling of OH via HO2 is assumed to occur andthat, based on the measured hydrocarbons, 2 HO2molecules are formed for each OH radical that reactswith a hydrocarbon molecule. This assumption is inaccordance with the budget of Ox obtained from ourmeasurements and with results from earliermeasurements of alkylnitrates and peroxy radicals atSchauinsland. A possible conclusion is that the decayof precursors and production of photooxidants in urbanplumes proceeds at a faster rate than is currentlyassumed. The potential role of biogenichydrocarbons for the radical budget is alsodiscussed.  相似文献   

7.
8.
Improvements of the matrix isolation/electron spin resonance technique for the measurement of NO2, NO3, and RO2 radicals in the atmosphere are described. The use of D2O instead of H2O as the matrix yields a better spectral resolution and, as a consequence, larger a signal-to-noise ratio as well as better identification of the different species. Reference spectra of the different radicals in H2O and D2O matrices are compared. While a large degree of correlation exists amongst the spectra of the different (unsubstituted and substituted) alkylperoxy radicals, the spectra of HO2, CH3C(O)O2, and NO3 show significant differences that allow their distinction in atmospheric samples.A numerical procedure for the analysis of the composite ESR spectra obtained from atmospheric samples was developed. Subtraction of the dominant NO2 signal is performed by matching a reference NO2 spectrum with respect to amplitude, spectral position, and line width to the sample spectrum. The manipulations are performed with the virtually noise-free reference spectrum and are based on physical information. The residual spectrum is then analyzed for RO2 (and/or NO3) by simultaneously fitting up to six different reference spectra.The method was applied to laboratory samples as well as to atmospheric samples in order to demonstrate the ability of retrieving small amounts of HO2 in the presence of large amounts of NO2 and other peroxy radicals. The new algorithm allowed, for the first time, the identification of the HO2 and CH3C(O)O2 radical in tropospheric air at concentrations ranging up to 40 ppt.  相似文献   

9.
We use a global atmospheric chemistry transport model to study the possible influence of aqueous phase reactions of peroxynitric acid (HNO4) on the concentrations and budgets of NOx, SOx, O3 and H2O2. Laboratory studies have shown that the aqueous reaction of HNO4aq withHSO 3aq, and the uni-molecular decomposition of the NO4 anion to form NO2 (nitrite) occur on a time scale of about a second. Despite a substantial contribution of the reaction of HSO 3aq with HNO4aq to the overall in-cloud conversion of SO2 to SO4 2–, a simultaneous decrease of other oxidants (most notably H2O2) more than compensated the increase in SO4 2– production. The strongest influence of heterogeneous HNO4 chemistry was found in the boundary layer, where calculated monthly average ozone concentrations were reduced between 2% to 10% andchanges of H2O2 between –20% to +10%compared to a simulation which ignores this reaction. Furthermore, SO2 was increased by 10% to 20% and SO4 2–depleted by up to 10%. Since the resolution of our global model does not enable a detailed comparison with measurements in polluted regions, it is not possible to verify whether considering heterogeneous HNO4 reactions results in a substantial improvement of atmospheric chemistry transport models. However, the conversion of HNO4 in the aqueous phase seems to be efficient enough to warrant further laboratory investigations and more detailed model studies on this topic.  相似文献   

10.
Using long path UV absorption spectroscopy we have measured OH concentrations close to the earth's surface. The OH values observed at two locations in Germany during 1980 through 1983 range from 0.7×106 to 3.2×106 cm-3. Simultaneously we measured the concentrations of O3, H2O, NO, NO2, CH4, CO, and the light non methane hydrocarbons. We also determined the photolysis rates of O3 and NO2. This allows calculations of OH using a zero dimensional time depdendent model. The modelled OH concentrations significantly exceed the measured values for low NO x concentrations. It is argued that additional, so far unidentified. HO x loss reactions must be responsible for that discrepancy.  相似文献   

11.
We show that photochemical processes in the lower half of the troposphere are strongly affected by the presence of liquid water clouds. Especially CH2O, an important intermediate of CH4 (and of other hydrocarbon) oxidation, is subject to enhanced breakdown in the aqueous phase. This reduces the formation of HO x -radicals via photodissociation of CH2O in the gas phase. In the droplets, the hydrated form of CH2O, its oxidation product HCO2 , and H2O2 recycle O2 radicals which, in turn, react with ozone. We show that the latter reaction is a significant sink for O3. Further O3 concentrations are reduced as a result of decreased formation of O3 during periods with clouds. Additionally, NO x , which acts as a catalyst in the photochemical formation of O3, is depleted by clouds during the night via scavenging of N2O5. This significantly reduces NO x -concentrations during subsequent daylight hours, so that less NO x is available for O3 production. Clouds thus directly reduce the concentrations of O3, CH2O, NO x , and HO x . Indirectly, this also affects the budgets of other trace gases, such as H2O2, CO, and H2.  相似文献   

12.
The exchange of NO3 radicals with the aqueous-phase was investigated at room temperature (293 K) in a series of wetted denuders. From these experiments, the uptake coefficient of NO3 was determined on 0.1 M NaCl solutions and was found to be (NO3) 2 × 10-3 in good agreement with recent studies. The Henry coefficient of NO3 was estimated to be KH(NO3) = 1.8 M · atm-1, with a (2) uncertainty of ±3 M · atm-1. From the upper limit for the Henry coefficient (KH = 5 M · atm-1) and available thermodynamic data, the redox potential of dissolved NO3/NO 3 is estimated to be in the range of 2.3 to 2.5 V. This range is at the lower boundary of earlier estimates. The results are discussed in the light of a recent publication. Based on our data and a model of the transport and chemistry in the liquid film, an upper limit is derived for the product of the Henry coefficient KH and the rate coefficient k 10 of the potential reaction NO3 + H2O HNO3 + OH. For KH = 0.6 M · atm-1, we find k 10 < 0.05 s-1 · atm-1, i.e., about 100 times smaller than what was suggested by Rudich and co-workers. Because of its small solubility, heterogeneous removal of NO3 is only important under conditions where the dissolved NO3 is removed quickly from equilibrium, for example by reactions with Cl or HSO 3 ions in the liquid-phase. Otherwise, heterogenous removal should mainly proceed via N2O5.  相似文献   

13.
南极长城站大气臭氧和NO2的观测研究   总被引:1,自引:0,他引:1  
毛节泰 《气象》1989,15(12):3-7
在中国第五次南极考察社长城站的科学研究活动中,开展了与南极臭氧洞有关的大气臭氧和NO_2柱含量的观测。观测采用地面吸收光谱的原理进行。从1988年12月到1989年2月的观测结果表明,长城站区臭氧柱含量平均值为341DU,与常年平均结果相当。NO_2的平均柱含量为2.16×10~(18)cm~(-2)。无论是臭氧或NO_2的柱含量都有明显的日变化。  相似文献   

14.
Photochemical indicators for determination of O3–NOx–ROG sensitivity and their sensitivity to model parameters are studied for a variety of polluted conditions using a comprehensive mixed-phase chemistry box model and the novel automatic differentiation ADIFOR tool. The main chemical reaction pathways in all phases, interfacial mass transfer processes, and ambient physical parameters that affect the indicators are identified and analyzed. Condensed mixed-phase chemical mechanisms are derived from the sensitivity analysis.Our results show that cloud chemistry has a significant impact on the indicators and their sensitivities, particularly on those involving H2O2, HNO3, HCHO, and NOz. Caution should be taken when applying the established threshold values of indicators in regions with large cloud coverage. Among the commonly used indicators, NOy and O3/NOy are relatively insensitive to most model parameters, whereas indicators involving H2O2, HNO3, HCHO, and NOz are highly sensitive to changes in initial species concentrations, reaction rate constants, equilibrium constants, temperature, relative humidity, cloud droplet size, and cloud water content.  相似文献   

15.
Measurements of NO2, HCHO, and H2O2 were made by the highly specific method of mid infra-red absorption spectroscopy using tunable diode lasers (TDLAS) during the 1988 Polarstern expedition. The TDLAS data are compared to those obtained during the cruise using less direct methods. Southern Hemisphere NO2 levels suggest nett photochemical destruction of O3 in the boundary layer. Northern Hemisphere HCHO averaged 0.47±0.2 ppbv; the HCHO measurements are used in a simple calculation to estimate OH noontime maxima of 3–6×106 cm-3.  相似文献   

16.
Air pollutant emission rates and concentrations in medieval churches   总被引:1,自引:0,他引:1  
A series of indoor air quality parameters were determined in two medieval churches, in Cyprus (temperature, relative humidity, total and UV solar radiation, CO2 indoors and O3, NO, NO2 *, HNO3 *, HCl, HCOOH, CH3COOH indoors and outdoors). These data were used as input in a validated indoor air quality model to predict indoor air pollutant source strengths and species concentrations that resulted from dark or photochemical reactions. The NO and NO2 emission rates due to the burning of incense or candles were estimated. Model results revealed that heterogeneous NO formation takes place simultaneously with the heterogeneous HONO formation. Also, model application has shown that indoor NOx emissions resulted in decreased free radical concentrations, in contrast to the organic compound emissions, which increased free radical concentrations. This effect of indoor emissions on indoor radicals can partly explain the indoor enhancement/depression of indoor gaseous acid formation.  相似文献   

17.
Rate constants for the gas-phase reactions of OH radicals with nopinone (6,6-dimethylbicyclo[3.1.1]heptan-2-one) and camphenilone (3,3-dimethylbicyclo[2.2.1]heptan-2-one) and for the reactions of 4-acetyl-1-methylcyclohexene with OH and NO3 radicals and O3 have been measured at 296±2 K. The rate constants (cm3 molecule–1 s–1 units) obtained were, for reaction with the OH radical: nopinone, (1.43±0.37)×10–11; camphenilone, (5.15±1.44)×10–12; and 4-acetyl-1-methylcyclohexene, (1.29±0.33)×10–10; for reaction with the NO3 radical: 4-acetyl-1-methylcyclohexene, (1.05±0.38)×10–11; and for reaction with O3: 4-acetyl-1-methylcyclohexene, (1.50±0.53)×10–16. These data are used to calculate the tropospheric lifetimes of these monoterpene atmospheric reaction products.  相似文献   

18.
19.
The absolute rate constants for the gas-phasereactions of the NO3 radical with a series ofaldehydes such as acetaldehyde, propanal, butanal,pentanal, hexanal and, heptanal were measured overthe temperature range 298–433 K, using a dischargeflow system and monitoring the NO3 radical byLaser Induced Fluorescence (LIF).The measured rate constants at 298 K for thereaction of NO3, in units of 10–14 cm3molecule–1 s–1, were as follows:acetaldehyde 0.32 ± 0.04, propanal 0.60 ± 0.06, butanal 1.46± 0.16, pentanal 1.75 ±0.06, hexanal 1.83 ± 0.36, and heptanal 2.37 ±0.42. The proposed Arrhenius expressions arek1 = (6.2 ± 7.5) × 10–11 exp[–(2826 ± 866)/T] (cm3 molecule–1s–1),k2 = (1.7 ± 1.0) × 10–11 exp[–(2250 ± 192)/T] (cm3 molecule–1s1), k3 =(7.6 ± 9.8) × 1011 exp[–(2466 ± 505)/T] (cm3 molecule–1s–1),k4 = (2.8 ± 1.4) × 10–11 exp[–(2189 ± 156)/T] (cm3 molecule–1s–1), k5 = (7.0 ± 1.8) ×10–11 exp [–(2382 ± 998)/T](cm3 molecule–1 s–1), andk6 = (7.8 ± 1.0) × 10–11 exp[–(2406 ± 481)/T](cm3 molecule–1 s–1).Tropospheric lifetimes for these aldehydes werecalculated at night and during the day for typicalNO3 and OH average concentrations and showed thatboth radicals provide an effective tropospheric sinkfor these compounds and that the night-time reactionwith the NO3 radical can be an important, if notdominant, loss process for these emitted organics andfor NO3 radicals.  相似文献   

20.
A modified profile method for determining the vertical deposition (or/and exhalation) fluxes of NO, NO2, ozone, and HNO3 in the atmospheric surface layer is presented. This method is based on the generally accepted micrometeorological ideas of the transfer of momentum, sensible heat and matter near the Earth's surface and the chemical reactions among these trace gases. The analysis (aerodynamic profile method) includes a detailed determination of the micrometeorological quantities (such as the friction velocity, the fluxes of sensible and latent heat, the roughness length and the zero plane displacement), and of the height-invariant fluxes of the composed chemically conservative trace gases with group concentrations c 1=[NO]+[NO2]+[HNO3], c 2=[NO2]+[O3]+3/2·[HNO3], and c 3=[NO]–[O3]–1/2·[HNO3]. The fluxes of the individual species are finally determined by the numerical solution of a system of coupled nonlinear ordinary differential equations for the concentrations of ozone and HNO3 (decoding method). The parameterization of the fluxes is based on the flux-gradient relationships in the turbulent region of the atmospheric surface layer. The model requires only the vertical profile data of wind velocity, temperature and humidity and concentrations of NO, NO2, ozone, and HNO3.The method has been applied to vertical profile data obtained at Jülich (September 1984) and collected in the BIATEX joint field experiment LOVENOX (Halvergate, U.K., September 1989).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号