首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In the Oman ophiolite, the large scale Makhibiyah shear zone, in Wadi Tayin massif was generated with no or little relative motion between the two adjacent blocks, in contrast with what is reported from otherwise similar shear zones in deep crust and upper mantle. This shear zone is asymmetrical with, along one margin an asthenospheric mantle (~1200 °C) and along the adjacent margin, a lithospheric mantle (~1000 °C). Within the hotter side and with increasing shear strain, horizontal flow lines smoothly swing towards the shear zone direction before abutting against the wall of the lithosphere side. Profuse mafic melts issued from the hotter mantle are frozen in the shear zone by cooling along this lithospheric wall. Tectonic and magmatic activities are entirely localized within the asthenospheric compartment. Mantle flow lines were rotated, during their channelling along this NW‐SE shear zone, in the NW and SE opposite directions. Depending on whether the flow lines are deviated NW or SE, dextral or sinistral shear sense is recorded in the shear band mylonitic peridotites. This demonstrates that the shear zone was not generated by strike‐slip motion, a conclusion supported by regional observations.  相似文献   

2.
Interaction between the subducting slab, the overriding continental lithosphere and mantle flow are fundamental geodynamic processes of subduction systems. Eastern China is an ideal natural laboratory to investigate the behavior and evolution of cratonic blocks within a subduction system. In this study, we investigate deformation of the upper mantle beneath eastern China. We present seismic shear wave splitting measurements from three networks consisting of over 483 broadband stations, with 157 stations giving a total of 516 results. The splitting parameters exhibit complex regional patterns but are relatively coherent within individual tectonic units. Tectonic blocks exhibited distinctive fast directions relative to regional features. The dominant attitude of fast directions for the North China Craton was subparallel to the direction of subduction, whereas fast directions for Southeastern China were perpendicular to the direction of subduction. The shear wave splitting measurements were interpreted according to a high resolution tomographic body-wave velocity model. Combining these two datasets showed that the predominant geodynamic models for the region (mantle plume, mantle wedge and flat-slab subduction models) are incompatible with the observations presented here. We suggest that the North China Craton, Yangtze Craton and the Cathaysia block have undergone different deformational events due to differing mantle flow patterns, and distinct spatial and temporal subduction histories of the Pacific and Philippine Sea plates.  相似文献   

3.
We conduct shear wave splitting measurements on waveform data from the Hi-net and the broadband F-net seismic stations in Kanto and SW Japan generated by shallow and intermediate-depth earthquakes occurring in the subducting Philippine Sea and Pacific slabs. We obtain 1115 shear wave splitting parameter pairs. The results are divided into those from the shallow (depth < 50 km) and the deep (depth > 50 km) events. The deep events beneath Kanto are further divided into PHS1 and PHS2 (upper and lower planes of the double seismic zone in the Philippine Sea slab, respectively), PAC1 and PAC2 (western and eastern Pacific slab, respectively) events. The results from the shallow events represent the crustal anisotropy, and their fast directions are more or less aligned in the σHmax directions, implying that the anisotropy is produced by the alignment of the vertical cracks in the crust induced by the compressive stresses. In Kanto, Kii Peninsula and Kyushu regions, the results from the deep events suggest a contribution from the mantle wedge anisotropy. Events from all groups beneath Kanto show NW, NE and EW fast directions. This complex pattern seems to be produced by the corner flows induced by both the WNW PAC plate subduction and the oblique NNW PHS slab subduction with the associated olivine lattice-preferred orientations (LPOs), and the anisotropy frozen in the PHS slab. The deep events beneath Kii Peninsula show NE and NW fast directions and may be produced by the corner flow produced by the NNW PHS slab subduction with the associated olivine LPOs. The NE directions might also be produced by the segregated melts in the thin layers parallel to the PHS slab subduction. The deep events beneath N Kyushu show NNW fast directions, which may result from the southeastward flow in the upper mantle inferred from the stresses in the upper plate. Results from the deep events beneath middle-south Kyushu show dominantly E–W fast directions, in both the fore- and back-arcs. They may be produced by the corner flow of the westward PHS slab subduction with the olivine LPOs. Because the source regions with multiple fast directions are not resolved in this study, further detailed analyses of shear wave splitting are necessary for a better understanding of the stress state, the induced mantle flow, and the melt-segregation processes.  相似文献   

4.
The presence of two regional seismic networks in southeastern France provides us high-quality data to investigate upper mantle flow by measuring the splitting of teleseismic shear waves induced by seismic anisotropy. The 10 three-component and broadband stations installed in Corsica, Provence, and western Alps efficiently complete the geographic coverage of anisotropy measurements performed in southern France using temporary experiments deployed on geodynamic targets such as the Pyrenees and the Massif Central. Teleseismic shear waves (mainly SKS and SKKS) are used to determine the splitting parameters: the fast polarization direction and the delay time. Delay times ranging between 1.0 and 1.5 s have been observed at most sites, but some larger delay times, above 2.0 s, have been observed at some stations, such as in northern Alps or Corsica, suggesting the presence of high strain zones in the upper mantle. The azimuths of the fast split shear waves define a simple and smooth pattern, trending homogeneously WNW–ESE in the Nice area and progressively rotating to NW–SE and to NS for stations located further North in the Alps. This pattern is in continuity with the measurements performed in the southern Massif Central and could be related to a large asthenospheric flow induced by the rotation of the Corsica–Sardinia lithospheric block and the retreat of the Apenninic slab. We show that seismic anisotropy nicely maps the route of the slab from the initial rifting phase along the Gulf of Lion (30–22 Ma) to the drifting of the Corsica–Sardinia lithospheric block accompanied by the creation of new oceanic lithosphere in the Liguro–Provençal basin (22–17 Ma). In the external and internal Alps, the pattern of the azimuth of the fast split waves follows the bend of the alpine arc. We propose that the mantle flow beneath this area could be influenced or perhaps controlled by the Alpine deep penetrative structures and that the Alpine lithospheric roots may have deflected part of the horizontal asthenospheric flow around its southernmost tip.  相似文献   

5.
Analysis of seismic anisotropy in the crust and the uppermost mantle gives lots of information about the ambient mantle flow, stress state, and the dynamic processes inside the Earth. Thus, seismic anisotropy and its main distinctive features beneath the southeastern Mediterranean region are studied through the analysis of teleseismic shear-wave splitting observed at six broadband seismic stations belonging to the GEOFON and the MedNet. Although the number of the recording stations is small; a total of 495 splitting parameters are obtained, which revealed significant variations in the observed fast polarization directions beneath the study area. The stations in northern Egypt and Cyprus show fast velocity directions oriented roughly N–S to NNE–SSW, coincident with many previous results. A slightly different splitting pattern comprising NE–SW fast polarization directions is observed in the stations located along the Dead Sea fault in the southeastern Mediterranean; which are consistent with the current strike-slip motion between Africa and Arabia. In addition, NW–SE fast polarization directions are recognized in the latter group. The observed delay times vary greatly but their averages lie between 0.35 and 1 s. Although large-scale mechanisms, such as the absolute plate motion of Africa and Arabia towards Eurasia and the differential motion between Arabia and Africa can be invoked to predominantly explain the origin of anisotropic features, we suggest that density-driven flow in the asthenosphere is a possible additional cause of the wide range of the splitting pattern observed beneath some stations.  相似文献   

6.
The shapes and orientations of Benioff zones beneath island arcs, interpreted as marking the location of subducted lithosphere, provide the best presently available constraints on the global convective flow pattern associated with plate motions. This global flow influences the dynamics of subduction. Subduction zone phenomena therefore provide powerful tests for models of mantle flow. We compute global flow models which, while simple, include those features which are best constrained, namely the observed plate velocities, applied as boundary conditions, and the density contrasts given by thermal models of the lithosphere and subducted slabs. Two viscosity structures are used; for one, flow is confined to the upper mantle, while for the other, flow extends throughout the mantle.Instantaneous flow velocity vectors match observed Benioff zone dips and shapes for the model which allows mantle-wide flow but not for the upper mantle model, which has a highly contorted flow pattern. The effect of trench migration on particle trajectories is calculated; it is not important if subduction velocities are greater than migration rates. Two-dimensional finite element models show that including a coherent high viscosity slab does not change these conclusions. A coherent high viscosity slab extending deep into the upper mantle would significantly slow subduction if flow were confined to the upper mantle. The maximum earthquake magnitude, Mw, for island arcs correlates well with the age of the subducted slab and pressure gradient between the trench and back-arc region for the whole mantle, but not the upper mantle, flow model. The correlations with orientations of Benioff zones and seismic coupling strongly suggest that the global return flow associated with plate motions extends below 700 km. For both models, regions of back-arc spreading have asthenospheric shear pulling the back-arc toward the trench; regions without back-arc spreading have the opposite sense of shear, suggesting global flow strongly influences back-arc spreading.  相似文献   

7.
Ron Harris 《Tectonophysics》2004,392(1-4):143
Analysis of internal structures of the Brooks Range ophiolite at the three largest and well-exposed klippen reveals a NE–SW structural grain that may parallel the original axis of magmatism of a slow spreading marginal ocean basin. Sub-parallel directions of lattice fabrics in olivine of mantle peridotite and shape fabrics in pyroxene and plagioclase of layered gabbro indicate that asthenospheric and magmatic flow was closely coupled. These structures, including the petrologic moho, mostly dip steeply to the NW and SE, with slightly oblique flow lineations. Sedimentary and volcanic cover deposits also dip SE. The few exposures found of sheeted dike complexes generally strike parallel, but dip orthogonal to both the petrologic moho and cover deposits. These structural features are locally disturbed by syn- and post-magmatic normal faults emblematic of slow-spreading ridge processes. However, the consistent geometry of structures over a distance of 200 km demonstrates not only that the magmatic system was organized in a similar manner to an oceanic ridge, but that there was little to no rotation of individual klippe during tectonic emplacement.Ductile fabrics related to tectonic emplacement yield top-to-the NNW sense of shear indicators. The basal thrust and accompanying serpentinized shear zone is mostly flat-lying and truncates the steeply dipping ductile fabric of the ophiolite. This relationship and paleomagnetic data from the igneous sequence suggest that flow fabrics were most likely moderately inclined at the time the ophiolite formed. Similar relationships are found at diapiric centers along oceanic ridges and in other ophiolite bodies.  相似文献   

8.
During the Triassic collision of the Yangtze and Sino-Korean cratons, the leading edge of the Yangtze crust subducted to mantle depths and was subsequently exhumed as a penetratively deformed, coherent slab capped by a normal shear zone. This geometry requires a reverse shear zone at the base of the slab, and we suggest that the Yangtze foreland fold-and-thrust belt constitutes this zone. Lower Triassic rocks of the eastern foreland record NW–SE compression as the oldest compressional stress field; onset of related deformation is indicated by Middle Triassic clastic sedimentation. Subsequent Jurassic stress fields show a clockwise change of compression directions. Based on nearly coeval onset and termination of deformation, and on a common clockwise change in the principal strain/stress directions, we propose that the foreland deformation was controlled by the extrusion of the ultra high-pressure slab. Widespread Cretaceous–Cenozoic reactivation occurred under regional extension to transtension, which characteristically shows a large-scale clockwise change of the principal extension directions during the Lower Cretaceous.  相似文献   

9.
The major and trace element and Pb–Sr–Nd isotopic compositions of Quaternary mafic lavas from the northern Ryukyu arc provide insights into the nature of the mantle wedge and its tectonic evolution. Beneath the volcanic front in the northern part of the arc, the subducted slab of the Philippine Sea Plate bends sharply and steepens at a depth of ∼80 km. Lavas from the volcanic front have high abundances of large ion lithophile elements and light rare earth elements relative to the high field strength elements, consistent with the result of fluid enrichment processes related to dehydration of the subducting slab. New Pb isotopic data identify two distinct asthenospheric domains in the mantle wedge beneath the south Kyushu and northern Ryukyu arc, which, in a parallel with data from the Lau Basin, appear to reflect mantle with affinities to Indian and Pacific-type mid-ocean ridge basalt (MORB). Indian Ocean MORB-type mantle, contaminated with subducted Ryukyu sediments can account for the variation of lavas erupted on south Kyushu, and probably in the middle Okinawa Trough. In contrast, magmas of the northern Ryukyu volcanic front appear to be derived from sources of Pacific MORB-type mantle contaminated with a sedimentary component. Along-arc variation in the northern Ryukyus reflects increasing involvement of a sedimentary component to the south. Compositions of alkalic basalts from the south Kyushu back-arc resemble intraplate-type basalts erupted in NW Kyushu since ∼12 Ma. We propose that the bending of the subducted slab was either caused by or resulted in lateral migration of asthenospheric mantle, yielding Indian Ocean-type characteristics from a mantle upwelling zone beneath NW Kyushu and the East China Sea. This model also accounts for (1) extensional counter-clockwise crustal rotation (∼4–2 Ma), (2) voluminous andesite volcanism (∼2 Ma), and (3) the recent distinctive felsic magmatism in the south Kyushu region. Received: 30 November 1999 / Accepted: 20 July 2000  相似文献   

10.
青藏高原东部及其邻区力学耦合的岩石圈变形模式   总被引:1,自引:0,他引:1  
根据青藏高原东部及其邻区布设的143个宽频带固定和流动地震台站的远震记录的SKS波分裂分析获得了各台站的快波偏振方向和快慢波之间的时间延迟。SKS分裂分析结果总体上反映了高原东部的上地幔物质流动方向,即高原内部表现为环绕喜马拉雅东构造结的顺时针旋转。在造山运动过程中有关岩石圈地壳和地幔力学耦合的造山变形方式,用从GPS和第四纪断裂滑动速率数据确定的地面变形场和由地震波各向异性数据推断的地幔变形场联合分析来定量求得。在青藏高原东部和云南、四川等地区新近快速增加的GPS和SKS波分裂观测数据,提供了对青藏高原岩石圈地幔实际变形方式的检验。这些新的数据不仅加强了高原内部力学耦合岩石圈的证据,而且也解释了高原外部相同的耦合特征。文中引入简单剪切变形和纯剪切变形的概念,用于解释高原内外不同的耦合变形特征。青藏高原和周围区域力学耦合岩石圈的垂直连贯变形有两个方面的大陆动力学含义:第一,岩石圈垂直强度剖面被一个重要的条件所约束,即要求与重力势能变化相关的应力能够从地壳传递到地幔;第二,青藏高原各向异性的空间变化反映了一个岩石圈变形的大尺度模式,以及从高原内部的简单剪切变形向高原外部的纯剪切变形的过渡带。文中提出的力学耦合岩石圈变形模型与当前已有的多种造山运动变形模型具有不同的变形含义,因此,地幔变形在青藏高原隆升过程中起主要作用。  相似文献   

11.
为了研究南极普里兹湾岩石圈深部应力场及其动力学,采用S波分裂旋转相关法,对中国第31次南极科学考察成功回收的3个站位海底地震仪数据(5个远震记录)进行了反演,获得了普里兹湾洋陆过渡带岩石圈各向异性特征.结果表明,台站所在区域各向异性显著,在较小的范围内存在明显的空间差异,快S波偏振方向变化范围是N40°E ~ N60°E,快慢波时间延迟变化范围为0.2~1.3 s.洋盆的各向异性主要取决于海底扩张地幔流作用,大陆及附近的各向异性主要受上地幔顶部残留构造的影响,而中间过渡带各向异性层厚度较小集中在地壳内,它可能受海底扩张地幔流和残留构造共同作用.   相似文献   

12.
An active oceanic spreading ridge is being subducted beneath the South American continent at the Chile Triple Junction. Mass balance estimations to characterize temporal and spatial variations in the frontal accretion, or underplating and subduction of sediments since the Late Miocene, were made using seismic and drill-hole data. At 200 km north of the triple junction, almost 80% of the sediment on the downgoing Nazca plate are subducted. Sediment subduction rate decreases towards the triple junction because of a low in sedimentation rates as the flank of the spreading ridge approaches the trench. At the triple junction, the forearc is almost completely destroyed by spreading ridge collision and subduction erosion. Less than 12% of the available sedimentary input is accreted. South of the triple junction, where the spreading ridge passed 6 Ma ago, a large fraction (>60%) of the sediment on the incoming Antarctic plate has been scraped off and was frontally accreted to the Chile forearc. Spreading ridge subduction leaves a distinctive geological fingerprint, and has a large impact on the mass balance of the subduction zone. However, the high rates of change in the process may make this fingerprint hard to detect in fossil convergent orogens. In the ridge collision zone the sediment supplied to the trench, and the amount of sediment subducted, show strong and distinctive variations on a 1- to 5-million-year time scale. On a 10-million-year time scale, sediment subduction to the Earth's mantle is reduced by spreading ridge collision, caused by the need of the overriding forearc to regain a low angle of taper by frontal accretion.  相似文献   

13.
Based on petrological and geochemical arguments, it is possible that arc magma is derived from subducted oceanic crust. In this paper, regional thermal models have been constructed to study the feasibility of melting cold subducted oceanic crusts at shallow depth (i.e. at depths of about 100 km) by a dynamic mantle. Calculated results suggest that plate subduction will generate an induced flow in the wedge above the subducting slab. This current continuously feeds hot mantle material into the corner and onto the slab surface. A high temperature thermal environment can be maintained in the vicinity of the wedge corner, immediately beneath the over-riding plate. Our regional models further demonstrate quantitatively that production of local melting is possible just about 30 km down dip from the asthenosphere wedge corner. Additional geological processes such as reasonable amounts of shear heating and minor dehydration (which will lower the local melting temperature) will further increase the probability of melting a cold subducted oceanic crust at shallow depth.  相似文献   

14.
朱涛  马小溪 《地学前缘》2021,28(2):284-295
在已有模型的基础上,考虑岩石圈厚度和软流层横向黏度的变化,本文建立了更接近地球实际情形的地幔对流模型,然后重新推测了导致云南地区剪切波各向异性的软流层源的深度。结果表明:岩石圈厚度和软流层横向黏度变化对云南地区的软流层各向异性源的深度及软流层的变形程度和机制具有重要影响;软流层各向异性对云南西南部区域、东部区域北纬26°N以南和四川盆地及其西缘的剪切波分裂具有明显的贡献,它们分别位于90~180、170~330和200~320 km深度;在云南西南部区域和东部区域北纬26°N以南,导致剪切波分裂的软流层可能处于大剪切变形状态,主要受地幔流动方向/流动平面模式控制,而四川盆地及其西缘的则处于小剪切变形状态,主要受应变模式的控制。  相似文献   

15.
An active oceanic spreading ridge is being subducted beneath the South American continent at the Chile Triple Junction. This process has played a major part in the evolution of most of the continental margins that border the Pacific Ocean basin. A combination of high resolution swath bathymetric maps, seismic reflection profiles and drillhole and core data from five sites drilled during Ocean Drilling Program (ODP) Leg 141 provide important data that define the tectonic, structural and stratigraphic effects of this modern example of spreading ridge subduction.A change from subduction accretion to subduction erosion occurs along-strike of the South American forearc. This change is prominently expressed by normal faulting, forearc subsidence, oversteepening of topographic slopes and intensive sedimentary mass wasting, overprinted on older signatures of sediment accretion, overthrusting and uplift processes in the forearc. Data from drill sites north of the triple junction (Sites 859–861) show that after an important phase of forearc building in the early to late Pliocene, subduction accretion had ceased in the late Pliocene. Since that time sediment on the downgoing oceanic Nazca plate has been subducted. Site 863 was drilled into the forearc in the immediate vicinity of the triple junction above the subducted spreading ridge axis. Here, thick and intensely folded and faulted trench slope sediments of Pleistocene age are currently involved in the frontal deformation of the forearc. Early faults with thrust and reverse kinematics are overprinted by later normal faults.The Chile Triple Junction is also the site of apparent ophiolite emplacement into the South American forearc. Drilling at Site 862 on the Taitao Ridge revealed an offshore volcanic sequence of Plio-Pleistocene age associated with the Taitao Fracture Zone, adjacent to exposures of the Pliocene-aged Taitao ophiolite onshore. Despite the large-scale loss of material from the forearc at the triple junction, ophiolite emplacement produces a large topographic promontory in the forearc immediately after ridge subduction, and represents the first stage of forearc rebuilding.  相似文献   

16.
The controversial relationship between the orogenic segments of the Western Alps and the Northern Apennines is here explored integrating recently published 3D tomographic models of subduction with new and re-interpreted geological observations from the eclogitic domain of the Voltri Massif (Ligurian Alps, Italy), where the two belts joint each other. The Voltri Massif is here described as an extensional domain accommodating the opposing outward migration of the Alpine and Apennine thrust fronts, since about 30–35 Ma. Using tomographic images of the upper mantle and paleotectonic reconstructions, we propose that this extensional setting represents the surface manifestation of an along strike change in polarity of the subducted oceanic slab whose polarity changed laterally in space and in time. Our tectonic model suggests that the westward shift of the Alpine thrust front from the Oligocene onward was the consequence of the toroidal asthenospheric flow induced by the retreat of the Apenninic slab.  相似文献   

17.
俯冲带部分熔融   总被引:3,自引:3,他引:0  
张泽明  丁慧霞  董昕  田作林 《岩石学报》2020,36(9):2589-2615
俯冲带是地幔对流环的下沉翼,是地球内部的重要物理与化学系统。俯冲带具有比周围地幔更低的温度,因此,一般认为俯冲板片并不会发生部分熔融,而是脱水导致上覆地幔楔发生部分熔融。但是,也有研究认为,在水化的洋壳俯冲过程中可以发生部分熔融。特别是在下列情况下,俯冲洋壳的部分熔融是俯冲带岩浆作用的重要方式。年轻的大洋岩石圈发生低角度缓慢俯冲时,洋壳物质可以发生饱和水或脱水熔融,基性岩部分熔融形成埃达克岩。太古代的俯冲带很可能具有与年轻大洋岩石圈俯冲带类似的热结构,俯冲的洋壳板片部分熔融可以形成英云闪长岩-奥长花岗岩-花岗闪长岩。平俯冲大洋高原中的基性岩可以发生部分熔融产生埃达克岩。扩张洋中脊俯冲可以导致板片窗边缘的洋壳部分熔融形成埃达克岩。与俯冲洋壳相比,俯冲的大陆地壳具有很低的水含量,较难发生部分熔融,但在超高压变质陆壳岩石的折返过程中可以经历广泛的脱水熔融。超高压变质岩在地幔深部熔融形成的熔体与地幔相互作用是碰撞造山带富钾岩浆岩的可能成因机制。碰撞造山带的加厚下地壳可经历长期的高温与高压变质和脱水熔融,形成S型花岗岩和埃达克质岩石。  相似文献   

18.
周华伟  林清良 《地学前缘》2002,9(4):285-292
文中介绍有关西藏—喜马拉雅碰撞带的一项地震层析成像研究。根据一个用天然地震数据产生的全球波速模型 ,印度板块有可能以近水平状俯冲于整个西藏高原之下至 16 5~ 2 6 0km深度。西藏岩石圈具有低波速地壳和高波速下岩石圈 (75~ 12 0km深 )。在 12 0~ 16 5km深度范围 ,西藏岩石圈与俯冲的印度板块之间有一层低速软流圈物质。高原中部从地表到 310km深处有一低速体 ,说明地幔物质有可能穿过俯冲板块的脆弱部位上隆。这些结果以及野外实测的地壳缩短值说明高原的抬升得助于印度板块的近水平俯冲。我们推论俯冲印度板块的升温上浮以及上覆软流层的存在是造成西藏高原高海拔抬升以及内部地表仍相对平坦的主要原因。2 0 0 1年 1月 2 6日在印度西部发生的毁灭性大地震有可能是俯冲应力在印度板块后缘薄弱处引发的岩石圈大断裂。  相似文献   

19.
We have made great efforts to collect and combine a large number of high-quality data from local earthquakes and teleseismic events recorded by the dense seismic networks in both South Korea and West Japan. This is the first time that a large number of Korean and Japanese seismic data sets are analyzed jointly. As a result, a high-resolution 3-D P-wave velocity model down to 700-km depth is determined, which clearly shows that the Philippine Sea (PHS) plate has subducted aseismically down to ∼460 km depth under the Japan Sea, Tsushima Strait and East China Sea. The aseismic PHS slab is visible in two areas: one is under the Japan Sea off western Honshu, and the other is under East China Sea off western Kyushu. However, the aseismic PHS slab is not visible between the two areas, where a slab window has formed. The slab window is located beneath the center of the present study region where many teleseismic rays crisscross. Detailed synthetic tests were conducted, which indicate that both the aseismic PHS slab and the slab window are robust features. Using the teleseismic data recorded by the Japanese stations alone, the aseismic PHS slab and the slab window were also revealed (Zhao et al., 2012), though the ray paths in the Japanese data set crisscross less well offshore. The slab window may be caused by the subducted Kyushu-Palau Ridge and Kinan Seamount Chain where the PHS slab may be segmented. Hot mantle upwelling is revealed in the big mantle wedge above the Pacific slab under the present study region, which may have facilitated the formation of the PHS slab window. These novel findings may shed new light on the subduction history of the PHS plate and the dynamic evolution of the Japan subduction zone.  相似文献   

20.
Yu J. Gu   《Tectonophysics》2006,424(1-2):41-51
This paper investigates the shear velocity structure under the northern East Pacific Rise at the latitude range of 9–18°N, using intermediate-period Rayleigh and Love waves. The selected ocean-bottom seismic records provide source–receiver paths that ideally constrain the lithospheric mantle structure beneath the southern Rivera plate and the Mathematician paleoplate. The Rayleigh wave data infer a relatively thin ( 30 km) lithosphere under the eastern side of the present-day East Pacific Rise. The associated shear velocities are consistent with existing models of oceanic mantle beneath this region, and the estimated plate age of 2–3 million years agrees with results from magnetic dating. The west of the rise axis is characterized by a thicker and faster lithosphere than the eastern flank, and such structural differences suggest the presence of a relatively old Mathematician paleoplate. The discontinuous change in mantle structure across the East Pacific Rise spreading center are observed in both isotropic and anisotropic velocities. The young oceanic lithosphere east of the rise axis shows strong polarization anisotropy, where the dominant orientation of crystallographic axes roughly parallels the spreading direction. However, the western flank of the rise axis is approximately isotropic, and the lack of anisotropy suggests complex deformation mechanisms associated with earlier episodes of ridge segmentation, propagation and dual-spreading on and around the Mathematician paleoplate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号