首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Analysis of seismic anisotropy in the crust and the uppermost mantle gives lots of information about the ambient mantle flow, stress state, and the dynamic processes inside the Earth. Thus, seismic anisotropy and its main distinctive features beneath the southeastern Mediterranean region are studied through the analysis of teleseismic shear-wave splitting observed at six broadband seismic stations belonging to the GEOFON and the MedNet. Although the number of the recording stations is small; a total of 495 splitting parameters are obtained, which revealed significant variations in the observed fast polarization directions beneath the study area. The stations in northern Egypt and Cyprus show fast velocity directions oriented roughly N–S to NNE–SSW, coincident with many previous results. A slightly different splitting pattern comprising NE–SW fast polarization directions is observed in the stations located along the Dead Sea fault in the southeastern Mediterranean; which are consistent with the current strike-slip motion between Africa and Arabia. In addition, NW–SE fast polarization directions are recognized in the latter group. The observed delay times vary greatly but their averages lie between 0.35 and 1 s. Although large-scale mechanisms, such as the absolute plate motion of Africa and Arabia towards Eurasia and the differential motion between Arabia and Africa can be invoked to predominantly explain the origin of anisotropic features, we suggest that density-driven flow in the asthenosphere is a possible additional cause of the wide range of the splitting pattern observed beneath some stations.  相似文献   

2.
We conduct shear wave splitting measurements on waveform data from the Hi-net and the broadband F-net seismic stations in Kanto and SW Japan generated by shallow and intermediate-depth earthquakes occurring in the subducting Philippine Sea and Pacific slabs. We obtain 1115 shear wave splitting parameter pairs. The results are divided into those from the shallow (depth < 50 km) and the deep (depth > 50 km) events. The deep events beneath Kanto are further divided into PHS1 and PHS2 (upper and lower planes of the double seismic zone in the Philippine Sea slab, respectively), PAC1 and PAC2 (western and eastern Pacific slab, respectively) events. The results from the shallow events represent the crustal anisotropy, and their fast directions are more or less aligned in the σHmax directions, implying that the anisotropy is produced by the alignment of the vertical cracks in the crust induced by the compressive stresses. In Kanto, Kii Peninsula and Kyushu regions, the results from the deep events suggest a contribution from the mantle wedge anisotropy. Events from all groups beneath Kanto show NW, NE and EW fast directions. This complex pattern seems to be produced by the corner flows induced by both the WNW PAC plate subduction and the oblique NNW PHS slab subduction with the associated olivine lattice-preferred orientations (LPOs), and the anisotropy frozen in the PHS slab. The deep events beneath Kii Peninsula show NE and NW fast directions and may be produced by the corner flow produced by the NNW PHS slab subduction with the associated olivine LPOs. The NE directions might also be produced by the segregated melts in the thin layers parallel to the PHS slab subduction. The deep events beneath N Kyushu show NNW fast directions, which may result from the southeastward flow in the upper mantle inferred from the stresses in the upper plate. Results from the deep events beneath middle-south Kyushu show dominantly E–W fast directions, in both the fore- and back-arcs. They may be produced by the corner flow of the westward PHS slab subduction with the olivine LPOs. Because the source regions with multiple fast directions are not resolved in this study, further detailed analyses of shear wave splitting are necessary for a better understanding of the stress state, the induced mantle flow, and the melt-segregation processes.  相似文献   

3.
Shear-wave splitting measurements from local and teleseismic earthquakes are used to investigate the seismic anisotropy in the upper mantle beneath the Rwenzori region of the East African Rift system. At most stations, shear-wave splitting parameters obtained from individual earthquakes exhibit only minor variations with backazimuth. We therefore employ a joint inversion of SKS waveforms to derive hypothetical one-layer parameters. The corresponding fast polarizations are generally rift parallel and the average delay time is about 1 s. Shear phases from local events within the crust are characterized by an average delay time of 0.04 s. Delay times from local mantle earthquakes are in the range of 0.2 s. This observation suggests that the dominant source region for seismic anisotropy beneath the rift is located within the mantle. We use finite-frequency waveform modeling to test different models of anisotropy within the lithosphere/asthenosphere system of the rift. The results show that the rift-parallel fast polarizations are consistent with horizontal transverse isotropy (HTI anisotropy) caused by rift-parallel magmatic intrusions or lenses located within the lithospheric mantle—as it would be expected during the early stages of continental rifting. Furthermore, the short-scale spatial variations in the fast polarizations observed in the southern part of the study area can be explained by effects due to sedimentary basins of low isotropic velocity in combination with a shift in the orientation of anisotropic fabrics in the upper mantle. A uniform anisotropic layer in relation to large-scale asthenospheric mantle flow is less consistent with the observed splitting parameters.  相似文献   

4.
Late Tertiary and Quaternary volcanism of southeastern Spain can be fitted in a platetectonics model, taking into account the post-Paleozoic evolution of the stable and semimobile Iberian areas and the new orogenic belts bordering the Mediterranean between Africa and the Iberian Peninsula.The occurrence and distribution of calc-alkaline and potassic volcanism suggest an oceanic crust sinking downwards from the Iberian plate. This active margin is causally related to the convergence and collision of Iberia and Africa during Late Cretaceous—Early Miocene time span.A pre-collision distensive phase is inferred from the stratigraphie and tectonic record between the Triassic and Late Cretaceous, while since the Late Miocene another distensive phase is related to the actualistic features.  相似文献   

5.
南北构造带北段位于青藏高原东北缘及其向北东方向扩展的区域,其岩石圈变形特征对于探讨青藏高原东北缘变形机制及其扩展范围具有非常关键的意义。地震波各向异性能很好地反映上地幔的变形特征。因此,本文对布设在南北构造带北段的流动地震台站记录的远震波形资料进行S波分裂研究,获得了研究区上地幔各向异性图像以及该区岩石圈地幔的变形特征信息。S波分裂研究结果表明,研究区地震波各向异性来自于上地幔,区内不同构造单元上地幔各向异性方向不尽相同。快波方向分布显示,青藏高原东北缘,鄂尔多斯西缘以及贺兰构造带北段的快波方向主要表现为NW-SE向,与前人在银川地堑和贺兰构造带中、北部得到的NW-SE向的上地幔各向异性方向一致,显示这些地区岩石圈地幔变形一致,该结果表明青藏高原东北缘向北东方向扩展的影响范围已到达贺兰构造带北段。阿拉善地块内部快波方向显示为NE-SW向,与阿拉善地块北部存在的北东向展布的晚古生代岩浆岩方向一致,表明该NE-SW向的快波方向可能代表地是“化石”各向异性,是晚古生代阿拉善地块受到古亚洲洋闭合作用的结果。此外,鄂尔多斯地块内也存在NE-SW向的各向异性方向,与区内中-晚侏罗世存在的NE-SW向逆冲推覆构造方向一致,因此该各向异性方向也代表了“化石”各向异性,是鄂尔多斯地块受到古特提斯构造域的块体碰撞、古太平洋板块北西向俯冲以及西伯利亚板块向南俯冲共同作用的结果。  相似文献   

6.
The Tertiary deformation of the Iberian plate is here interpreted as the result of changes in the coupling between the Iberian–African plates. During the early stages of the Africa/Iberia subduction (Palaeocene), deformation was confined at the Betic plate boundary. From the Eocene, during the collision in the southern plate margin, compressional deformation delocalized and distributed throughout the Iberian plate. First, in the Pyrenees, where the main stage of thrusting occurred during the Late Eocene – Early Oligocene. Then (mainly Oligocene – Late Miocene), in the inner part of the Iberian plate, forming basement uplifts in the Iberian Chain and the Central System, in correspondence of pre-existing (Mesozoic and Variscan) structures. Finally, during the decay of compression inside the Iberian plate, extension took place the Mediterranean margin and the Alboran Sea.  相似文献   

7.
苏鲁大别及其周围地区深部P波速度结构特征的初步分析   总被引:1,自引:0,他引:1  
赵志新  徐纪人 《岩石学报》2005,21(2):525-532
本文分析了苏鲁大别及其周围地区200km深的地震波速度结构。对上地幔50至200km不同深度的水平切面的速度结构特征进行了详细研究。结果表明,位于大别山地区下的西南侧存在着一个呈西北-东南延展的带状高速区;在苏鲁东海地区的下方,及东北方面也有高速度区域存在。这两个高速度区不相连。在大别山区东北端区与苏鲁超高压变质带的南端地区深部的两个高速区之间,即郯庐断裂的中部存在一个西北-东南延展的低速度区。大别山区下方深部呈现明显的速度梯度变化带。大别山区东端边界也是速度梯度变化带。郯庐断裂的北段,即与苏鲁超高压变质带为邻的部分下方,似乎是一个速度分界带或者速度不连续带。郯庐断裂的北段下方的速度结构与其两侧地区的速度结构明显不同。该段的两侧速度结构常常存在着明显差异。  相似文献   

8.
The lithospheric structure of the western part of the Mediterranean Sea is shown by means of S-velocity maps, for depths ranging from 0 to 35 km, determined from Rayleigh-wave analysis. The traces of 55 earthquakes, which occurred from 2001 to 2003 in and around the study area have been used to obtain Rayleigh-wave dispersion. These earthquakes were registered by 10 broadband stations located on Iberia and the Balearic Islands. The dispersion curves were obtained for periods between 1 and 45 s, by digital filtering with a combination of MFT and TVF filtering techniques. After that, all seismic events were grouped in source zones to obtain a dispersion curve for each source-station path. These dispersion curves were regionalized and after inverted according to the generalized inversion theory, to obtain shear-wave velocity models for rectangular blocks with a size of 1° × 1°. The shear velocity structure obtained through this procedure is shown in the S-velocity maps plotted for several depths. These maps show the existence of lateral and vertical heterogeneity. In these maps is possible to distinguish several types of crust with an average S-wave velocity ranging from 2.6 to 3.9 km/s. The South Balearic Basin (SBB) is more characteristic of oceanic crust than the rest of the western Mediterranean region, as it is demonstrated by the crustal thickness. We also find a similar S-wave velocity (ranging from 2.6 km/s at the surface to 3.2 km/s at 10 km depth) for the Iberian Peninsula coast to Ibiza Island, the North Balearic Basin (NBB) and Mallorca Island. In the lower crust, the shear velocity reaches a value of 3.9 km/s. The base of the Moho is estimated from 15 to 20 km under Iberian Peninsula coast to Ibiza Island, continues towards NBB and increases to 20–25 km beneath Mallorca Island. While, the SBB is characterized by a thinner crust that ranges from 10 to 15 km, and a faster velocity. A gradual increase in velocity from the north to the south (especially in the upper 25 km) is obtained for the western part of the Mediterranean Sea. The base of the crust has a shear-wave velocity value around of 3.9 km/s for the western Mediterranean Sea area. This area is characterized by a thin crust in comparison with the crustal thickness of the eastern Mediterranean Sea area. This thin crust is related with the distensive tectonics that exists in this area. The low S-wave velocities obtained in the upper mantle might be an indication of a serpentinized mantle. The obtained results agree well with the geology and other geophysical results previously obtained. The shear velocity generally increases with depth for all paths analyzed in the study area.  相似文献   

9.
To better understand the lithosphere mantle collision tectonics between the India plate and Asia plate, we determine three dimensional P wave velocity structure beneath western Tibet using 27,439 arrival times from 2,174 teleseismic events recorded by 182 stations of Hi-CLIMB Project and 16 stations in the north of Hi-CLMB. Our tomographic images show the velocity structure significantly difference beneath northern and southern Qiangtang, which can further prove that the Longmu Co-Shuanghu ophiolitic belt is a significant tectonic boundary fault zone. There are two prominent high velocity anomalies and two prominent low velocity anomalies in our images. One obvious high velocity anomalies subduct beneath the Tibet at the long distance near 34°N, whereas it is broke off by an obvious low velocity anomaly under the IYS. We interpret them as northward subducting Indian lithosphere mantle and the low velocity anomanly under IYS likely reflects mantle material upwelling triggered by tearing of the northward subduction Indian lithosphere. The other prominent high velocity anomaly was imaged at a depth from 50 km to 200 km horizontal and up to the northern Qiangtang with its southern edge extending to about 34°N through Hoh Xil block. We infer it as the southward subducting Asia lithosphere mantle. The other widely low velocity anomaly beneath the Qiangtang block lies in the gap between the frontier of India plate and Asia plate, where is the channel of mantle material upwelling.  相似文献   

10.
In the interior of the Iberian Peninsula, the main geomorphic features, mountain ranges and basins, seems to be arranged in several directions whose origin can be related to the N–S plate convergence which occurred along the Cantabro–Pyrenean border during the Eocene–Lower Miocene time span. The Iberian Variscan basement accommodated part of this plate convergence in three E–W trending crustal folds as well as in the reactivation of two left-lateral NNE–SSW strike-slip belts. The rest of the convergence was assumed through the inversion of the Iberian Mesozoic Rift to form the Iberian Chain. This inversion gave rise to a process of oblique crustal shortening involving the development of two right lateral NW–SE shear zones. Crustal folds, strike-slip corridors and one inverted rift compose a tectonic mechanism of pure shear in which the shortening is solved vertically by the development of mountain ranges and related sedimentary basins. This model can be expanded to NW Africa, up to the Atlasic System, where N–S plate convergence seems also to be accommodated in several basement uplifts, Anti-Atlas and Meseta, and through the inversion of two Mesozoic rifts, High and Middle Atlas. In this tectonic situation, the microcontinent Iberia used to be firmly attached to Africa during most part of the Tertiary, in such a way that N–S compressive stresses could be transmitted from the collision of the Pyrenean boundary. This tectonic scenario implies that most part of the Tertiary Eurasia–Africa convergence was not accommodated along the Iberia–Africa interface, but in the Pyrenean plateboundary. A broad zone of distributed deformation resulted from the transmission of compressive stresses from the collision at the Pyrenean border. This distributed, intraplate deformation, can be easily related to the topographic pattern of the Africa–Eurasia interface at the longitude of the Iberian Peninsula.Shortening in the Rif–Betics external zones – and their related topographic features – must be conversely related to more “local” driven mechanisms, the westward displacement of the “exotic” Alboran domain, other than N–S convergence. The remaining NNW–SSE to NW–SE, latest Miocene up to Present convergence is also being accommodated in this zone straddling Iberia and Morocco, at the same time as a new ill-defined plate boundary that is being developed between Europe and Africa.  相似文献   

11.
《地学前缘(英文版)》2018,9(6):1911-1920
We estimate the shear wave splitting parameters vis-à-vis the thicknesses of the continental lithosphere beneath the two permanent seismic broadband stations located at Dhanbad (DHN) and Bokaro (BOKR) in the Eastern Indian Shield region. Broadband seismic data of 146 and 131 teleseismic earthquake events recorded at DHN and BOKR stations during 2007–2014 were analyzed for the present measurements. The study is carried out using rotation-correlation and transverse component minimization methods. We retain our “Good”, “Fair” and “Null” measurements, and estimate the splitting parameters using 13 “Good” results for DHN and 10 “Good” results for BOKR stations. The average splitting parameters (ϕ, δt) for DHN and BOKR stations are found to be 50.76°±5.46° and 0.82 ± 0.2 s and 56.30°±5.07° and 0.95 ± 0.17 s, and the estimated average thicknesses of the anisotropic layers beneath these two stations are ∼ 94 and ∼109 km, respectively. The measured deviation of azimuth of the fast axis direction (ϕ) from the absolute motion of the Indian plate ranges from ∼8° to 14°. The measured deviation of azimuth of the fast axis direction (ϕ) from the absolute motion of the Indian plate ranges from ∼8° to 14°. The eastward deviation of the fast axis azimuths from absolute plate motion direction is interpreted to be caused by induced outflow from the asthenosphere. Further, the delay time found in the present analysis is close to the global average for continental shield areas, and also coherent with other studies for Indian shield regions. The five “Null” results and the lower delay time of ∼0.5–0.6 s might be indicating multilayer anisotropy existing in the mantle lithosphere beneath the study area.  相似文献   

12.
We study high-resolution three-dimensional P-wave velocity (Vp) tomography and anisotropic structure of the crust and uppermost mantle under the Helan–Liupan–Ordos western margin tectonic belt in North-Central China using 13,506 high-quality P-wave arrival times from 2666 local earthquakes recorded by 87 seismic stations during 1980–2008. Our results show that prominent low-velocity (low-V) anomalies exist widely in the lower crust beneath the study region and the low-V zones extend to the uppermost mantle in some local areas, suggesting that the lower crust contains higher-temperature materials and fluids. The major fault zones, especially the large boundary faults of major tectonic units, are located at the edge portion of the low-V anomalies or transition zones between the low-V and high-V anomalies in the upper crust, whereas low-V anomalies are revealed in the lower crust under most of the faults. Most of large historical earthquakes are located in the boundary zones where P-wave velocity changes drastically in a short distance. Beneath the source zones of most of the large historical earthquakes, prominent low-V anomalies are visible in the lower crust. Significant P-wave azimuthal anisotropy is revealed in the study region, and the pattern of anisotropy in the upper crust is consistent with the surface geologic features. In the lower crust and uppermost mantle, the predominant fast velocity direction (FVD) is NNE–SSW under the Yinchuan Graben and NWW–SEE or NW–SE beneath the Corridor transitional zone, Qilian Orogenic Belt and Western Qinling Orogenic Belt, and the FVD is NE–SW under the eastern Qilian Orogenic Belt. The anisotropy in the lower crust may be caused by the lattice-preferred orientation of minerals, which may reflect the lower-crustal ductile flow with varied directions. The present results shed new light on the seismotectonics and geodynamic processes of the Qinghai–Tibetan Plateau and its northeastern margin.  相似文献   

13.
Teleseismic earthquake data recorded by 11 broadband digital seismic stations deployed in the India–Asia collision zone in the eastern extremity of the Himalayan orogen (Tidding Suture) are analyzed to investigate the seismic anisotropy in the upper mantle. Shear-wave splitting parameters (Φ and δt) derived from the analysis of core-refracted SKS phases provide first hand information about seismic anisotropy and deformation in the upper mantle beneath the region. The analysis shows considerable strength of anisotropy (delay time ~0.85–1.9 s) with average ENE–WSW-oriented fast polarization direction (FPD) at most of the stations. The FPD observed at stations close to the Tidding Suture aligns parallel to the strike of local geological faults and orthogonal to absolute plate motion direction of the Indian plate. The average trend of FPD at each station indicates that the anisotropy is primarily originated by lithospheric deformation due to India–Asia collision. The splitting data analyzed at closely spaced stations suggest a shallow source of anisotropy originated in the crust and upper mantle. The observed delay times indicate that the primary source of anisotropy is located in the upper mantle. The shear-wave splitting analysis in the Eastern Himalayan syntaxis (EHS) and surrounding regions suggests complex strain partitioning in the mantle which is accountable for evolution of the EHS and complicated syntaxial tectonics.  相似文献   

14.
We obtain a lithospheric shear‐wave velocity model across the Tien Shan orogenic belt by jointly inverting Rayleigh wave group velocities and teleseismic P‐wave receiver functions at 61 broadband seismic stations deployed in this region. Our new model reveals prominent lateral variations of shear‐wave velocity in both the crust and uppermost mantle. This model reveals different structures in the upper and middle crust across the Talas Fergana Fault, which may suggest the presence of a tectonic boundary between the western and central Tien Shan beneath the fault. According to the velocity images, the depth extent of the fault is ~40 km and this is confined to the crust. Pronounced low‐velocity anomalies are imaged in the middle crust and uppermost mantle beneath the southern and middle Tien Shan, implying that the upwelling of the materials from the upper mantle could have played an important role in the mountain building.  相似文献   

15.
We have measured shear wave splitting at three temporary three-component short period stations that were deployed in southern Chile above the subducted Chile Rise spreading centre (Taitao Peninsula and environs). Subduction of the Chile Rise has been occurring beneath South America for at least the past 14 m.y. Previously published models of the ridge subduction posit the existence of ‘slab windows’, asthenosphere-filled gaps between subducted lithosphere segments of the spreading ridge, through which mantle might flow. Our preliminary results include two consistent fast polarization directions of splitting in the study region. Delay times between fast and slow split shear waves average around 1.0 s for all phases (ScS, PcS, SKS, and SKKS) that we measured. Fast-axis azimuths vary systematically among the three stations: near the coast, fast axes are parallel to the spreading ridge segments of the Chile Rise (approximately N-trending). This splitting fast-axis direction probably reflects either along-axis asthenospheric flow or results from the preferential attenuation effects of aligned pockets of melt at the subducted ridge segment. At one inland station above the slab window, we find two splitting fast-axis directions, one parallel to the subducted Chile Rise ridge segments, and a second trending NW–SE. We infer that upper mantle deformation in the vicinity of a well developed slab window is complicated and probably involves two superposed directions of upper mantle deformation. One of these directions (NW–SE) may indicate anomalous flow of asthenospheric mantle in the vicinity of the slab window gap.  相似文献   

16.
The measurements of the parameters of split shear (S) waves from local deep-focus earthquakes recorded in 2005–2007 by a network of 12 seismic stations in Southern Sakhalin are presented. The results revealed the heterogeneous distribution of the anisotropic properties beneath Southern Sakhalin. The azimuths of the fast S-wave polarization beneath the stations in the central part of the peninsula are oriented along the NNW and NNE-NE directions normal to and along the Kuril Trench. Beneath the stations located along the western and eastern coasts, the azimuths of the fast S-wave polarization change their direction from NNW in the northern area to E-SE in the southern area. The highest anisotropy degree (up to 0.9–1.5%) is recorded beneath the central part of Southern Sakhalin. The maximum values of the discrepancy in the arrival time of the split S-waves are observed when the azimuth of the fast S-wave is oriented along the NNE beneath the active fault zones. The analysis of the variations of the S-wave lag time shows their weak depth dependence. The highest anisotropy is assumed in the upper layers of the medium (down to a depth of about 250 km). The results obtained for the dominating wave frequency of 1–5 Hz represent mainly the medium-scale anisotropy of the top of the studied region.  相似文献   

17.
The azimuthal variation of teleseismic P-delays has been investigated for stations of the USGS-Caltech Southern California Seismographic Network. Normalized residuals show azimuthal variations as large as 1.2 s, and must be explained in terms of upper mantle structure. The observed azimuthal dependence implies the presence of a region of depressed velocity beneath the Imperial Valley, and regions of increased velocity below the Sierra Nevada, southwest Arizona, and much of the Transverse Ranges. The last is a major high velocity ridge-like structure, extending from a depth of ~40 km to over 100 km, which crosses, but is not offset by, the San Andreas Fault. This suggests that the plate boundary at depth may diverge from its surface expression. The horizontal shear resulting from the divergence of crust and mantle plate boundaries may be accommodated by a zone of decoupling associated with the regionally observed 7.8 km/s (Pn) layer.  相似文献   

18.
Interaction between the subducting slab, the overriding continental lithosphere and mantle flow are fundamental geodynamic processes of subduction systems. Eastern China is an ideal natural laboratory to investigate the behavior and evolution of cratonic blocks within a subduction system. In this study, we investigate deformation of the upper mantle beneath eastern China. We present seismic shear wave splitting measurements from three networks consisting of over 483 broadband stations, with 157 stations giving a total of 516 results. The splitting parameters exhibit complex regional patterns but are relatively coherent within individual tectonic units. Tectonic blocks exhibited distinctive fast directions relative to regional features. The dominant attitude of fast directions for the North China Craton was subparallel to the direction of subduction, whereas fast directions for Southeastern China were perpendicular to the direction of subduction. The shear wave splitting measurements were interpreted according to a high resolution tomographic body-wave velocity model. Combining these two datasets showed that the predominant geodynamic models for the region (mantle plume, mantle wedge and flat-slab subduction models) are incompatible with the observations presented here. We suggest that the North China Craton, Yangtze Craton and the Cathaysia block have undergone different deformational events due to differing mantle flow patterns, and distinct spatial and temporal subduction histories of the Pacific and Philippine Sea plates.  相似文献   

19.
A passive teleseismic experiment (TOR), traversing the northern part of the Trans-European Suture Zone (TESZ) in Germany, Denmark and Sweden, recorded data for tomography of the upper mantle with a lateral resolution of few tens of kilometers as well as for a detailed study of seismic anisotropy. A joint inversion of teleseismic P-residual spheres and shear-wave splitting parameters allows us to retrieve the 3D orientation of dipping anisotropic structures in different domains of the sub-crustal lithosphere. We distinguish three major domains of different large-scale fabric divided by first-order sutures cutting the whole lithosphere thickness. The Baltic Shield north of the Sorgenfrei–Tornquist Zone (STZ) is characterised by lithosphere thickness around 175 km and the anisotropy is modelled by olivine aggregate of hexagonal symmetry with the high-velocity (ac) foliation plane striking NW–SE and dipping to NE. Southward of the STZ, beneath the Norwegian–Danish Basin, the lithosphere thins abruptly to about 75 km. In this domain, between the STZ and the so-called Caledonian Deformation Front (CDF), the anisotropic structures strike NE–SW and the high-velocity (ac) foliation dips to NW. To the south of the CDF, beneath northern Germany, we observe a heterogeneous lithosphere with variable thickness and anisotropic structures with high velocity dipping predominantly to SW. Most of the anisotropy observed at TOR stations can be explained by a preferred olivine orientation frozen in the sub-crustal lithosphere. Beneath northern Germany, a part of the shear-wave splitting is probably caused by a present-day flow in the asthenosphere.  相似文献   

20.
青藏高原东部壳幔速度结构和地幔变形场的研究   总被引:16,自引:0,他引:16  
在青藏高原东部地球动力学问题中,笔者在文中主要考虑与地壳上地幔速度结构和地幔变形场有关的问题,它涉及当前流行的下地壳流动模型和壳-幔的耦合-解耦模型。在2000年完成的穿过川西高原和四川盆地的深地震测深剖面,揭示了川西高原的地壳结构具有地壳增厚(主要是下地壳增厚)、地壳平均速度低等特点,显示地壳的缩短与增厚的碰撞变形特征。根据川西高原上设置各爆炸点的记录截面图共同呈现PmP(莫霍界面反射波)弱能量的特点,推断在川西高原的下地壳介质具有强衰减(Qp=100~300)的性质,支持存在下地壳流动的模型。青藏高原东部和川滇西部地区的上地幔各向异性(SKS波快波偏振方向和快慢波延迟时间)的初步结果表明,这两个地区的壳-幔变形特征是不同的,尽管它们在地理位置上属于同一个板块碰撞带。在青藏高原内部的壳幔变形属于垂直连贯变形,它以缩短为主,而高原外部的地壳(或岩石圈)则相对于其下方地幔运动。在高原内部和外部之间存在一个重要的地幔变形过渡带。然而,高原内部的垂直连贯变形与高原内部存在大范围下地壳流动的模型不一致。笔者在该地区开展了近两年的宽频带流动地震观测,试图从地震记录中确定过渡带的位置和探讨它的流变性质。文中扼要回顾已经取得的结果,并介绍正在进行的研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号